Volume 5, Issue 1-C (2017), 349-357.

ISSN: 2347-1557

Available Online: http://ijmaa.in/



### International Journal of Mathematics And its Applications

# Some Properties of Semi $^{\#}$ Generalized Open Sets in Topological Spaces

Research Article

# S.Saranya<sup>1\*</sup> and K.Bageerathi<sup>1</sup>

1 Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, Tamil Nadu, India.

Abstract:

In this paper a new class of generalized open sets in topological spaces, namely semi # generalized open(briefly, s#gopen) sets is introduced. We prove that this class lies between the class of sg-open sets and the class of gs-open sets and we study some basic properties and characterizations of s#g-open sets. Also we introduce s#g-neighbourhood (shortly, s#-neighbourhood), s#g-interior, s#g-closure and s#g-derived set of a set in a topological spaces and investigate some basic properties of these sets.

MSC: 54A05.

**Keywords:**  $s^{\#}$ g-open set,  $s^{\#}$ g-neighbourhood,  $s^{\#}$ g-closure,  $s^{\#}$ g-interior,  $s^{\#}$ g-derived set.

© JS Publication.

## 1. Introduction

N. Levine initiated the study of generalized closed sets in topological spaces in [8]. Biswas [5], Njastad [15], Mashhour [12], Robert [17], Bhattacharya [4], Arya and Nour [1], Maki, Devi and Balachandran [10, 11], Sheik John [20], Pushpalatha and Anitha [17], Gnanachandra et.al [7], Veerakumar [21] introduced and investigated semi closed,  $\alpha$ -open and  $\alpha$ -closed, pre-open, semi\*-open, sg-closed, gs-closed, gg-closed, g\*s-closed, s\*g-closed, w-closed, g\*-closed respectively. The authors [18] have recently introduced semi #generalized closed sets. In this paper we introduce a new class of sets called s\*g-open sets which is properly placed in between the class of gs-open sets and the class of sg-open sets. We give characterizations of s\*g-open sets also investigate many fundamental properties of s\*g-open set. We introduce s\*g-neighbourhood, s\*g-closure, s\*g-interior, s\*g-derived set and study some basic properties of these sets.

# 2. Preliminaries

Throughout this paper,  $(X, \tau)$  represents a topological space on which no separation axiom is assumed unless otherwise mentioned.  $(X, \tau)$  will be replaced by X if there is no chance of confusion. For a subset A of a topological space X, cl(A)and int(A) denote the closure of A and the interior of A respectively. We recall the following definitions and results.

**Definition 2.1.** Let  $(X, \tau)$  be a topological space. A subset A of X is said to be generalized closed [8] (briefly g-closed) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an open set in  $(X, \tau)$ .

<sup>\*</sup> E-mail: saranya7873@qmail.com

**Definition 2.2.** Let  $(X, \tau)$  be a topological space and  $A \subseteq X$ . The generalized closure of A [6], denoted by  $cl^*(A)$ , is defined by the intersection of all g-closed sets containing A and generalized interior of A [6], denoted by  $int^*(A)$ , is defined by the union of all g-open sets contained in A.

**Definition 2.3.** Let  $(X,\tau)$  be a topological space. A subset A of the space X is said to be

- (1). semi-open [9] if  $A \subseteq cl(int(A))$  and semi-closed [3] if  $int(cl(A)) \subseteq A$ .
- (2).  $\alpha$ -open [15] if  $A \subseteq int(cl(int(A)))$  and  $\alpha$ -closed if  $cl(int(cl(A))) \subseteq A$ .
- (3). pre-open [16] if  $A \subseteq int(cl(A))$  and pre-closed if  $cl(int(A)) \subseteq A$ .
- (4).  $semi^*$ -open [17] if  $A \subseteq cl * (int(A))$  and  $semi^*$ -closed if  $int * (cl(A)) \subseteq A$ .

**Definition 2.4.** Let  $(X, \tau)$  be a topological space and  $A \subseteq X$ . The semi-closure of A [4], denoted by scl(A), is defined by the intersection of all semi-closed sets containing A.

**Definition 2.5.** Let  $(X,\tau)$  be a topological space. A subset A of X is said to be

- (1). semi-generalized closed [4] (briefly sg-closed) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi-open in  $(X, \tau)$ .
- (2). generalized semi-closed [1] (briefly gs-closed) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in  $(X, \tau)$ .
- (3).  $\alpha$ -generalized closed [10] (briefly  $\alpha$ g-closed) if  $\alpha$ cl(A)  $\subseteq$  U whenever  $A \subseteq U$  and U is open in  $(X, \tau)$ .
- (4). g\*s-closed set [15] if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is gs-open in  $(X, \tau)$ .
- (5). semi\*generalized closed [7] (briefly semi\*g-closed) if  $s*cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi\*-open in  $(X,\tau)$ .
- (6). w-closed [20] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi-open in  $(X, \tau)$ .
- (7). \*g-closed [21] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is w-open in  $(X,\tau)$ .
- (8). wg-closed [2] if  $cl(int(A)) \subseteq U$  whenever  $A \subseteq U$  and U is open in  $(X, \tau)$ .
- (9).  $wg\alpha$ -closed [14] if  $\alpha cl(int(A)) \subseteq U$  whenever  $A \subseteq U$  and U is  $\alpha$ -open in  $(X, \tau)$ .
- (10).  $w\alpha$ -closed [3]  $if\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is w-open in  $(X, \tau)$ .
- (11).  $gw\alpha$ -closed [2] if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $w\alpha$ -open in  $(X, \tau)$ .

The complements of the above mentioned closed sets are their respective open sets.

**Theorem 2.6** ([16]). Arbitrary intersection of semi\*-closed sets is a semi\*-closed set.

**Definition 2.7** ([18]). A subset A of a space  $(X, \tau)$  is called a semi # generalized closed set (briefly, s# g-closed) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi\*-open in  $(X, \tau)$ .

**Remark 2.8.**  $scl(X \setminus A) = X \setminus sint(A)$ .

**Theorem 2.9** ([18]). Let A be any  $s^{\#}g$ -closed set in  $(X,\tau)$ . If  $A \subseteq B \subseteq scl(A)$ , then B is also a  $s^{\#}g$ -closed set.

**Theorem 2.10** ([18]). For every element x in a space X,  $X \setminus \{x\}$  is  $s^{\#}g$ -closed or semi\*-open.

# 3. Semi #generalized Open Sets

In this section we introduce the notion of  $s^{\#}g$ -open sets, and study some of their basic properties.

**Definition 3.1.** A subset A of  $(X, \tau)$  is said be semi # generalized open set if its complement  $X \setminus A$  is  $s^{\#}g$ -closed in X. The family of all  $s^{\#}g$ -open sets in X is denoted by  $s^{\#}gO(X)$ .

#### Theorem 3.2.

- (1). Every open set is  $s^{\#}g$ -open.
- (2). Every semi-open set is  $s^{\#}g$ -open.
- (3). Every semi\*-open set is  $s^{\#}g$ -open.

#### Theorem 3.3.

- (1). Every sg-open set is  $s^{\#}g$ -open.
- (2). Every  $s^{\#}g$ -open set is gs-open.

**Remark 3.4.** From the Theorem 3.3, we conclude that  $s^{\#}g$ -open sets properly placed in between the class of gs-closed sets and the class of sg-closed sets.

#### Theorem 3.5.

- (1). Every w-open set is  $s^{\#}q$ -open.
- (2). Every  $g^*s$ -open set is  $s^\#g$ -open.
- (3). Every semi\*g-open set is  $s^{\#}$ g-open.

Remark 3.6. The converse of the above theorem is not true as seen from the following examples.

**Example 3.7.** Let  $X = \{a, b, c\}$  and  $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ . In the space  $(X, \tau)$ , the sets  $\{b\}$ ,  $\{c\}$ ,  $\{a, b\}$ ,  $\{a, c\}$  are  $s^{\#}g$ -open sets but not open(semi-open, semi\*-open).

**Example 3.8.** Let  $X = \{a, b, c\}$  with  $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}\}$ . In the space  $(X, \tau)$ , the sets  $\{a, b\}$ ,  $\{b, c\}$  are  $s^{\#}g$ -open but not semi\*g-open.

**Example 3.9.** Let  $X = \{a, b, c\}$  with  $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ . In the space  $(X, \tau)$ ,  $\{b\}$  is a gs-open set which is not  $s^{\#}g$ -open.

**Example 3.10.** Let  $X = \{a, b, c\}$  with  $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}\}$ . In the space  $(X, \tau)$ , the sets  $\{b, c\}$ ,  $\{a, b\}$  are  $s^{\#}g$ -open which are not w-open.

**Example 3.11.** Let  $X = \{a, b, c\}$  with  $\tau = \{\phi, X, \{a\}\}$ . In the space  $(X, \tau)$ , the sets  $\{c\}$  is  $s^{\#}g$ -open but not  $g^*s$ -open.

**Remark 3.12.** The following example shows that the concept of  $s^{\#}g$ -open sets is independent of each of the concepts of g-open sets, wg-open sets,  $g^*$ -open sets,  $g^*$ -o

**Example 3.13.** Let  $X = \{a, b, c\}$  and  $Y = \{a, b, c, d\}$  be the topological spaces.

(1). Consider the topology  $\tau = \{\phi, X, \{a\}, \{a,b\}\}$ . Then the set  $\{b\}$  is an  $\alpha g$ -open set but not  $s^{\#}g$ -open in  $(X, \tau)$ .

(2). Consider the topology  $\tau = \{\phi, Y, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$ . Then the sets  $\{a\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}$  are  $s^{\#}g$ -open sets but not  $\alpha g$ -open in  $(Y,\tau)$ .

**Example 3.14.** Let  $X = \{a, b, c\}$  be the topological spaces with the topology  $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ . Then the set  $\{a, c\}$  is  $s^{\#}g$ -open set but not g-open, also the set  $\{b\}$  is g-open set but not  $s^{\#}g$ -open in  $(X, \tau)$ .

**Example 3.15.** Let  $Y = \{a, b, c, d\}$  be the topological spaces with the topology  $\tau = \{\phi, Y, \{c\}, \{a, b\}, \{a, b, c\}\}\}$ . Then the set  $\{a, c\}$  is  $wg\alpha$ -open and  $gw\alpha$ -open but not  $s^{\#}g$ -open set also  $\{c\}$ ,  $\{a, b\}$  are  $s^{\#}g$ -open sets but not  $wg\alpha$ -open and  $gw\alpha$ -open.

**Example 3.16.** Let  $X = \{a, b, c\}$  and be the topological spaces.

- (1). Consider the topology  $\tau = \{\phi, X, \{a\}, \{a,b\}\}\$ . Then the set  $\{b\}$  is wg-open set but not  $s^{\#}g$ -open in  $(X, \tau)$ .
- (2). Consider the topology  $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Then the sets  $\{b, c\}$ ,  $\{a, c\}$  are  $s^{\#}g$ -open set but not wg-open in  $(X, \tau)$ .

**Example 3.17.** Let  $X = \{a, b, c\}$  and  $Y = \{a, b, c, d\}$  be the topological spaces.

- (1). Consider the topology  $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ . Then the sets  $\{b,c\}$ ,  $\{a,c\}$  are  $s^{\#}g$ -open but not \*g-open in  $(X,\tau)$ .
- (2). Consider the topology  $\tau = \{\phi, X, \{a\}, \{a,b\}\}\$ . Then the sets  $\{b\}, \{c\}$  are \*g-open but not  $s^{\#}g$ -open in  $(X, \tau)$ .

**Theorem 3.18.** Let  $(X, \tau)$  be a topological space and  $A \subseteq X$ . A is an  $s^{\#}g$  open if and only if  $F \subseteq sint(A)$ , whenever  $F \subseteq A$  and F is  $semi^*$ -closed.

*Proof.* Necessity: Let A be an s<sup>#</sup>g-open set in  $(X, \tau)$ . Let  $F \subseteq A$  and F is semi\*-closed. Then  $X \setminus A$  is s<sup>#</sup>g-closed and it is contained in the semi\*-open set  $X \setminus F$ . Therefore  $scl(X \setminus A) \subseteq X \setminus F$ . This implies that  $X \setminus sint(A) \subseteq X \setminus F$ . Hence  $F \subseteq sint(A)$ .

**Sufficiency:** If F is semi\*-closed set such that  $F \subseteq \text{sint}(A)$  whenever  $F \subseteq A$ . It follows that  $X \setminus A \subseteq X \setminus F$  and  $X \setminus \text{sint}(A) \subseteq X \setminus F$ . Therefore  $\text{scl}(X \setminus A) \subseteq X \setminus F$ . Hence  $X \setminus A$  is  $s^{\#}g$ -closed and hence A is  $s^{\#}g$ -open.

**Theorem 3.19.** If a set A is  $s^{\#}g$ -open and  $B \subseteq X$  such that  $sint(A) \subseteq B \subseteq A$ , then B is  $s^{\#}g$ -open.

*Proof.* If  $sint(A) \subseteq B \subseteq A$  then,  $X \setminus A \subseteq X \setminus B \subseteq X \setminus sint(A)$ . That is,  $X \setminus A \subseteq X \setminus B \subseteq scl(X \setminus A)$ . Observe  $X \setminus A$  is  $s^{\#}g$ -closed. Therefore by Theorem 2.10,  $X \setminus B$  is  $s^{\#}g$ -closed and hence B is  $s^{\#}g$ -open.

**Theorem 3.20.** If  $A \subseteq X$  is  $s^{\#}g$ -closed, then scl(A) - A is  $s^{\#}g$ -open.

*Proof.* Let A be s<sup>#</sup>g-closed. Then by Theorem 4.1[18], scl(A) - A contains no non-empty semi\*-closed set. Thus  $\phi$  is the only semi\*-closed set contained in  $scl(A) \setminus A$ . Hence by Theorem 3.12, scl(A) - A is  $s^{\#}g$ -open.

#### Remark 3.21.

- (1). Intersection of any two  $s^{\#}g$ -open sets need not be  $s^{\#}g$ -open.
- (2). Union of any two  $s^{\#}g$ -open sets need not be  $s^{\#}g$ -open, as seen from the following example.

**Example 3.22.** Consider the topological spaces  $(X, \tau)$  where  $X = \{a, b, c\}$  and  $\tau = \{\phi, X, \{a\}\}$ . The sets  $\{b\}$  and  $\{c\}$  are  $s^{\#}g$ -open. But their union  $\{b, c\}$  is not  $s^{\#}g$ -open.

**Example 3.23.** Consider the topological spaces  $(X, \tau)$  where  $X = \{a, b, c\}$  and  $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . The sets  $\{b, c\}$  and  $\{a, c\}$  are  $s^{\#}g$ -open sets. But their intersection  $\{c\}$  is not  $s^{\#}g$ -open.

**Theorem 3.24.** Every singleton set in a topological space is either  $s^{\#}q$ -open or semi\*-closed.

*Proof.* Let X be a topological space. Let  $x \in X$ . Then by Theorem 2.11,  $X - \{x\}$  is either  $s^{\#}g$ -closed or semi\*-open. Hence  $\{x\}$  is either  $s^{\#}g$ -open or semi\*-closed.

# 4. $s^{\#}g$ -neighborhoods and $s^{\#}g$ -limit Points

In this section we define the notions of s<sup>#</sup>g-neighborhood, s<sup>#</sup>g-limit point and s<sup>#</sup>g-derived set of a set and discuss some of their basic properties and analogous to those for open sets.

**Definition 4.1.** Let X be a topological space and let  $x \in X$ . A subset N of X is said to be an  $s^{\#}g$ -neighborhood (shortly,  $s^{\#}g$ -neighbourhood) of x iff there exists an  $s^{\#}g$ -open set U such that  $x \in U \subseteq N$ .

**Definition 4.2.** A subset N of a space X, is called a  $s^{\#}g$ -neighbourhood of  $A \subset X$  iff there exists an  $s^{\#}g$ -open set U such that  $A \subseteq U \subseteq N$ .

**Theorem 4.3.** Every neighbourhood N of  $x \in X$  is an  $s^{\#}g$ -neighbourhood of x.

*Proof.* Let N be a neighbourhood of point  $x \in X$ . Then there exists an open set U such that  $x \in U \subseteq N$ . Since every open set is  $s^{\#}g$ -open, U is an  $s^{\#}g$ -open set such that  $x \in U \subseteq N$ . This implies N is an  $s^{\#}g$ -neighbourhood of x.

Remark 4.4. The converse of the above theorem is not true as seen from the following example.

**Example 4.5.** Let  $X = \{a, b, c, d\}$  with topology  $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$ . In this topological space  $(X, \tau)$ ,  $s^{\#}gO(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c d\}\}$ . The set  $\{b, d\}$  is the  $s^{\#}g$ -neighbourhood of b, since  $\{b\}$  is  $s^{\#}g$ -open set such that  $b \in \{b\} \subset \{b, d\}$ . However, the set  $\{b, d\}$  is not a neighbourhood of the point b.

**Remark 4.6.** Every  $s^{\#}g$ -open set is a  $s^{\#}g$ -neighbourhood of each of its points.

Remark 4.7. The converse of the above theorem need not be true in general as seen from the following example.

**Example 4.8.** Let  $X = \{a, b, c, d\}$  with the topology  $\tau = \{\phi, \{a, b\}, \{a, b, d\}, X\}$ . In this topological spaces  $s^{\#}gO(X) = \{\phi, \{c\}, \{d\}, \{a, b\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$ . The set  $\{b, c\}$  is a  $s^{\#}g$ -neighbourhood of c. However  $\{b, c\}$  is not  $s^{\#}g$ -open.

**Theorem 4.9.** If F is an  $s^{\#}g$ -closed subset of X and  $x \in X \setminus F$ , then there exists an  $s^{\#}g$ -neighbourhood N of x such that  $N \cap F = \phi$ .

*Proof.* Let F be s<sup>#</sup>g-closed subset of X and  $x \in F^c$ . Then  $F^c$  is s<sup>#</sup>g-open set of X. By Theorem 4.6,  $F^c$  contains a s<sup>#</sup>g-neighbourhood of each of its points. Hence there exists a s<sup>#</sup>g-neighbourhood N of x such that  $N \subseteq F^c$ . Hence  $N \cap F = \phi$ .

**Definition 4.10.** The collection of all  $s^{\#}g$ -neighborhoods of  $x \in X$  is called the  $s^{\#}g$ -neighborhood system at x and is denoted by  $s^{\#}g$ -N(x).

**Theorem 4.11.** Let  $(X, \tau)$  be a topological space and  $x \in X$ . Then

(1).  $s^{\#}g\text{-}N(x) \neq \phi$  and  $x \in each member of <math>s^{\#}g\text{-}N(x)$ 

(2). If  $N \in s^{\#}q\text{-}N(x)$  and  $N \subseteq M$ , then  $M \in s^{\#}q\text{-}N(x)$ .

(3). Each member  $N \in s^{\#}q$ -N(x) is a superset of a member  $G \in s^{\#}q$ -N(x) where G is a  $s^{\#}q$ -open set.

Proof.

- (1). Since X is  $s^{\#}g$ -open set containing x, it is an  $s^{\#}g$ -neighbourhood of every  $x \in X$ . Thus for each  $x \in X$ , there exists at least one  $s^{\#}g$ -neighbourhood, namely X. That is,  $s^{\#}g$ -N(x)  $\neq \phi$ . Let N  $\in s^{\#}g$ -N(x). Then N is a  $s^{\#}g$ -neighbourhood of x. Hence there exists a  $s^{\#}g$ -open set G such that  $x \in G \subseteq N$ , so  $x \in N$ . Therefore  $p \in \text{every member N of } s^{\#}g$ -N(x).
- (2). If  $N \in s^{\#}g\text{-}N(x)$ , then there is an  $s^{\#}g$ -open set G such that  $x \in G \subseteq N$ . Since  $N \subseteq M$ , M is  $s^{\#}g$ -neighbourhood of x. Hence  $M \in s^{\#}g\text{-}N(x)$ .
- (3). Let  $N \in s^{\#}g$ -N(x). Then there is an  $s^{\#}g$ -open set G, such that  $x \in G \subseteq N$ . Since G is  $s^{\#}g$ -open and  $x \in G$ , G is  $s^{\#}g$ -neighbourhood of x. Therefore  $G \in s^{\#}g$ -N(x) and also  $G \subseteq N$ .

**Definition 4.12.** Let  $(X, \tau)$  be a topological space and A be a subset of X. Then a point  $x \in X$  is called a  $s^{\#}g$ -limit point of A iff every  $s^{\#}g$ -neighbourhood of x contains a point of A disjoint from x. That is,  $A \cap (N \setminus \{x\}) \neq \phi$  for each  $s^{\#}g$ -neighbourhood N of x. Equivalently iff every  $s^{\#}g$ -open set G containing x intersects A at a point other than x.

**Definition 4.13.** In a topological space  $(X, \tau)$  the set of all  $s^{\#}g$ -limit points of a given subset A of X is called the  $s^{\#}g$ -derived set of A and is denoted by  $s^{\#}g$ -d(A).

**Theorem 4.14.** Let A and B be subset of a topological space  $(X, \tau)$ . Then

- (1).  $s^{\#}g d(\phi) = \phi$
- (2). If  $A \subseteq B$ , then  $s^{\#}g\text{-}d(A) \subseteq s^{\#}g\text{-}d(B)$
- (3). If  $x \in s^{\#}g\text{-}d(A)$ , then  $x \in s^{\#}g\text{-}d(A \setminus \{x\})$
- (4).  $s^{\#}q d(A \cup B) \supset s^{\#}q d(A) \cup s^{\#}q d(B)$
- (5).  $s^{\#}g d(A \cap B) \subseteq s^{\#}g d(A) \cap s^{\#}g d(B)$ .

*Proof.* (1) and (2) is trivial.

(3) If  $x \in s^{\#}g\text{-d}(A)$ , then by Definition 4.12 every  $s^{\#}g\text{-open}$  set G containing x contains at least one point of A other than x. Hence x is  $s^{\#}g\text{-limit}$  point of A \  $\{x\}$  and it belongs to  $s^{\#}g\text{-d}[A \setminus \{x\}]$ . Therefore  $x \in s^{\#}g\text{-d}(A)$  implies  $x \in s^{\#}g\text{-d}[A \setminus \{x\}]$ .

(4) Since  $A \subseteq A \cup B$  and  $B \subseteq A \cup B$ ,  $s^{\#}g \cdot d(A \cup B) \supseteq s^{\#}g \cdot d(A) \cup s^{\#}g \cdot d(B)$ .

(5) Since  $A \cap B \subseteq A$  and  $A \cap B \subseteq B$  and by (ii)  $s^{\#}g - d(A \cap B) \subseteq s^{\#}g - d(A)$  and  $s^{\#}g - d(A \cap B) \subseteq s^{\#}g - d(B)$ . Consequently  $s^{\#}g - d(A \cap B) \subseteq s^{\#}g - d(A) \cap s^{\#}g - d(B)$ .

**Theorem 4.15.** Let  $(X, \tau)$  be a topological space and A be a subset of X. If A is  $s^{\#}g$ -closed, then  $s^{\#}g$ -d $(A) \subseteq A$ .

*Proof.* Let A be a  $s^{\#}g$ -closed. If  $x \notin A$ , then X\A is  $s^{\#}g$ -open set containing x which does not intersect A. Therefore  $x \notin s^{\#}g$ -d(A).

# 5. $s^{\#}g$ -closure and $s^{\#}g$ -interior

In this section we define the notions of s<sup>#</sup>g-closure and s<sup>#</sup>g-interior and discuss some of their basic properties.

**Definition 5.1.** Let  $(X,\tau)$  be a topological space. Let  $A\subseteq X$ . Then

- (1). The union of all  $s^{\#}g$ -open sets of X contained in A is called the  $s^{\#}g$ -interior of A and is denoted by  $s^{\#}g$ -int(A).
- (2). The intersection of all  $s^{\#}g$ -closed sets of X containing A is called the  $s^{\#}g$ -closure of A and is denoted by  $s^{\#}g$ -cl(A).

**Remark 5.2.** Since intersection of  $s^{\#}g$ -closed sets need not be  $s^{\#}g$ -closed,  $s^{\#}g$ -closed is not necessarily a  $s^{\#}g$ -closed set.

**Example 5.3.** Let  $X = \{a,b,c,d\}$ ,  $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},\ X\}$ . Then the sets  $A = \{b,c,d\}$  and  $B = \{a,b,d\}$  are  $s^{\#}g$ -closed sets. But  $A \cap B = \{b,d\}$  is not  $s^{\#}g$ -closed. Consequently,  $s^{\#}g$ -cl( $\{b\}$ ) =  $\{b\}$  is not  $s^{\#}g$ -closed.

**Theorem 5.4.** For a subset A of  $(X, \tau)$  and  $x \in X$ ,  $x \in s^{\#}g\text{-}cl(A)$  if and only if  $V \cap A \neq \phi$  for every  $s^{\#}g\text{-}open$  set V containing x.

*Proof.* Let  $A \subseteq X$  and  $x \in X$ . Let us prove the contra positive. Suppose that there exists an  $s^{\#}g$ -open set V containing x such that  $V \cap A = \phi$ . Since  $A \subset X \setminus V$ ,  $s^{\#}g$ -cl(A)  $\subset X \setminus V$  and then  $x \notin s^{\#}g$ -cl(A). Conversely, suppose  $x \notin s^{\#}g$ -cl(A). Then there exists an  $s^{\#}g$ -closed set F containing A such that  $x \notin F$ . Since  $x \in X \setminus F$  and  $X \setminus F$  is  $s^{\#}g$ -open,  $(X \setminus F) \cap A = \phi$ . That is, there exists an  $s^{\#}g$ -open set  $X \setminus F$  containing x such that  $(X \setminus F) \cap A = \phi$ . Hence  $x \in s^{\#}g$ -cl(A) if and only if  $V \cap A \neq \phi$  for every  $s^{\#}g$ -open set V containing X.

**Theorem 5.5.** Let A and B be two subsets of a topological space  $(X, \tau)$ . Then the followings are hold

(1). 
$$s^{\#}q\text{-}cl(X) = X \text{ and } s^{\#}q\text{-}cl(\phi) = \phi$$

- (2).  $A \subseteq s^{\#}g\text{-}cl(A)$
- (3). If  $A \subseteq B$ , then  $s^{\#}g\text{-}cl(A) \subseteq s^{\#}g\text{-}cl(B)$
- (4).  $x \in s^{\#}g\text{-cl}(A)$  iff for each a  $s^{\#}g\text{-open}$  set U containing  $x,\ U \cap A \neq \phi$
- (5). If A is  $s^{\#}g$  closed set then  $A = s^{\#}g\text{-}cl(A)$
- (6).  $s^{\#}g\text{-}cl(A) \subseteq s^{\#}g\text{-}cl(s^{\#}g\text{-}cl(A))$ .
- (7).  $s^{\#}g\text{-}cl(A) \cup s^{\#}g\text{-}cl(B) \subseteq s^{\#}g\text{-}cl(A\cup B)$
- (8).  $s^{\#}g\text{-}cl(A \cap B) \subseteq s^{\#}g\text{-}cl(A) \cap s^{\#}g\text{-}cl(B)$ .

**Theorem 5.6.** Let A and B be two subsets of a topological space  $(X, \tau)$ . Then the followings are hold

- (1).  $s^{\#}g\text{-}int(X) = X \text{ and } s^{\#}g\text{-}int(\phi) = \phi$
- (2).  $s^{\#}g\text{-}int(A) \subseteq A$
- (3). If  $A \subseteq B$ , then  $s^{\#}g\text{-int}(A) \subseteq s^{\#}g\text{-int}(B)$
- (4).  $x \in s^{\#}g$ -int(A) iff for each a  $s^{\#}g$ -closed set U containing  $x,\ U \cap A \neq \phi$
- (5). If A is  $s^{\#}q$ -open set then  $A = s^{\#}q$ -int(A)

- (6).  $s^{\#}g\text{-}int(s^{\#}g\text{-}int(A)) \subseteq s^{\#}g\text{-}int(A)$
- (7).  $s^{\#}g\text{-}int(A \cap B) \supseteq s^{\#}g\text{-}int(A) \cap s^{\#}g\text{-}int(B)$
- (8).  $s^{\#}g\text{-}int(A) \cup s^{\#}g\text{-}int(B) \subseteq s^{\#}g\text{-}int(A\cup B)$ .

**Remark 5.7.** By the following example we show that the inclusion relation in the theorem (above two) parts (7) & (8) cannot be replaced by equality.

**Example 5.8.** Let  $X = \{a, b, c, d\}$  with  $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$ . Here  $s^{\#}g$ -closed sets are  $\{\phi, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, c\}, \{b, c\}, \{b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ . Consider  $A = \{c, d\}$  and  $B = \{a, b, d\}$  so that  $s^{\#}g$ -cl $(A) = \{c, d\}$  and  $s^{\#}g$ -cl $(B) = \{C, d\}$ . Also  $A \cap B = \{d\}$  and  $s^{\#}g$ -cl $(A \cap B) = \{d\}$ . Hence  $s^{\#}g$ -cl $(A \cap B) \subseteq s^{\#}g$ -cl $(A) \cap s^{\#}g$ -cl(B).

**Remark 5.9.** The following example shows that for any two subsets A and B of X,  $A \subseteq B$  implies  $s^{\#}g\text{-}cl(A) = s^{\#}g\text{-}cl(B)$ .

**Example 5.10.** Let  $X = \{a, b, c, d\}$  with  $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$ . In this topological spaces,  $s^{\#}g$ -closed sets are  $\{\phi, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ . Consider  $A = \{a, b\}$  and  $B = \{a, b, d\}$  so that  ${}^{\#}g$ -cl $(A) = \{a, b, d\} = s^{\#}g$ -cl(B), whenever  $A \subseteq B$ .

**Theorem 5.11.** If  $A \subseteq X$ , then  $A \subseteq s^{\#}g\text{-}cl(A) \subseteq s^{*}cl(A) \subseteq cl(A)$ .

*Proof.* Since every closed set is  $s^{\#}g$ -closed, the proof follows.

Remark 5.12. The inclusions in the theorem (above) may be proper as seen from the following example.

**Example 5.13.** Let  $X = \{a, b, c, d\}$  with  $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$ . Let  $A = \{a, b\}$ . Then  $s^{\#}g\text{-}cl(A) = \{a, b, d\}$  & cl(A) = X and so  $A \subseteq s^{\#}g\text{-}cl(A) \subseteq cl(A)$ .

**Theorem 5.14.** For a subset A in a topological space  $(X, \tau)$ , the following statements are true.

(1). 
$$s^{\#}g\text{-}cl(X\backslash A) = X\backslash s^{\#}g\text{-}int(A)$$

(2). 
$$s^{\#}g\text{-}int(X\backslash A) = X\backslash s^{\#}g\text{-}cl(A)$$

Proof.

(1). Let  $x \in X \setminus s^{\#}g\text{-int}(A)$ . Then  $x \notin s^{\#}g\text{-int}(A)$ . This implies that x does not belong to any  $s^{\#}g\text{-open}$  subset of A. Let F be any  $s^{\#}g\text{-closed}$  set containing  $X \setminus A$ . Then  $X \setminus F$  is a  $s^{\#}g\text{-open}$  set contained in A. Therefore  $x \notin X \setminus F$  and so  $x \in F$ . Hence  $x \in s^{\#}g\text{-cl}(X \setminus A)$ . Hence  $X \setminus s^{\#}g\text{-int}(A) \subseteq s^{\#}g\text{-cl}(X \setminus A)$ .

Conversely, let  $x \in s^{\#}g\text{-cl}(X\backslash A)$ . Then x belongs to every  $s^{\#}g\text{-closed}$  set containing  $X\backslash A$ . Hence x does not belong to any  $s^{\#}g\text{-open}$  subset of A. Therefore  $x \notin s^{\#}g\text{-int}(X\backslash A)$ . Hence  $x \in X\backslash s^{\#}g\text{-int}(A)$ . Thus  $s^{\#}g\text{-cl}(X\backslash A) = X\backslash s^{\#}g\text{-int}(A)$ .

(2). can be proved from (i) by replacing A by  $X\setminus A$ .

## 6. Conclusion

In this paper, s<sup>#</sup>g-open sets, s<sup>#</sup>g-closure, s<sup>#</sup>g-interior, s<sup>#</sup>g-neighborhood, s<sup>#</sup>g-derived sets are newly defined. This study can be extended to other topological spaces in future.

#### References

- [1] S.P.Arya and T.Nour, Characterizations of S- nomal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- [2] S.S.Benchalli, P.G.Patil and P.M.Nalwad, Generalized wα-closed set in topological spaces, Journal of New Results in Science, (2014), 7-19.
- [3] S.S.Benchalli, P.G.Patil and T.D.Rayangaudar,  $w\alpha$ -closed sets in topological spaces, The Global. J. Appl. Math. Sci., 2(2009), 53-63.
- [4] P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in Topology, Indian J. Math., 29(1987), 376-382.
- [5] N.Biswas, On characterizations of semi-continuous functions, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 48(8)(1970), 399-402.
- [6] W.Dunham, A New Closure Operator for Non-T<sub>1</sub> Topologies, Kyunpook Math. J., 22(1982), 55-60.
- [7] P.Gnanachandra and L.Velmurugan, Semi\* Generalized closed sets and Semi\*- T<sub>1/2</sub> Spaces, Asian Journal of Current Engineering and Maths, 1(2012), 337-339.
- [8] N.Levine, Generalized closed sets in topology, Rand. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [9] N.Levine, Semi-open sets and semi-continuity in Topological Spaces, Amer. Mat. Monthly, 70(1)(1963), 36-41.
- [10] H.Maki, R.Devi and K.Balachandran, Associated Topologies of Generalized α-closed sets and α-Generalized closed sets, Mem. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [11] H.Maki, J.Umehara and T.Noiri, Every topological spaces in  $pre-T_{1/2}$ , Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 17(1996), 33-42.
- [12] N.Nagaveni, Studies on Generalizations of Homeomophisms in Topological spaces, Ph. D., Thesis, Bharathiar University, Coim-batore (1999).
- [13] O.Njastad, Some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [14] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook. Math. J., 33(1993), 211-219.
- [15] P.Pushpalatha and K.Anitha, g\*s-closed sets in topological spaces, Int. J. contemp. Math. Sciences, 6(19)(2011), 917-929.
- [16] A.Robert and S.Pious Missier, A New Class of Nearly open sets, International Journal of Mathematical Archive, 3(7)(2012), 1-8.
- [17] A.Robert and S.Pious Missier, On semi\*- closed sets, Asian Journal of Current Engineering and Maths, 4(2012), 173-176.
- [18] S.Saranya and K.Bageerathi, Semi # generalized closed sets in topological spaces, International Journal of Mathematics Trends and Technology., 36(2016), 23-27.
- [19] P.Sundaram and N.Navalagi, On weakly Generalized continuous maps, weakly Generalized closed maps andweakly Irrosolute maps, Far East. J. Math Sci., 6(1998).
- [20] P.Sundaram and M.Shrik John, On w-closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- [21] M.K.R.S. Veerakumar, Between q\*closed sets and q-closed sets, Antartica J. Math., 3(1)(2006), 43-65.