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existing sets are investigated.
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1. Introduction

The notion of generalized closed sets in Ideal topological spaces was studied by J.Dontchev et al [8] in 1999. Further closed

sets like rgI-closed set, Irw-closed set were developed by M. Navaneethakrishnan [24] and A. Vadivel [29] in 2009 and 2013

respectively. The main aim of this paper is to introduce some new related closed sets in the same space and study the

relationships between them.

2. Preliminaries

An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I). Given a topological

space (X, τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator (·)∗ : P (X)→ P (X), called a local

function [19] of A with respect to τ and I is defined as follows: for A ⊂ X, A∗ (I, τ) = {x ∈ X/U ∩A /∈ I for everyU ∈ τ(x)}

where τ(x) = {U ∈ τ |x ∈ U } When there is no chance for confusion A∗(I, τ) is denoted by A∗. For every ideal topological

space (X, τ, I), there exists a topology τ∗ finer than τ , generated by the base β (I, τ) = {U\I /U ∈ τ and I ∈ I}. In general

β (I, τ) is not always a topology. We will make use of the basic facts about the local functions [17, Theorem 2.3] without

mentioning it explicitly. A Kuratowski closure operator cl∗(·) for a topology τ∗(I, τ), called the ∗-topology, finer than τ is

defined by cl∗(A) = A ∪ A∗ (I, τ) [30]. When there is no chance for confusion, we will simply write A∗ for A∗(I, τ) and τ∗

or τ∗(I) for τ∗(I, τ). If I is an ideal on X, then (X, τ, I) is called an ideal space. I is said to be codense [9] if τ ∩ I = {φ}.

If A ⊂ X, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and cl*(A) and int *(A)

will, respectively, denote the closure and interior of A in (X, τ*). A subset A of a space (X, τ) is an α-open [26] (resp.

semi-open [20], pre-open [22], β-open or semi-pre-open [3]) set if A⊂int(cl(int(A))) (resp. A ⊂ cl(int(A)), A ⊂ int(cl(A)),

A ⊂ cl(int(cl(A)))). The complement of an α-open [16] (resp. semi-open [11], pre-open [13], β-open or semi-pre-open [2])
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set is α-closed (resp. semi-closed, pre-closed, β-closed or semi-pre-closed). The semi closure [7] of a subset A of X, denoted

by sclA is defined to be the intersection of all semi closed sets containing A. The semi-pre closure [3] of a subset A of X,

denoted by spclA is defined to be the intersection of all semi-pre-closed sets containing A. A subset A of an ideal space (X,

τ , I) is said to be I-open [9] if A ⊂ int(A*), A subset A of an ideal space (X, τ , I) is *-closed [16] (resp. *-dense in itself [13],

*-perfect [13]) if A*⊂A (resp. A ⊂ A*, A = A*). Clearly, A is *perfect if and only if A is *-closed and *-dense in itself.

Definition 2.1. A subset A of a topological space (X, τ) is said to be

(1) a generalized closed set [21] (g-closed) if cl(A) ⊆ U whenever A ⊆ U and U is open.

(2) a generalized semi-closed set [5] (gs-closed) if scl(A) ⊆ U whenever A ⊆ U and U is open.

(3) a generalized semi-pre-closed set [5] (gsp-closed) if spcl(A) ⊆ U whenever A ⊆ U and U is open.

(4) a ω-closed set [15] if cl(A) ⊆ U whenever A ⊆ U and U is semiopen.

(5) an η̂∗-closed set [27] if spcl(A) ⊆ U whenever A ⊆ U and U is ω-open.

(6) a β*-closed set [4] if spcl(A) ⊆ intU whenever A ⊆ U and U is ω-open.

Definition 2.2. A subset A of an ideal space (X, τ, I) is called pre-I-open [10] (resp. α-I-open [12], semi-I-open [12], semi-

pre-I-open [13]) if A ⊆ int(cl∗(A)) (resp. A ⊆ int(cl∗(int(A))), A ⊆cl∗(int(A)), A ⊆ cl∗(int(cl∗(A))). The complement of

an pre-I-open (resp. α-I-open semi-I-open, semi-pre-I-open) set is pre-I-closed (resp. α-I-closed ,semi-I-closed, semi-pre-I-

closed). A subset A of a space (X, τ) is an I-open [1] if A ⊆ int(A∗) and rI-open [18] if A =int(cl*(A))

Definition 2.3. A subset A of an ideal space (X, τ , I) is said to be

(1) Ig-closed set [8] if A∗ ⊆ U whenever A ⊆ U and U is open.

(2) sgI-closed set [6] if scl∗(A) ⊆ U whenever A ⊆ U and U is semi-I-open.

(3) I∗g-closed set [26] if A∗ ⊆ U whenever A ⊆ U and U is ω-open.

(4) rgI-closed set if [24] cl∗A ⊆ U whenever A ⊆ U and U is rI-open.

(5) pre generalized pre regular I-closed set [30] (pgprI-closed) if pcl∗A ⊆ U whenever A ⊆ U and U is rgI-open.

(6) regular pre semi I-closed set [28] (rpsI-closed) if spcl∗A ⊆ U whenever A ⊆ U and U is rgI-open.

Lemma 2.4. Let (X, τ , I) be an ideal topological space and A ⊆ X. If A ⊆ A∗, then A∗ = Cl(A∗) = Cl(A) = Cl∗(A) [17,

Theorem 5].

Definition 2.5. A subset A of an ideal space (X, τ , I) is called ω-I-closed set if A∗ ⊆ U whenever A ⊆ U and U is

semi-I-open.

Definition 2.6. A subset A of an ideal space (X, τ , I) is called η̂∗ − Ig-closed set if spcl∗A ⊆ U whenever A⊆U and U is

ω-I-open.

Definition 2.7. A subset A of an ideal space (X,τ , I) is called Igsp-closed set if spcl∗A ⊆ U whenever A⊆U and U is

I-open.

Definition 2.8. A space X is called a spω∗- space if the intersection of every semi-pre-I-closed set of X with every ω-I-closed

set of X is ω-I-closed.
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3. β∗ − Ig-closed Sets

Definition 3.1. A subset A of an ideal space (X,τ , I) is called β ∗ −Ig−closed set if spcl∗A ⊆ int∗U whenever A⊆U and

U is ω-I-open.

Theorem 3.2. A set A is ω-I-open iff F ⊆ int∗A whenever F is semi-I-closed and F⊆A.

Proof. Suppose that A is ω-I-open, F⊆A and F is semi-I-closed. Then AC ⊆ FC , therefore (X −A) ∗ ⊆ FC , cl∗ (X −A) ⊆

FC and so F ⊆ (cl∗ (X −A))C = int∗A.

Theorem 3.3. Every *-closed set is β∗ − Ig−closed set but not conversely.

Proof. Let A be a *-closed set, then A*⊆A. Let A⊆U where U is ω-I-open. Then cl∗A ⊆ U which implies scl∗A ⊆ U .

Then by theorem 3.2 scl∗A ⊆ int∗U so spcl∗A ⊆ int∗U .

Example 3.4. Let X = {a, b, c} with the topology τ = {φ,X, {a} , {b, c}} and the ideal I = {φ, {c}}. It is clear that A={b}

is β∗ − Ig−closed set but A is not a ∗-closed set.

Theorem 3.5. Every semi-I-closed set and hence I-closed and α-I-closed sets are β∗ − Ig−closed set but not conversely.

Proof. Let A ⊆U be a semi-I-closed set where U is ω-I-open set. Then scl∗A = A ⊆ U which implies scl∗A ⊆ int∗U .

Therefore spcl∗A ⊆ scl∗A ⊆ int∗U .

Example 3.6. Let X = {a, b, c} with the topology τ = {φ,X, {c}} and the ideal I = {φ}. Clearly A = {a, c} is β∗−Ig−closed

set but A is not a semi-I- closed set.

Theorem 3.7. Every semi-closed set and hence closed set and α-closed sets are is β∗ − Ig−closed set but not conversely.

Proof. Let A be a semi-closed set. Since every semi-closed set is a semi-I-closed set and follows from Theorem 3.6; A is

β∗ − Ig−closed set.

Example 3.8. Let X = {a, b, c} with the topology τ = {φ,X, {c}} and the ideal I = {φ}. Clearly A = {a, c} is β∗−Ig−closed

set but A is not a semi-closed set.

Remark 3.9. β ∗ −Ig−closed set and β∗-closed sets are independent of each other, as seen from the following examples.

Example 3.10. Let X = {a, b, c} with the topology τ = {φ,X, {a} , {a, c}} and the ideal I = {φ, {a}}. It is clear that

A = {a} is a β∗ − Ig−closed set but A is not a β∗-closed set.

Example 3.11. Let X = {a, b, c, d} with the topology τ = {φ,X, {a, b}} and the ideal I = {φ, {c}}. Clearly, the set A={a,

b, d}is β∗-closed set but A is not a β∗ − Ig−closed set.

Remark 3.12. β ∗ −Ig−closed set and Ig-closed sets are independent of each other, as seen from the following examples.

Example 3.13. Let X = {a, b, c} with the topology τ = {φ,X, {a} , {a, c}} and the ideal I = {φ, {a}}. It is clear that

A = {c} is a β∗ − Ig−closed set but A is not a Ig-closed set.

Example 3.14. Let X = {a, b, c, d} with the topology τ = {φ,X, {a, b}} and the ideal I = {φ, {c}}. Clearly, the set A={a,

b, d} is Ig-closed set but A is not a β ∗ −Ig−closed set.

Remark 3.15. β∗ − Ig−closed set and I∗g-closed sets are independent to each other, as seen from the following examples.
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Example 3.16. Let X = {a, b, c} with the topology τ = {φ,X, {a} , {a, c}} and the ideal I = {φ, {a}}. It is clear that

A = {c} is a β∗ − Ig−closed set but A is not a I∗g-closed set.

Example 3.17. Let X = {a, b, c, d} with the topology τ = {φ,X, {a, b}} and the ideal I = {φ, {c}}. Clearly, the set A={a,

b, d} is I∗g-closed set but A is not a β∗ − Ig−closed set.

Remark 3.18. β∗ − Ig−closed set and semi-pre-I-closed sets are independent to each other, as seen from the following

example.

Example 3.19. Let X = {a, b, c, d} with the topology τ = {φ,X, {a, b}} and the ideal I = {φ, {c}}. It is clear that A1 = {a}

is semi-pre-I-closed set but not a β∗ − Ig−closed set. Also A2 = {a, b, c} is β∗ − Ig−closed set but not a semi-pre-I-closed

set.

Remark 3.20. β∗ − Ig−closed set and pre-I-closed sets are independent to each other, as seen from the following example.

Example 3.21. Let X = {a, b, c, d} with the topology τ = {φ,X, {a, b}} and the ideal I = {φ, {c}}. We see that A1 = {a}

is pre-I-closed set but not β ∗ −Ig−closed set. Also A2 = {a, b, c} is β∗ − Ig−closed set but not pre-I-closed set.

Theorem 3.22. Every β∗ − Ig−closed set is η̂∗-Ig-closed set but not conversely.

Proof. Let A be a β∗− Ig−closed set. Then spcl∗A ⊆ int∗U whenever A⊂U and U is ω-I-open which implies spcl∗A ⊆ U

whenever A⊂U and U is ω-I-open. Hence A is an η̂∗-Ig-closed set.

Example 3.23. Let X = {a, b, c, d} with the topology τ = {φ,X, {a, b}} and the ideal I = {φ, {c}}. It is clear that A = {a}

is a η̂∗-Ig-closed set but A is not an β∗ − Ig−closed set.

Theorem 3.24. Every β∗ − Ig−closed set is Igsp-closed set but not conversely.

Proof. Let A⊂U be a β∗ − Ig−closed set and U is I-open. Since every I-open set is ω-I-open, we have spcl∗A ⊆ int∗U

and therefore spcl∗A ⊆ U . Hence A is Igsp-closed set.

Remark 3.25. β∗ − Ig−closed set and rgI-closed sets are independent to each other, as seen from the following examples.

Example 3.26. Let X = {a, b, c, d} with the topology τ = {φ,X, {a, b}} and the ideal I = {φ, {c}}. It is clear that A = {a}

is a rgI-closed set but A is not a β∗ − Ig−closed set.

Example 3.27. Let X = {a, b, c, d} with the topology τ = {φ,X, {a} , {b} , {a, b} , {b, c} , {a, b, c}} and the ideal I = {φ, {a}}.

It is clear that A = {c} is a β∗ − Ig−closed set but A is not a rgI -closed set.

Remark 3.28. β∗− Ig−closed set and pgprI-closed sets are independent to each other, as seen from the following examples.

Example 3.29. Let X = {a, b, c, d} with the topology τ = {φ,X, {a, b}} and the ideal I = {φ, {c}}. It is clear that A = {a}

is a pgprI-closed set but A is not a β∗ − Ig−closed set.

Example 3.30. Let X = {a, b, c, d} with the topology τ = {φ,X, {a} , {b} , {a, b} , {b, c} , {a, b, c}} and the ideal I = {φ, {a}}.

It is clear that A = {b, c} is a β∗ − Ig−closed set but A is not a pgprI -closed set.

Remark 3.31. β∗ − Ig−closed set and rpsI-closed sets are independent to each other, as seen from the following examples.

Example 3.32. Let X = {a, b, c, d} with the topology τ = {φ,X, {a, b}} and the ideal I = {φ, {c}}. It is clear that A = {a}

is a rpsI-closed set but A is not a β∗ − Ig−closed set.

Example 3.33. Let X = {a, b, c, d} with the topology τ = {φ,X, {a} , {b} , {a, b} , {b, c} , {a, b, c}} and the ideal I = {φ, {a}}.

It is clear that A = {b, c} is a β∗ − Ig−closed set but A is not a rpsI -closed set.
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