

International Journal of Mathematics And its Applications

Soft g-closed Sets in Soft Biminimal Spaces

Research Article

R.Gowri¹ and S.Vembu^{1*}

1 Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India.

Abstract: The purpose of this paper is to introduce a new class of sets called soft g-closed sets in soft biminimal spaces and its basic properties are investigated.

MSC: 54A05, 54A08, 54C10.

Keywords: Soft set, soft biminimal, sg $\tilde{m}_{(i,j)}$ -closed sets, sg $\tilde{m}_{(i,j)}$ -open sets. © JS Publication.

1. Introduction

V.Popa and T.Noiri [14] introduced the concept of minimal structure (briefly m-structure). They also introduced the notion of m_X -open set and m_X -closed set and characterize those sets using m_X -closure and m_X -interior operators respectively. C. Boonpok [1] introduced the concept of biminimal structure space and studied $m_X^1 m_X^2$ -open sets and $m_X^1 m_X^2$ -closed sets in biminimal structure spaces. R. Gowri and S. Vembu [3] introduced the concept of soft minimal and soft biminimal spaces. In [4] R. Gowri and S. Vembu introduced soft generalized closed sets in soft minimal spaces. C. Viriyapong [15] et.al introduced the concept of generalized m-closed sets in biminimal structure spaces and we obtain some properties of generalized m-closed sets. The concept of soft sets was introduced by Molodtsov [8] in 1999 as a general mathematical tool for dealing with uncertain objects. Later, he applied this theory to several directions (see [9] [10] [11]). In this paper, we introduce soft g-closed sets in soft biminimal spaces which are defined over an initial universe with a fixed set of parameters.

2. Preliminaries

Definition 2.1 ([8]). Let U be an initial universe and E be a set of parameters. Let P(U) denote the power set of U and A be a nonempty subset of E. A soft set F_A on the universe U is defined by the set of ordered pairs $F_A = \{(x, f_A(x)) : x \in E\}$, where $f_A : E \to P(U)$ such that $f_A(x) = \emptyset$ if $x \notin A$. Here, f_A is called approximate function of the soft set F_A . The value of $f_A(x)$ may be arbitrary, some of them may be empty, some may have non empty intersection.

Note that the set of all soft sets over U will be denoted by S(U).

Definition 2.2 ([3]). Let X be an initial universe set, E be the set of parameters and $A \subseteq E$. Let F_A be a non empty soft set over X and $\tilde{P}(F_A)$ is the soft power set of F_A . A subfamily \tilde{m} of $\tilde{P}(F_A)$ is called a soft minimal set over X if $F_{\emptyset} \in \tilde{m}$

 $^{^{*}}$ E-mail: vembuchandrasekaran@gmail.com

and $F_A \in \tilde{m}$. (F_A, \tilde{m}) or (X, \tilde{m}, E) is called a soft minimal space over X. Each member of \tilde{m} is said to be \tilde{m} -soft open set and the complement of an \tilde{m} -soft open set is said to be \tilde{m} -soft closed set over X.

Definition 2.3 ([3]). Let X be an initial universe set, E be the set of parameters and $A \subseteq E.Let F_A$ be a non empty soft set over X. Let $(F_A, \tilde{m_1})$ and $(F_A, \tilde{m_2})$ be the two different soft minimals over X. Then $(X, \tilde{m_1}, \tilde{m_2}, E)$ or $(F_A, \tilde{m_1}, \tilde{m_2})$ is called a soft biminimal spaces.

Example 2.4. Let $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then

$$\begin{split} F_{A_1} &= \{(x_1, \{u_1\})\}, & F_{A_2} &= \{(x_1, \{u_2\})\}, \\ F_{A_3} &= \{(x_1, \{u_1, u_2\})\}, & F_{A_4} &= \{(x_2, \{u_1\})\}, \\ F_{A_5} &= \{(x_2, \{u_2\})\}, & F_{A_6} &= \{(x_2, \{u_1, u_2\})\}, \\ F_{A_7} &= \{(x_1, \{u_1\}), (x_2, \{u_1\})\}, & F_{A_8} &= \{(x_1, \{u_1\}), (x_2, \{u_2\})\}, \\ F_{A_9} &= \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\}, & F_{A_{10}} &= \{(x_1, \{u_2\}), (x_2, \{u_1\})\}, \\ F_{A_{11}} &= \{(x_1, \{u_2\}), (x_2, \{u_2\})\}, & F_{A_{12}} &= \{(x_1, \{u_2\}), (x_2, \{u_1, u_2\})\}, \\ F_{A_{13}} &= \{(x_1, \{u_1, u_2\}), (x_2, \{u_1\})\}, & F_{A_{14}} &= \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}, \\ F_{A_{15}} &= F_A, & F_{A_{16}} &= F_\emptyset \end{split}$$

are all soft subsets of F_A . Here, soft biminimals are

$$\begin{split} \tilde{m_1} &= \{F_{\emptyset}, F_{A_2}, F_{A_5}, F_{A_7}, F_{A_{11}}, F_A\} \quad and \\ \tilde{m_2} &= \{F_{\emptyset}, F_{A_1}, F_{A_3}, F_{A_6}, F_{A_{10}}, F_A\} \,. \end{split}$$

Definition 2.5 ([3]). Let F_A be a non empty soft set and \tilde{m} be soft minimal over X. For a soft subset F_B of F_A , the \tilde{m} -soft closure of F_B and \tilde{m} -soft interior of F_B are defined as follows:

$$\tilde{m}Cl(F_B) = \cap \left\{ F_{\alpha} : F_B \subseteq F_{\alpha}, F_A - F_{\alpha} \in \tilde{m} \right\},$$
$$\tilde{m}Int(F_B) = \cup \left\{ F_{\beta} : F_{\beta} \subseteq F_B, F_{\beta} \in \tilde{m} \right\}.$$

Lemma 2.6 ([3]). Let F_A be a non empty soft set and \tilde{m} be soft minimal over X. For a soft subset F_B , $F_C \subseteq F_A$, the following properties hold:

- (1). $\tilde{m}Cl(F_A F_B) = F_A (\tilde{m}Int(F_B))$ and $\tilde{m}Int(F_A F_B) = F_A (\tilde{m}Cl(F_B))$,
- (2). If $(F_A F_B) \in \tilde{m}$, then $\tilde{m}Cl(F_B) = F_B$ and if $F_B \in \tilde{m}$, then $\tilde{m}Int(F_B) = F_B$,
- (3). $\tilde{m}Cl(F_{\emptyset}) = F_{\emptyset}, \ \tilde{m}Cl(F_A) = F_A, \ \tilde{m}Int(F_{\emptyset}) = F_{\emptyset} \ and \ \tilde{m}Int(F_A) = F_A,$
- (4). If $F_B \subseteq F_C$, then $\tilde{m}Cl(F_B) \subseteq \tilde{m}Cl(F_C)$ and $\tilde{m}Int(F_B) \subseteq \tilde{m}Int(F_C)$,
- (5). $F_B \subseteq \tilde{m}Cl(F_B)$ and $\tilde{m}Int(F_B) \subseteq F_B$,
- (6). $\tilde{m}Cl(\tilde{m}Cl(F_B)) = \tilde{m}Cl(F_B)$ and $\tilde{m}Int(\tilde{m}Int(F_B)) = \tilde{m}Int(F_B)$.

Lemma 2.7 ([3]). Let F_A be a non empty soft set and \tilde{m} be soft minimal over X satisfying property B. For a soft subset F_B of F_A , the following properties hold:

- (1). $F_B \in \tilde{m}$ if and only if $\tilde{m}Int(F_B) = F_B$,
- (2). F_B is \tilde{m} -closed if and only if $\tilde{m}Cl(F_B) = F_B$,
- (3). $\tilde{m}Int(F_B) \in \tilde{m}$ and $\tilde{m}Cl(F_B) \in \tilde{m}$ -closed.

Definition 2.8 ([3]). Let F_A be a non-empty soft set and \tilde{m} on X satisfying property B if the union of any family of subsets belonging to \tilde{m} belongs to \tilde{m} .

Definition 2.9 ([3]). Let F_A be a non-empty soft set and \tilde{m} be soft minimal over X satisfying property B if the union of any family of subsets belonging to \tilde{m} belongs to \tilde{m} .

Definition 2.10 ([4]). A soft subset F_B of a soft minimal space (F_A, \tilde{m}) is said to be soft generalized \tilde{m} -closed sets (briefly sg \tilde{m} -closed) if $\tilde{m}Cl(F_B) \subseteq U_B$ whenever $F_B \subseteq U_B$ and U_B is soft \tilde{m} -open set.

3. Soft Generalized Closed Sets in Soft Biminimal Spaces

In this section, we introduce the concept of soft generalized closed sets in soft biminimal spaces and study some of their properties.

Definition 3.1. A soft subset F_B of a soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is called a soft generalized $\tilde{m_i}\tilde{m_j}$ -closed sets (briefly $sg\tilde{m}_{(i,j)}$ -closed) if $\tilde{m_j}Cl(F_B) \subseteq U_B$ whenever $F_B \subseteq U_B$ and U_B is soft $\tilde{m_i}$ -open, where i, j = 1, 2 and $i \neq j$. The complement of a $sg\tilde{m}_{(i,j)}$ -closed set is called a $sg\tilde{m}_{(i,j)}$ -open. The family of all $sg\tilde{m}_{(i,j)}$ -closed($sg\tilde{m}_{(i,j)}$ -open) sets of $(F_A, \tilde{m_1}, \tilde{m_2})$ is denoted by $sg\tilde{m}_{(i,j)}C(F_A)$ (reps. $sg\tilde{m}_{(i,j)}O(F_A)$), where i, j = 1, 2 and $i \neq j$

Definition 3.2. A soft subset F_B of a soft biminimal spaces $(F_A, \tilde{m_1}, \tilde{m_2})$ is said to be pairwise sgm-closed (briefly p – sgmclosed) if F_B is $sgm_{(1,2)}$ -closed and $sgm_{(2,1)}$ -closed. The complement of a pairwise sgm-closed set is said to be pairwise sgm-open (briefly p – sgm-open).

Example 3.3. Let $X = \{u_1, u_2\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subseteq E \text{ and } F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then

$F_{A_1} = \{(x_1, \{u_1\})\},\$	$F_{A_2} = \{(x_1, \{u_2\})\},\$
$F_{A_3} = \{(x_1, \{u_1, u_2\})\},\$	$F_{A_4} = \{(x_2, \{u_1\})\},\$
$F_{A_5} = \{(x_2, \{u_2\})\},\$	$F_{A_6} = \{(x_2, \{u_1, u_2\})\},\$
$F_{A_{7}} = \{(x_{1}, \{u_{1}\}), (x_{2}, \{u_{1}\})\},\$	$F_{A_8} = \{(x_1, \{u_1\}), (x_2, \{u_2\})\},\$
$F_{A_9} = \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\},\$	$F_{A_{10}} = \{(x_1, \{u_2\}), (x_2, \{u_1\})\},\$
$F_{A_{11}} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\},\$	$F_{A_{12}} = \{(x_1, \{u_2\}), (x_2, \{u_1, u_2\})\}$
$F_{A_{13}} = \{ (x_1, \{u_1, u_2\}), (x_2, \{u_1\}) \},\$	$F_{A_{14}} = \{ (x_1, \{u_1, u_2\}), (x_2, \{u_2\}) \},\$
$F_{A_{15}} = F_A,$	$F_{A_{16}} = F_{\emptyset}$
$\tilde{m}_1 = \{F_{\emptyset}, F_{A_6}, F_{A_7}, F_{A_{13}}, F_A\},\$	$\tilde{m}_2 = \{F_{\emptyset}, F_{A_3}, F_{A_6}, F_{A_8}, F_{A_{12}}, F_A\},\$

 $sg\tilde{m}_{(1,2)}C(F_A) = \{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_3}, F_{A_4}, F_{A_5}, F_{A_6}, F_{A_8}, F_{A_9}, F_{A_{10}}, F_{A_{11}}, F_{A_{12}}, F_{A_{14}}, F_A\}.$

Remark 3.4. By setting $\tilde{m_1} = \tilde{m_2}$ in Definition 3.1, a $sg\tilde{m}_{(i,j)}$ -closed becomes $sg\tilde{m}$ -closed set.

Remark 3.5. Every soft $m_{(i,j)}$ -closed set is $sg\tilde{m}_{(i,j)}$ -closed set but the converse is not true as seen from the following example.

Example 3.6. Let $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then $\tilde{m}_1 = \{F_{\emptyset}, F_{A_3}, F_{A_4}, F_{A_{11}}, F_A\}$, and $\tilde{m}_2 = \{F_{\emptyset}, F_{A_5}, F_{A_6}, F_{A_9}, F_{A_{10}}, F_A\}$. Here F_{A_1} is $sg\tilde{m}_{(1,2)}$ -closed set but not soft $\tilde{m}_{(1,2)}$ closed set.

Proposition 3.7. Let $(F_A, \tilde{m_1}, \tilde{m_2})$ be a soft biminimal spaces and let F_B be soft subset of $(F_A, \tilde{m_1}, \tilde{m_2})$. If F_B is both soft $\tilde{m_i}$ -open and $sgm_{(i,j)}$ -closed, then F_B is soft $\tilde{m_j}$ -closed.

Proof. Let F_B be soft \tilde{m}_i -open and $sgm_{(i,j)}$ -closed, we have $\tilde{m}Cl(F_B) = F_B$. Hence, F_B is soft \tilde{m}_i -closed.

Theorem 3.8. Union of two $sg\tilde{n}_{(i,j)}$ -closed sets is $sg\tilde{m}_{(i,j)}$ -closed set.

Proof. Suppose F_B and G_B are $\operatorname{sg} \tilde{m}_{(i,j)}$ -closed set. Let U_B be soft \tilde{m}_i -open set such that $F_B \cup G_B \subseteq U_B$. Since $F_B \cup G_B \subseteq U_B$, we have $F_B \subseteq U_B$, $G_B \subseteq U_B$. Since U_B is soft \tilde{m}_i -open and F_B and G_B are $\operatorname{sg} \tilde{m}_{(i,j)}$ -closed sets, we have $\tilde{m}_j Cl(F_B) \subseteq U_B$ and $\tilde{m}_j Cl(G_B) \subseteq U_B$. Therefore, $\tilde{m}_j Cl(F_B \cup G_B) \subseteq \tilde{m}_j Cl(F_B) \cup \tilde{m}_j Cl(G_B) \subseteq U_B$. Hence, $F_B \cup G_B$ is $\operatorname{sg} \tilde{m}_{(i,j)}$ -closed set. \Box

Remark 3.9. The intersection of two $sg\tilde{n}_{(i,j)}$ -closed sets need not be $sg\tilde{m}_{(i,j)}$ -closed as seen from the following example

Example 3.10. Let $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then $\tilde{m}_1 = \{F_{\emptyset}, F_{A_1}, F_{A_3}, F_{A_7}, F_{A_{12}}, F_{A_1}\}$, and $\tilde{m}_2 = \{F_{\emptyset}, F_{A_1}, F_{A_3}, F_{A_7}, F_{A_{12}}, F_{A_{14}}, F_{A}\}$. Then $F_{A_{13}}$ and $F_{A_{14}}$ are $sg\tilde{m}_{(1,2)}$ -closed but $F_{A_{13}} \cap F_{A_{14}} = F_{A_3}$ is not $sg\tilde{m}_{(1,2)}$ -closed.

Theorem 3.11. Let $(F_A, \tilde{m_1}, \tilde{m_2})$ be a soft biminimal space. If F_B is $sg\tilde{m}_{(i,j)}$ -closed and H_B is soft $\tilde{m_j}$ -closed, then $F_B \cap H_B$ is $sg\tilde{m}_{(i,j)}$ -closed.

Proof. Let U_B be soft \tilde{m}_i -open such that $F_B \cap H_B \subseteq U_B$. Then $F_B \subseteq U_B \cup (H_B)^c$ and so $\tilde{m}_j Cl(F_B) \subseteq U_B \cup (H_B)^c$. Therefore $\tilde{m}_j Cl(F_B) \cap H_B \subseteq U_B$. Since H_B is soft \tilde{m}_j -closed. Therefore, $\tilde{m}_j Cl(F_B \cap H_B) \subseteq U_B$. Hence, $F_B \cap H_B$ is $sg\tilde{m}_{(i,j)}$ -closed.

Remark 3.12. $sg\tilde{m}_{(1,2)}C(F_A)$ is generally not equal to $sg\tilde{m}_{(2,1)}C(F_A)$ as can be seen from the following example.

Example 3.13. Let $X = \{u_1, u_2\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}.$ Then $\tilde{m_1} = \{F_{\emptyset}, F_{A_3}, F_{A_4}, F_{A_{11}}, F_A\},$ and $\tilde{m_2} = \{F_{\emptyset}, F_{A_5}, F_{A_6}, F_{A_9}, F_{A_{10}}, F_A\}.$ Then $sg\tilde{m}_{(1,2)}C(F_A) = \{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_3}, F_{A_4}, F_{A_5}, F_{A_6}, F_{A_8}, F_{A_9}, F_{A_{10}}, F_{A_{11}}, F_{A_{12}}, F_{A_{14}}, F_A\},$ $sg\tilde{m}_{(2,1)}C(F_A) = \{F_{\emptyset}, F_{A_7}, F_{A_{11}}, F_{A_{12}}, F_{A_{13}}, F_{A_{14}}, F_A\}.$ Thus $sg\tilde{m}_{(1,2)}C(F_A) \neq sg\tilde{m}_{(2,1)}C(F_A).$

Remark 3.14. Let $\tilde{m_1}$ and $\tilde{m_2}$ be two soft minimals on F_A . If $\tilde{m_1} \subseteq \tilde{m_2}$, then $sg\tilde{m}_{(2,1)}C(F_A) \subseteq sg\tilde{m}_{(1,2)}C(F_A)$

Example 3.15. Let $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then $\tilde{m_1} = \{F_{\emptyset}, F_{A_1}, F_{A_3}, F_{A_7}, F_{A_{12}}, F_A\}$, and $\tilde{m_2} = \{F_{\emptyset}, F_{A_1}, F_{A_3}, F_{A_7}, F_{A_{12}}, F_{A_{14}}, F_A\}$. Thus $sg\tilde{m}_{(2,1)}C(F_A) \subseteq sg\tilde{m}_{(1,2)}C(F_A)$.

Theorem 3.16. Let F_B be a soft subset of soft minimal space $(F_A, \tilde{m_1}, \tilde{m_2})$. If F_B be $sg\tilde{m}_{(i,j)}$ -closed, then $\tilde{m_j}Cl(F_B) - F_B$ contains no non empty soft $\tilde{m_i}$ -closed set.

Proof. Let F_B be $sg\tilde{m}_{(i,j)}$ -closed subset of $\tilde{m}_jCl(F_B) - F_B$. Now $H_B \subseteq \tilde{m}_jCl(F_B) - F_B$ and $F_B \subseteq (H_B)^c$ where F_B is $sg\tilde{m}_{(i,j)}$ -closed and $(H_B)^c$ is soft \tilde{m}_i -open. Thus $\tilde{m}_jCl(F_B) \subseteq (H_B)^c$ or equivalently $H_B \subseteq [\tilde{m}_jCl(F_B)]^c$. By assumption, $H_B \subseteq [\tilde{m}_jCl(F_B)]$ and so $H_B \subseteq [\tilde{m}_jCl(F_B)] \cap [\tilde{m}_jCl(F_B)]^c = F_{\emptyset}$. Therefore, $H_B = F_{\emptyset}$. Hence, $\tilde{m}_jCl(F_B) - F_B$ contains no non empty soft \tilde{m}_i -closed set.

Remark 3.17. The converse of the above Theorem 3.16 is not true as seen from the following example

Example 3.18. Let $X = \{u_1, u_2\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subseteq E$. Then $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then $\tilde{m_1} = \{F_{\emptyset}, F_{A_2}, F_{A_5}, F_{A_{10}}, F_{A_{12}}, F_A\}$ and $\tilde{m_2} = \{F_{\emptyset}, F_{A_1}, F_{A_7}, F_{A_{13}}, F_A\}$. Take $F_B = F_{A_2}$. Then $\tilde{m_2}Cl(F_B) - F_B = \tilde{m_2}Cl(F_{A_2}) - F_{A_2} = F_{A_5}$ which does not contain any non empty soft $\tilde{m_1}$ -closed set. But F_{A_2} is not $sg\tilde{m}_{(1,2)}$ -closed.

Corollary 3.19. If F_B is $sg\tilde{m}_{(i,j)}$ -closed set in $(F_A, \tilde{m}_1, \tilde{m}_2)$ then F_B is soft \tilde{m}_j -closed if and only if $\tilde{m}_jCl(F_B) - F_B$ is soft \tilde{m}_i -closed.

Proof. Assume that F_B is $sg\tilde{m}_{(i,j)}$ -closed set and soft \tilde{m}_j -closed. Then $\tilde{m}_jCl(F_B) = F_B$. That is $\tilde{m}_jCl(F_B) - F_B = F_{\emptyset}$ and hence $\tilde{m}_jCl(F_B) - F_B$ is soft \tilde{m}_i -closed. Conversely, suppose $\tilde{m}_jCl(F_B) - F_B$ is soft \tilde{m}_i -closed, then by Theorem 3.16, F_B is $sg\tilde{m}_{(i,j)}$ -closed, then $\tilde{m}_jCl(F_B) - F_B$ contains no non empty soft \tilde{m}_i -closed set. That implies $\tilde{m}_jCl(F_B) - F_B = F_{\emptyset}$. Hence, F_B is soft \tilde{m}_j -closed.

Theorem 3.20. For each $(x, u) \in (F_A, \tilde{m_1}, \tilde{m_2})$, the singleton $\{(x, u)\}$ is soft $\tilde{m_i}$ -closed or $\{(x, u)\}^c$ is $sg\tilde{m}_{(i,j)}$ -closed set.

Proof. Suppose that $\{(x, u)\}$ is not soft \tilde{m}_i -closed, then $\{(x, u)\}^c$ is not soft \tilde{m}_i -open. Then F_A is the only soft \tilde{m}_i -open set which contains $\{(x, u)\}^c$ and $\{(x, u)\}^c$ is $\mathrm{sg}\tilde{m}_{(i,j)}$ -closed set.

Theorem 3.21. If F_B be $sg\tilde{m}_{(i,j)}$ -closed set in $(F_A, \tilde{m}_1, \tilde{m}_2)$ and $F_B \subseteq G_B \subseteq \tilde{m}_j Cl(F_B)$, then G_B is also $sg\tilde{m}_{(i,j)}$ -closed set

Proof. Assume F_B is $\mathrm{sg}\tilde{m}_{(i,j)}$ -closed set and $F_B \subseteq G_B \subseteq \tilde{m}_j Cl(F_B)$. Let $G_B \subseteq U_B$ and U_B is soft \tilde{m}_i -open. Given $F_B \subseteq G_B$. Then $F_B \subseteq U_B$. Since F_B is $\mathrm{sg}\tilde{m}_{(i,j)}$ -closed set, we have $\tilde{m}_j Cl(F_B) \subseteq U_B$. Since $G_B \subseteq \tilde{m}_j Cl(F_B)$, $\tilde{m}_j Cl(G_B) \subseteq \tilde{m}_j Cl(F_B) \subseteq U_B$. Hence G_B is $\mathrm{sg}\tilde{m}_{(i,j)}$ -closed set.

Theorem 3.22. A soft subset F_B of soft biminimal space in $(F_A, \tilde{m_1}, \tilde{m_2})$ is $sg\tilde{m}_{(i,j)}$ -open set if and only if $H_B \subseteq \tilde{m_j}Int(F_B)$ whenever H_B is soft $\tilde{m_i}$ -closed and $H_B \subseteq F_B$ where i, j = 1, 2 and $i \neq j$.

Proof. Let F_B be $\mathrm{sg}\tilde{m}_{(i,j)}$ -open set. Let H_B be a soft \tilde{m}_i -closed set such that $H_B \subseteq F_B$. Let $F_B \subseteq H_B$ and H_B is soft \tilde{m}_i -closed. Then $(F_B)^c \subseteq (H_B)^c$ and $(H_B)^c$ is soft \tilde{m}_i -open, we have $(F_B)^c$ is $\mathrm{sg}\tilde{m}_{(i,j)}$ -closed. Hence, $[\tilde{m}_jCl(F_B)^c] \subseteq (H_B)^c$. Consequently, $[\tilde{m}_jInt(F_B)]^c \subseteq (H_B)^c$. Therefore, $H_B \subseteq \tilde{m}_jInt(F_B)$. Conversely, suppose $H_B \subseteq \tilde{m}_jInt(F_B)$ whenever $H_B \subseteq F_B$ and H_B is soft \tilde{m}_i -closed. Let $(F_B)^c \subseteq U_B$ and U_B is soft \tilde{m}_i -open. Then $(U_B)^c \subseteq F_B$ and $(U_B)^c$ is soft \tilde{m}_i -closed. By hypothesis $(U_B)^c \subseteq \tilde{m}_jInt(F_B)$. Hence, $[\tilde{m}_jInt(F_B)]^c \subseteq U_B$. (i.e) $[\tilde{m}_jCl(F_B)^c] \subseteq U_B$. Consequently, $(F_B)^c$ is $\mathrm{sg}\tilde{m}_{(i,j)}$ -closed set. Hence, F_B is $\mathrm{sg}\tilde{m}_{(i,j)}$ -open.

Theorem 3.23. A soft subset F_B is $sg\tilde{m}_{(i,j)}$ -closed set then $\tilde{m}_jCl(F_B) - F_B$ is $sg\tilde{m}_{(i,j)}$ -open set.

Proof. Let F_B is $\operatorname{sg}\tilde{m}_{(i,j)}$ -closed set. Let $H_B \subseteq \tilde{m}_j Cl(F_B) - F_B$ where H_B is soft \tilde{m}_i -closed set. Since F_B is $\operatorname{sg}\tilde{m}_{(i,j)}$ -closed, we have $\tilde{m}_j Cl(F_B) - F_B$ does not contain nonempty soft \tilde{m}_i -closed by Theorem 3.16. Consequently, $H_B = F_{\emptyset}$. Therefore, $F_{\emptyset} \subseteq \tilde{m}_j Cl(F_B) - F_B$, $F_{\emptyset} \subseteq \tilde{m}_j Int(\tilde{m}_j Cl(F_B) - F_B)$, we obtain $H_B \subseteq \tilde{m}_j Int(\tilde{m}_j Cl(F_B) - F_B)$. Hence, $\tilde{m}_j Cl(F_B) - F_B$ is $\operatorname{sg}\tilde{m}_{(i,j)}$ -open.

Theorem 3.24. Let F_B and G_B be a soft subset of soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ such that $\tilde{m}_j Int(F_B) \subseteq G_B \subseteq F_B$. If F_B is $sg\tilde{m}_{(i,j)}$ -open, then G_B is $sg\tilde{m}_{(i,j)}$ -open where i, j = 1, 2 and $i \neq j$.

Proof. Let F_B is $sg\tilde{m}_{(i,j)}$ -open. Let H_B be a soft \tilde{m}_i -closed such that $H_B \subseteq G_B$. Since $H_B \subseteq G_B$ and $G_B \subseteq F_B$, we have $H_B \subseteq F_B$. Therefore, $H_B \subseteq \tilde{m}_j Int(F_B)$. Since $\tilde{m}_j Int(F_B) \subseteq G_B$, we have $\tilde{m}_j Int(\tilde{m}_j Int(F_B)) \subseteq \tilde{m}_j Int(G_B)$. Therefore, $\tilde{m}_j Int(G_B)$. Consequently, $H_B \subseteq \tilde{m}_j Int(G_B)$. Hence, G_B is $sg\tilde{m}_{(i,j)}$ -open.

Theorem 3.25. If F_B and G_B are two $sg\tilde{m}_{(i,j)}$ -open subsets of soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$, then $F_B \cap G_B$ is also $sg\tilde{m}_{(i,j)}$ -open.

Proof. Suppose H_B is soft \tilde{m}_j -closed set contained in $F_B \cap G_B$. Since F_B and G_B are $sg\tilde{m}_{(i,j)}$ -open sets. Since, $H_B \subseteq F_B \cap G_B$, we have $H_B \subseteq F_B$ and $H_B \subseteq G_B$. Since F_B and G_B are two $sg\tilde{m}_{(i,j)}$ -open sets, we have $H_B \subseteq \tilde{m}_j Int(F_B)$ and $H_B \subseteq \tilde{m}_j Int(G_B)$. Therefore, $H_B \subseteq \tilde{m}_j Int(F_B) \cap \tilde{m}_j Int(G_B) \subseteq \tilde{m}_j Int(F_B \cap G_B)$. Hence, $F_B \cap G_B$ is $sg\tilde{m}_{(i,j)}$ -open.

References

- [1] C.Boonpok, Biminimal Structure Spaces, International Mathematical Forum, 15(5)(2010), 703-707.
- [2] F.Cammaroto and T.Noiri, On Λ- sets and related topological spaces, Acta Math. Hungar., 109(3)(2005), 261-279.
- [3] R.Gowri and S.Vembu, Soft minimal and soft biminimal spaces, Int Jr. of Mathematical Science and Appl., 5(2)(2015), 447-455.
- [4] R.Gowri and S.Vembu, Soft g-closed sets in soft minimal spaces, Int Jr. of Mathematics and Computer Research, 4(2016), 1563-1571.
- [5] B.M Ittanagi, Soft Bitopological Spaces, International Journal of Computer Applications, 107(7)(2014).
- [6] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 2(19)(1970), 89-96.
- [7] H.Maki, K.C.Rao and A.Nagoor Gani, On generalized semi-open and preopen sets, Pure Appl. Math. Sci., 49(1999), 17-29.
- [8] D.A.Molodtsov, Soft Set Theory First Results, Comp. and Math. with App., 37(1999), 19-31.
- [9] D.A.Molodtsov, The description of a dependence with the help of soft sets, J. Comput. Sys. Sc. Int., 40(2001), 977-984.
- [10] D.A.Molodtsov, The theory of soft sets (in Russian), URSS Publishers, Moscow, (2004).
- [11] D.A.Molodtsov, V.Y.Leonov and D.V.Kovkov, Soft sets technique and its application, Nechetkie Sistemy I Myagkie Vychisleniya, 1(2006), 8-39.
- [12] T.Noiri and V.Popa, A generalized of some forms of g-irresolute functions, European J. of Pure and Appl. Math., 2(4)(2009), 473-493.
- [13] C.W.Patty, Bitopological Spaces, Duke Math. J., 34(1967), 387-392.
- [14] V.Popa and T.Noiri, On M-continuous functions, Anal. Univ.Dunarea de JosGalati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18(23)(2003), 31-41.
- [15] C.Viriyapong, M.Tunapan, W.Rattanametawee and C.Boonpok, Generalized m-Closed Sets in Biminimal Structure Spaces, Int. Journal of Math. Analysis, 5(7)(2011), 333-346.