

International Journal of Mathematics And its Applications

On $\beta^* - I_g$ -closed Sets in Ideal Topological Spaces

Research Article

Jessie Theodore^{1*} and V.Beulah¹

1 Department of Mathematics, Sarah Tucker College, Tirunelveli, Tamilnadu, India.

- Abstract: In this paper some related generalized sets of τ^* namely $\beta^* I_g$ -closed sets, I_{gsp} -closed sets, ωI -closed sets, $\hat{\eta}^* I_g$ -closed sets in ideal topological space are introduced the relationship between these sets and some other already existing sets are investigated.
- Keywords: *I*-open, ωI -open, semi-pre-*I*-open, $\beta^* I_g$ -closed sets, I_{gsp} -closed sets, ωI -closed sets, $\hat{\eta}^* I_g$ -closed sets. (c) JS Publication.

1. Introduction

The notion of generalized closed sets in Ideal topological spaces was studied by J.Dontchev et al [8] in 1999. Further closed sets like $_{rg}$ I-closed set, I_{rw} -closed set were developed by M. Navaneethakrishnan [24] and A. Vadivel [29] in 2009 and 2013 respectively. The main aim of this paper is to introduce some new related closed sets in the same space and study the relationships between them.

2. Preliminaries

An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I) . Given a topological space (X, τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(\cdot)^* : P(X) \to P(X)$, called a local function [19] of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I, \tau) = \{x \in X/U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau | x \in U\}$ When there is no chance for confusion $A^*(I, \tau)$ is denoted by A^* . For every ideal topological space (X, τ, I) , there exists a topology τ^* finer than τ , generated by the base $\beta(I, \tau) = \{U \setminus I/U \in \tau \text{ and } I \in I\}$. In general $\beta(I, \tau)$ is not always a topology. We will make use of the basic facts about the local functions [17, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(I, \tau)$ [30]. When there is no chance for confusion, we will simply write A^* for $A^*(I, \tau)$ and τ^* or $\tau^*(I)$ for $\tau^*(I, \tau)$. If I is an ideal on X, then (X, τ, I) is called an ideal space. I is said to be codense [9] if $\tau \cap I = \{\phi\}$. If $A \subset X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $cl^*(A) = A \cup (I, T)$ is an α -open [26] (resp. semi-open [20], pr-open [22], β -open or semi-pre-open [3]) set if $A \subset int(cl(int(A)))$ (resp. $A \subset cl(int(A))$, $A \subset int(cl(A))$, $A \subset cl(int(cl(A)))$). The complement of an α -open [16] (resp. semi-open [11], pr-open [13], β -open or semi-pre-open [21])

^{*} E-mail: jessielawrence2703@gmail.com

set is α -closed (resp. semi-closed, pre-closed, β -closed or semi-pre-closed). The semi closure [7] of a subset A of X, denoted by sclA is defined to be the intersection of all semi-closed sets containing A. The semi-pre closure [3] of a subset A of X, denoted by spclA is defined to be the intersection of all semi-pre-closed sets containing A. A subset A of an ideal space (X, τ , I) is said to be I-open [9] if A \subset int(A*), A subset A of an ideal space (X, τ , I) is *-closed [16] (resp. *-dense in itself [13], *-perfect [13]) if A* \subset A (resp. A \subset A*, A = A*). Clearly, A is *perfect if and only if A is *-closed and *-dense in itself.

Definition 2.1. A subset A of a topological space (X, τ) is said to be

- (1) a generalized closed set [21] (g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- (2) a generalized semi-closed set [5] (gs-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- (3) a generalized semi-pre-closed set [5] (gsp-closed) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- (4) a ω -closed set [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen.
- (5) an $\hat{\eta}^*$ -closed set [27] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open.
- (6) a β^* -closed set [4] if $spcl(A) \subseteq intU$ whenever $A \subseteq U$ and U is ω -open.

Definition 2.2. A subset A of an ideal space (X, τ, I) is called pre-I-open [10] (resp. α -I-open [12], semi-I-open [12], semi-pre-I-open [13]) if $A \subseteq int(cl^*(A))$ (resp. $A \subseteq int(cl^*(int(A)))$, $A \subseteq cl^*(int(A))$, $A \subseteq cl^*(int(cl^*(A)))$. The complement of an pre-I-open (resp. α -I-open semi-I-open, semi-pre-I-open) set is pre-I-closed (resp. α -I-closed, semi-I-closed, semi-pre-I-closed). A subset A of a space (X, τ) is an I-open [1] if $A \subseteq int(A^*)$ and rI-open [18] if $A = int(cl^*(A))$

Definition 2.3. A subset A of an ideal space (X, τ, I) is said to be

- (1) I_g -closed set [8] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open.
- (2) $_{sg}$ I-closed set [6] if $scl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-I-open.
- (3) I_{*g} -closed set [26] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is ω -open.
- (4) $_{rg}$ I-closed set if [24] $cl^*A \subseteq U$ whenever $A \subseteq U$ and U is rI-open.
- (5) pre generalized pre regular I-closed set [30] ($_{pgpr}$ I-closed) if $pcl^*A \subseteq U$ whenever $A \subseteq U$ and U is $_{rg}$ I-open.
- (6) regular pre semi I-closed set [28] ($_{rps}$ I-closed) if $spcl^*A \subseteq U$ whenever $A \subseteq U$ and U is $_{rg}$ I-open.

Lemma 2.4. Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = Cl(A^*) = Cl(A) = Cl^*(A)$ [17, Theorem 5].

Definition 2.5. A subset A of an ideal space (X, τ, I) is called ω -I-closed set if $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-I-open.

Definition 2.6. A subset A of an ideal space (X, τ, I) is called $\hat{\eta}^* - I_g$ -closed set if $spcl^*A \subseteq U$ whenever $A \subseteq U$ and U is ω -I-open.

Definition 2.7. A subset A of an ideal space (X, τ, I) is called I_{gsp} -closed set if $spcl^*A \subseteq U$ whenever $A \subseteq U$ and U is *I-open*.

Definition 2.8. A space X is called a $sp\omega^*$ - space if the intersection of every semi-pre-I-closed set of X with every ω -I-closed set of X is ω -I-closed.

3. $\beta^* - I_g$ -closed Sets

Definition 3.1. A subset A of an ideal space (X, τ, I) is called $\beta * -I_g - closed$ set if $spcl^*A \subseteq int^*U$ whenever $A \subseteq U$ and U is ω -I-open.

Theorem 3.2. A set A is ω -I-open iff $F \subseteq int^*A$ whenever F is semi-I-closed and $F \subseteq A$.

Proof. Suppose that A is ω -I-open, F \subseteq A and F is semi-I-closed. Then $A^C \subseteq F^C$, therefore $(X - A) * \subseteq F^C$, $cl^* (X - A) \subseteq F^C$ and so $F \subseteq (cl^* (X - A))^C = int^*A$.

Theorem 3.3. Every *-closed set is $\beta^* - I_g$ -closed set but not conversely.

Proof. Let A be a *-closed set, then $A^* \subseteq A$. Let $A \subseteq U$ where U is ω -I-open. Then $cl^*A \subseteq U$ which implies $scl^*A \subseteq U$. Then by theorem 3.2 $scl^*A \subseteq int^*U$ so $spcl^*A \subseteq int^*U$.

Example 3.4. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ and the ideal $I = \{\phi, \{c\}\}$. It is clear that $A = \{b\}$ is $\beta^* - I_g$ -closed set but A is not a *-closed set.

Theorem 3.5. Every semi-I-closed set and hence I-closed and α -I-closed sets are $\beta^* - I_g$ -closed set but not conversely.

Proof. Let $A \subseteq U$ be a semi-I-closed set where U is ω -I-open set. Then $scl^*A = A \subseteq U$ which implies $scl^*A \subseteq int^*U$.

Example 3.6. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{c\}\}$ and the ideal $I = \{\phi\}$. Clearly $A = \{a, c\}$ is $\beta^* - I_g - closed$ set but A is not a semi-I- closed set.

Theorem 3.7. Every semi-closed set and hence closed set and α -closed sets are is $\beta^* - I_q$ -closed set but not conversely.

Proof. Let A be a semi-closed set. Since every semi-closed set is a semi-I-closed set and follows from Theorem 3.6; A is $\beta^* - I_g$ -closed set.

Example 3.8. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{c\}\}$ and the ideal $I = \{\phi\}$. Clearly $A = \{a, c\}$ is $\beta^* - I_g$ -closed set but A is not a semi-closed set.

Remark 3.9. $\beta * -I_g$ -closed set and β *-closed sets are independent of each other, as seen from the following examples.

Example 3.10. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ and the ideal $I = \{\phi, \{a\}\}$. It is clear that $A = \{a\}$ is a $\beta^* - I_g$ -closed set but A is not a β^* -closed set.

Example 3.11. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. Clearly, the set $A = \{a, b, c\}$ is β^* -closed set but A is not a $\beta^* - I_g$ -closed set.

Remark 3.12. $\beta * -I_g$ -closed set and I_g -closed sets are independent of each other, as seen from the following examples.

Example 3.13. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ and the ideal $I = \{\phi, \{a\}\}$. It is clear that $A = \{c\}$ is a $\beta^* - I_g$ -closed set but A is not a I_g -closed set.

Example 3.14. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. Clearly, the set $A = \{a, b, c\}$ is I_g -closed set but A is not a $\beta * -I_g$ -closed set.

Remark 3.15. $\beta^* - I_q$ -closed set and I_{*q} -closed sets are independent to each other, as seen from the following examples.

Example 3.16. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ and the ideal $I = \{\phi, \{a\}\}$. It is clear that $A = \{c\}$ is a $\beta^* - I_g$ -closed set but A is not a I_{*g} -closed set.

Example 3.17. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. Clearly, the set $A = \{a, b, d\}$ is I_{*g} -closed set but A is not a $\beta^* - I_g$ -closed set.

Remark 3.18. $\beta^* - I_g$ -closed set and semi-pre-I-closed sets are independent to each other, as seen from the following example.

Example 3.19. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. It is clear that $A_1 = \{a\}$ is semi-pre-I-closed set but not a $\beta^* - I_g$ -closed set. Also $A_2 = \{a, b, c\}$ is $\beta^* - I_g$ -closed set but not a semi-pre-I-closed set. set.

Remark 3.20. $\beta^* - I_q$ -closed set and pre-I-closed sets are independent to each other, as seen from the following example.

Example 3.21. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. We see that $A_1 = \{a\}$ is pre-I-closed set but not $\beta * -I_g$ -closed set. Also $A_2 = \{a, b, c\}$ is $\beta^* - I_g$ -closed set but not pre-I-closed set.

Theorem 3.22. Every $\beta^* - I_g$ -closed set is $\hat{\eta}^*$ - I_g -closed set but not conversely.

Proof. Let A be a $\beta^* - I_g$ -closed set. Then $spcl^*A \subseteq int^*U$ whenever A \subset U and U is ω -I-open which implies $spcl^*A \subseteq U$ whenever A \subset U and U is ω -I-open. Hence A is an $\hat{\eta}^*$ -I_g-closed set.

Example 3.23. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. It is clear that $A = \{a\}$ is a $\hat{\eta}^*$ - I_g -closed set but A is not an $\beta^* - I_g$ -closed set.

Theorem 3.24. Every $\beta^* - I_g$ -closed set is I_{gsp} -closed set but not conversely.

Proof. Let $A \subset U$ be a $\beta^* - I_g$ -closed set and U is I-open. Since every I-open set is ω -I-open, we have $spcl^*A \subseteq int^*U$ and therefore $spcl^*A \subseteq U$. Hence A is I_{gsp} -closed set.

Remark 3.25. $\beta^* - I_q$ -closed set and r_q I-closed sets are independent to each other, as seen from the following examples.

Example 3.26. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. It is clear that $A = \{a\}$ is a rgI-closed set but A is not a $\beta^* - I_g$ -closed set.

Example 3.27. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and the ideal $I = \{\phi, \{a\}\}$. It is clear that $A = \{c\}$ is a $\beta^* - I_g$ -closed set but A is not a r_gI -closed set.

Remark 3.28. $\beta^* - I_q$ -closed set and paper I-closed sets are independent to each other, as seen from the following examples.

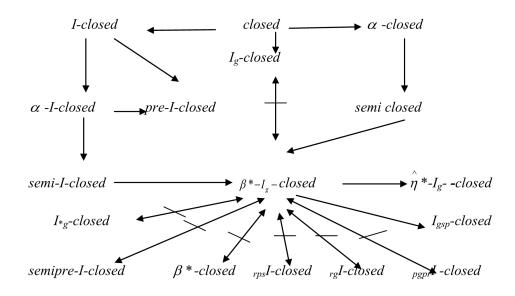
Example 3.29. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. It is clear that $A = \{a\}$ is a pgpr I-closed set but A is not a $\beta^* - I_g$ -closed set.

Example 3.30. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and the ideal $I = \{\phi, \{a\}\}$. It is clear that $A = \{b, c\}$ is a $\beta^* - I_g$ -closed set but A is not a paper I-closed set.

Remark 3.31. $\beta^* - I_g$ -closed set and $_{rps}I$ -closed sets are independent to each other, as seen from the following examples.

Example 3.32. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. It is clear that $A = \{a\}$ is a $_{rps}I$ -closed set but A is not a $\beta^* - I_g$ -closed set.

Example 3.33. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and the ideal $I = \{\phi, \{a\}\}$. It is clear that $A = \{b, c\}$ is a $\beta^* - I_g$ -closed set but A is not a $_{rps}I$ -closed set.



References

- M.E.Abd El-Monsef, R.A. Mohmoud and A.A.Nasef, Almost I-openness and almost I-continuity, Journal of the Egyptian Mathematical Society, 7(2)(1999), 191-200.
- [2] M.E.Abd El-Monsef, S.Rose mary and M.L.Thivagar, α[^]G-closed sets in topological spaces, Assiut Univ.J. of Mathematics and Computer Science, 36(1)(2007), 43-51.
- [3] D.Anrijevic, Semi-preopen sets, Mat.Vesnik, 38(1986), 24-32.
- [4] J.Antony Rex Rodgio, Jessie Theodore and A.Hana Selvi Jansi, β^{*}-closed sets in Topological spaces, International Journal of Mathematical Archive, 3(3)(2012), 1063-1068.
- [5] S.P.Arya and T.M.Nour, Characterization of S-Normal spaces, Indian Journal of Pure and Appl. Math., 21(1990), 717-719.
- [6] N.Chandramathi, K.Bhuvaneswari and S.Bharathi, On sgI-closed sets in ideal topological space, Int. Jour. Applied Mathematical Analysis and Applications, 6(2011), 77-84.
- [7] S.G.Crossely and S.K.Hilderbrand, Semi-closure, StateplaceTexas J. Sci., 22(1971), 99-112.
- [8] J.Dontchev, M.Ganster and T.Noiri, Unified approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [9] J.Dontchev, M.Ganster and D.Rose, *Ideal resolvability*, Topology and its Applications, 93(1999), 1-16.
- [10] J.Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan. Math.J., 2(1996).
- [11] T.R.Hamlett and D.Jankovic, Compactness with respect to an ideal, Boll. U.M.I., 7(4-B)(1990), 849-861.
- [12] E.Hatir and T.Noiri, On decomposition of continuity via idealization, Acta Mat. Hung., 96(4)(2002), 341-349.
- [13] E.Hatir, A.Keskin and T.Noiri, On a new decomposition of continuity via idealization, JP Journal of Geometry and Topology, 3(1)(2003), 53-64.
- [14] E.Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [15] H.Z.Hdeib, *w*-closed mappings, Revista Columbiana de Mathematics, 6(1-2)(1982), 65-78.
- [16] S.Jafari, T.Noiri, N.Rajesh and M.L.Thivagar, Another generalization of closed sets, Kochi J.Math., 3(2008), 25-38.
- [17] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [18] A.Keskin, T.Noiri and S.Yuksel, Idealization of a decomposition theorem, Acta Mat.Hung., 102(2004), 269-277.
- [19] K.Kuratowski, Toplogy, Vol 1, Academic Press, placeStateNew York, (1996).

- [20] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [21] N.Levine, Generalized closed sets in topology, Rend.Circ. Mat.Palermo, 2(19)(1970), 89-96.
- [22] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [23] M.Navaneethakrishnan and J.Paulraj Joseph, g-closed sets in ideal topological spaces, Acta. Math. Hungar, 119(2008), 365-371.
- [24] M.Navaneethakrishnan and D.Sivaraj, Regular generalized closed sets in ideal topological spaces, J. Advanced Research in Pure Mat., 2(3)(2010), 24-33.
- [25] R.L.Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, University of California, Santa Barbara, California, (1967).
- [26] O.Njastad, On some classes of nearly open sets, Pacific.J.Math., 15(1965), 961-970.
- [27] N.Palaniappan, J.Antony Rex Rodgio and S.P.Misser, On $\hat{\eta}^*$ -closed sets in topological space, International Journal of General Topology, 1(1)(2008), 77-88.
- [28] B.Sakthi and S.Murugesan, On regular Pre semi-I- closed sets in Ideal topological spaces, International Journal and Soft Computing, 3(1)(2013), 37-46.
- [29] A.Vadivel and Mohanarao Naruluri, Regular weakly closed sets in ideal topological spaces, International J. of Pure and Applies Mathematics, 86(4)(2013), 607-619.
- [30] R.Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).