International Journal of Mathematics And its Applications

Average Distance of Certain Graphs

Research Article

Jasintha Quadras ${ }^{1}$, K.Arputha Christy ${ }^{1}$, A.Nelson ${ }^{2}$ and S.Sarah Surya ${ }^{1 *}$
1 Department of Mathematics, Stella Maris College, Chennai, Tamilnadu, India.
2 Department of Mathematics, Loyola College, Chennai, Tamilnadu, India.

Abstract: Mean distance or average distance is used in studying the efficiency of networks or more generally 'good networks' which are often characterized by small distance. It is also used as a tool in analytic networks where the performance time is proportional to the distance between any two nodes. In this paper, we compute the Wiener index and the average distance of generalised prisms, uniform n-wheel split graph, uniform n-star split graph and cyclic split graph.

MSC: 05C69.
Keywords: Wiener index, average distance, generalized prisms, uniform n-wheel split graph, uniform n-star split graph, cyclic split graph.
(c) JS Publication.

1. Introduction

The distance between two nodes is defined as the number of edges along the shortest path connecting them. If the two nodes are disconnected, the distance is infinity. The average distance of a graph $G=(V, E)$ with $|V|=n$, denoted by $\mu(G)$ is the expected distance between a randomly chosen pair of distinct vertices; that is,

$$
\mu(G)=\frac{2 W(G)}{n(n-1)}
$$

where $W(G)$ is the Wiener index which is the sum of the shortest path between any two vertices of the graph G. Doyle and Graver [7] were the first to define $\mu(G)$ as a graph parameter. The study of the average distance began with the chemist Wiener [25], who noticed that the boiling point of certain hydrocarbons is proportional to the sum of all distances between unordered pairs of vertices of the corresponding graph. This sum is now called the Wiener number or Wiener index of the graph and is denoted by $W(G)$. The average distance of a graph is used for comparing the compactness of architectural plans [18].

2. Applications and Survey

The shortest path problem finds its application in various domains like preparing travel time and distance charts, in telecommunications and transportation industries where message or vehicles must be sent between two geographical locations as

[^0]quickly or as cheaply as possible. Other examples are complex traffic flow simulations and planning tools which rely on a large number of individual shortest path problems. Further applications include many practical integer programming problems. Shortest path computations are used as subroutines in the solution procedure for computational biology(DNA) sequence alignment, VLSI design, knapsack packing problems, traveling salesman problems and for many other problems. If we consider a network like the World Wide Web, then the short average path length facilitates the quick transfer of information and reduces costs. In 1999, Barabasi et al. [2] observed that in certain portions of the internet any two webpages are at most 19 clicks away from one another. The efficiency of mass transfer in a metabolic network can be judged by studying its average path length. A power grid network will have less losses if its average path length is minimized.

A diverse set of shortest path models and algorithms have been developed to accommodate these various applications. Average distance can be used as a tool in analytic networks where the performance time is proportional to the distance between any two nodes. It is a measure of the time needed in the average case, as opposed to the diameter, which indicates the maximum performance time [3]. Mean distance or average distance is used in studying the efficiency of networks or more generally 'good networks' which are often characterized by small distance [9].
Wiener index is used to study the relation between molecular structure, physical and chemical properties of certain hydrocarbon compounds. In the initial applications, the Wiener index is employed to predict physical parameters such as boiling points, heats of vaporization, molar volumes and more refractions of alkanes. The study of Wiener index is one of the current areas of research in Mathematical Chemistry. In theoretical computer science, Wiener index is considered as one of the basic descriptors of fixed interconnection network because it provides the average distance between any two nodes of the network [21]. The mean Wiener index is nowadays known as the average shortest-path distance and it has been instrumental in the definition of the concept of 'small-world' networks where everyone is connected to everyone else through a very short path [9]. Many works on average distance in graphs are available in the literature [1, 4-6, 8, 10-12, 20, 24, 26, 27].

3. Preliminaries

The graphs considered in this paper are finite, simple and undirected and we will use the standard graph-theoretic terminologies. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$.

Definition 3.1. The distance $d_{G}(u, v)$ between two vertices $u, v \in V(G)$ is the minimum number of edges on a path in G between u and v [27].

Definition 3.2. The average distance $\mu(G)[27]$ between the vertices of G is defined as follows:

$$
\mu(G)=\frac{2 W(G)}{n(n-1)}
$$

where $W(G)$ is the Wiener index of a graph G.
Definition 3.3 ([16]). For a graph G, let $d_{G}(u, v)$ be the number of edges on any shortest path joining vertex u to vertex v. The Wiener index of the graph G is defined as

$$
W(G)=\frac{1}{2} \sum_{u, v \in V(G)} d_{G}(u, v)
$$

where the sum runs over all ordered pairs of vertices. The factor (1/2) is needed in order to count each pair exactly once. If the vertex set is linearly ordered, we can write

$$
W(G)=\sum_{u, v \in V(G)} d_{G}(u, v)
$$

3.1. Cut Method

The cut method plays a vital role in calculating the topological indices of the chemical graphs without using the distance matrix in the field of chemistry. Mathematically, it is used to calculate the shortest path between any two vertices without using the brute-force method.

Proposition 3.4 ([16]). Let G be a connected graph. Then G admits a partition of $E(G)$ into convex cuts if and only if G is a partial cube.

Definition 3.5 ([16]). Let $G=(V(G), E(G))$ be a connected graph. A subgraph H of a graph G is convex if for any vertices u, v of H, any shortest path in G between u and v lies completely in H.

Theorem 3.6 ([16]). Let G be a partial cube. Then relation Θ partitions the edge set $E(G)$ into Θ-classes F_{1}, \ldots, F_{k}, where edges e and f lie in a common class F_{i} if and only if $e \Theta f$. Moreover, for any index i, the graph $G-F_{i}$ consists of precisely two connected components. Let $n_{1}\left(F_{i}\right)$ and $n_{2}\left(F_{i}\right)$ be the number of vertices in the two connected components of $G-F_{i}$. Then

$$
W(G)=\sum_{i=1}^{k} n_{1}\left(F_{i}\right) \times n_{2}\left(F_{i}\right)
$$

3.2. Extended Cut Method

It is the cut method which is applied to the classes which are larger than the partial cubes. The first extension of the standard cut method beyond partial cubes are ℓ_{1}-graphs. In the bipartite case, ℓ_{1}-graphs coincide with partial cubes and hence their generalization is important in the non-bipartite case [16].

Definition 3.7 ([16]). ℓ_{1}-graphs are graphs whose shortest-path metric can be isometrically embedded into an ℓ_{1}-space. Let $\lambda \in N$ and let G and H be two graphs. Then H is scale λ-embeddable into G if there exists a mapping $\alpha: V(H) \rightarrow V(G)$ such that for all vertices $u, v \in V(H), d_{G}(\alpha(u), \alpha(v))=\lambda \cdot d_{H}(u, v)$.

3.3. Characterization of ℓ_{1}-graphs [16]

- A graph G is an ℓ_{1}-graph if and only if G is scale λ embeddable into a hypercube for some $\lambda \geq 1$.
- A graph G is an ℓ_{1}-graph if and only if G admits a collection $\mathcal{C}(G)$ of (not necessarily different) convex cuts of G such that every edge of G is cut by precisely λ cuts from $\mathcal{C}(G)$).

Theorem 3.8 ([16, 19]). Let G be a scale λ embeddable into a hypercube and let $\mathcal{C}(G)$ be the family of convex cuts defined in the embedding. Then

$$
W(G)=\frac{1}{\lambda} \sum_{\{F\} \in \mathcal{C}(G)}\left|n_{1}\left(F_{i}\right)\right| \times\left|n_{2}\left(F_{i}\right)\right|
$$

where F_{i} is an edge cut of the graph G such that $G-F_{i}$ consists of two components $n_{1}\left(F_{i}\right)$ and $n_{2}\left(F_{i}\right)$, then F_{i} is called a convex cut if both $n_{1}\left(F_{i}\right)$ and $n_{2}\left(F_{i}\right)$ are convex subgraphs of $G . \lambda \geq 1$, denotes the collection of edges of a graph G in which each edge in G is repeated exactly λ times.

In this paper, we compute the average distance of generalised prisms $C_{m} \times P_{n}$ by the standard cut method and average distances of the uniform n-wheel split graph $K_{n} W_{r}$, uniform n-star split graph $S T_{r}^{n}$ and cyclic split graph $C_{n} K_{r}^{k}$ by the extended cut method.

4. Average Distance of Generalized Prisms

Distance behaves nicely in cartesian products of graphs.

Definition 4.1 ([23]). The generalized prism can be defined as the cartesian product $C_{m} \times P_{n}$ of a cycle on m vertices with a path on n vertices. Let $V\left(C_{m} \times P_{n}\right)=\left\{v_{i, j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the vertex set and $E\left(C_{m} \times P_{n}\right)=\left\{v_{i, j} v_{i+1, j}\right.$: $1 \leq i \leq m-1,1 \leq j \leq n\} \bigcup\left\{v_{m, j} v_{1, j}: 1 \leq j \leq n\right\} \bigcup\left\{v_{i, j} v_{i, j+1}: 1 \leq i \leq m, 1 \leq j \leq n-1\right\}$ be the edge set. Clearly $\left|V\left(C_{m} \times P_{n}\right)\right|=m n$ and $\left|E\left(C_{m} \times P_{n}\right)\right|=m(2 n-1)$. See Figure 1.

Figure 1. The graph $C_{8} \times P_{3}$

Note: We restrict our proof to the case when m is even and $m>2$.

Theorem 4.2. The Wiener index of the generalized prism $C_{m} \times P_{n}$ is given by $W\left(C_{m} \times P_{n}\right)=\frac{m^{2} n}{24}\left[3 m n+4\left(n^{2}-1\right)\right]$.
Proof. Let $\left\{S_{i}: 1 \leq i \leq \frac{m}{2}\right\}$ and $\left\{S_{i}^{\prime}: 1 \leq i \leq n-1\right\}$ be the edge cuts of $C_{m} \times P_{n}$. See Figure 2. We observe that $\left\{S_{i}: 1 \leq i \leq \frac{m}{2}\right\}$ and $\left\{S_{i}^{\prime}: 1 \leq i \leq n-1\right\}$ forms a partition of the edge set of $C_{m} \times P_{n}$. For $1 \leq i \leq \frac{m}{2}$, the removal of S_{i} leaves $C_{m} \times P_{n}$ into two components $G_{S_{i}}$ and $G_{S_{i}}^{\prime}$ where $\left|V\left(G_{S_{i}}\right)\right|=\frac{m n}{2}$ and $\left|V\left(G_{S_{i}}^{\prime}\right)\right|=\frac{m n}{2}$. For $1 \leq i \leq n-1$, the removal of S_{i}^{\prime} leaves $C_{m} \times P_{n}$ into two components $G_{S_{i}^{\prime}}$ and $G_{S_{i}^{\prime}}^{\prime}$ where $\left|V\left(G_{S_{i}^{\prime}}\right)\right|=m i$ and $\left|V\left(G_{S_{i}^{\prime}}^{\prime}\right)\right|=m(n-i)$. Hence,

$$
\begin{aligned}
W\left(C_{m} \times P_{n}\right) & =\frac{m}{2}\left[\frac{m^{2} n^{2}}{4}\right]+\sum_{i=1}^{n-1}[(m i)(m(n-i))] \\
& =\frac{m^{2} n}{24}\left[3 m n+4\left(n^{2}-1\right)\right]
\end{aligned}
$$

Figure 2. Cuts of $C_{8} \times P_{3}$

Theorem 4.3. The average distance of the generalized prism $C_{m} \times P_{n}$ is given by $\mu\left(C_{m} \times P_{n}\right)=\frac{m\left[3 m n+4\left(n^{2}-1\right)\right]}{12(m n-1)}$.
Proof. We know from Theorem 4.2. that $W\left(C_{m} \times P_{n}\right)=\frac{m^{2} n}{24}\left[3 m n+4\left(n^{2}-1\right)\right]$. Hence the average distance of $C_{m} \times P_{n}$ is

$$
\mu\left(C_{m} \times P_{n}\right)=\frac{m\left[3 m n+4\left(n^{2}-1\right)\right]}{12(m n-1)}
$$

5. Average Distance of Uniform n-wheel Split Graph $\left(K_{n} W_{r}\right)$

Definition 5.1 ([14]). The n-wheel split graph is defined as follows: Let $u_{i}, 1 \leq i \leq n$ be the vertices of the complete graph graph K_{n}. For $1 \leq i \leq n$, let $W_{r+1}^{i}=C_{r}^{i}+K_{1}$, where r is a positive integer, be wheels with hubs w_{i} and let u_{i} be adjacent to w_{i}. The graph thus constructed is called an uniform n-wheel split graph and is denoted by $K_{n} W_{r}$. The number of vertices in $K_{n} W_{r}$ is $n(2+r), r \geq 3, n \geq 3$. See Figure 3.

Figure 3. The graph $K_{4} W_{4}$

Theorem 5.2. The Wiener index of the uniform n-wheel split graph $K_{n} W_{r}$ is given by

$$
W\left(K_{n} W_{r}\right)=\frac{1}{2}\left[4 n^{2} r^{2}+11 n^{2} r-2 n r^{2}-10 n r+6 n^{2}-5 n\right]
$$

Proof. Let $\left\{S_{i}: 1 \leq i \leq r\right\},\left\{S_{i}^{\prime}: 1 \leq i \leq n\right\},\left\{S_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$ be the edge cuts of $K_{n} W_{r}$. See Figure 4. We observe that $\left\{S_{i}: 1 \leq i \leq r\right\},\left\{S_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $\left\{S_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$ forms a partition of the edge set of $K_{n} W_{r}$.
For $1 \leq i \leq r$, the removal of S_{i} leaves $K_{n} W_{r}$ into two components $G_{S_{i}}$ and $G_{S_{i}}^{\prime}$ where $\left|V\left(G_{S_{i}}\right)\right|=2$ and $\left|V\left(G_{S_{i}}^{\prime}\right)\right|=$ $n(2+r)-2$. For $1 \leq i \leq n$, the removal of S_{i}^{\prime} leaves $K_{n} W_{r}$ into two components $G_{S_{i}^{\prime}}$ and $G_{S_{i}^{\prime}}^{\prime}$ where $\left|V\left(G_{S_{i}^{\prime}}\right)\right|=r+1$ and $\left|V\left(G_{S_{i}^{\prime}}^{\prime}\right)\right|=n(2+r)-(r+1)$. For $1 \leq i \leq n$, the removal of $S_{i}^{\prime \prime}$ leaves $K_{n} W_{r}$ into two components $G_{S_{i}^{\prime \prime}}$ and $G_{S_{i}^{\prime \prime}}^{\prime}$ where $\left|V\left(G_{S_{i}^{\prime \prime}}\right)\right|=r+2$ and $\left|V\left(G_{S_{i}^{\prime \prime}}^{\prime}\right)\right|=n(2+r)-(r+2)$. Hence,

$$
\begin{aligned}
W\left(K_{n} W_{r}\right) & =\frac{1}{2}\{n r[2(n(r+2)-2)]+n[(r+1)(n(r+2)-(r+1))]+n[(r+2)(n(r+2)-(r+2))]\} \\
& =\frac{1}{2}\left\{4 n^{2} r^{2}+11 n^{2} r-10 n r-2 n r^{2}+6 n^{2}-5 n\right\}
\end{aligned}
$$

Theorem 5.3. The average distance of the uniform n-wheel split graph $K_{n} W_{r}$ is given by

$$
\mu\left(K_{n} W_{r}\right)=\frac{4 n^{2} r^{2}+11 n^{2} r-10 n r-2 n r^{2}+6 n^{2}-5 n}{4 n^{2}+2 n^{2} r-2 n+2 n r^{2}+n r^{3}-r^{2}}
$$

Figure 4. Cuts of $K_{4} W_{4}$

Proof. We know from Theorem 5.2. that $W\left(K_{n} W_{r}\right)=\frac{1}{2}\left\{4 n^{2} r^{2}+11 n^{2} r-10 n r-2 n r^{2}+6 n^{2}-5 n\right\}$. Hence the average distance of the uniform n-wheel split graph $K_{n} W_{r}$ is

$$
\mu\left(K_{n} W_{r}\right)=\frac{4 n^{2} r^{2}+11 n^{2} r-10 n r-2 n r^{2}+6 n^{2}-5 n}{4 n^{2}+2 n^{2} r-2 n+2 n r^{2}+n r^{3}-r^{2}}
$$

6. Average Distance of Uniform n-star Split Graph

Definition 6.1 ([14]). An uniform n-star split graph $S T_{r}^{n}$ contains a clique K_{n} such that the deletion of the $n C_{2}$ edges of K_{n} partitions the graph into n independent star graphs S_{r+1}. The number of vertices in $S T_{r}^{n}$ is $n(r+1)$. See Figure 5 .

Figure 5. The graph $S T_{5}^{6}$

Theorem 6.2. The Wiener index of the uniform n-star split graph $S T_{r}^{n}$ is given by

$$
W\left(S T_{r}^{n}\right)=\frac{1}{2}\left\{2 n^{2} r^{2}+n^{2} r-2 n r+n r^{2}-r\right\}
$$

Proof. Let $\left\{S_{i}: 1 \leq i \leq n r\right\}$ and $\left\{S_{i}^{\prime}: 1 \leq i \leq r\right\}$ be the edge cuts of $S T_{r}^{n}$. See Figure 6. We observe that $\left\{S_{i}: 1 \leq i \leq n r\right\}$ and $\left\{S_{i}^{\prime}: 1 \leq i \leq r\right\}$ forms a partition of the edge set of $S T_{r}^{n}$. For $1 \leq i \leq n r$, the removal of S_{i} leaves $S T_{r}^{n}$ into two components $G_{S_{i}}$ and $G_{S_{i}}^{\prime}$ where $\left|V\left(G_{S_{i}}\right)\right|=1$ and $\left|V\left(G_{S_{i}}^{\prime}\right)\right|=n(r+1)-1$. For $1 \leq i \leq r$, the removal of S_{i}^{\prime} leaves $S T_{r}^{n}$ into two components $G_{S_{i}^{\prime}}$ and $G_{S_{i}^{\prime}}^{\prime}$ where $\left|V\left(G_{S_{i}^{\prime}}\right)\right|=n+1$ and $\left|V\left(G_{S_{i}^{\prime}}^{\prime}\right)\right|=[n(r+1)-(n+1)]$. Hence,

$$
\begin{aligned}
W\left(S T_{r}^{n}\right) & =\frac{1}{2}\left\{n r[(n(r+1)-1)]+r\left[(n+1)(n(r+1))-(n+1)^{2}\right]\right\} \\
& =\frac{1}{2}\left\{2 n^{2} r^{2}+n^{2} r-2 n r+n r^{2}-r\right\}
\end{aligned}
$$

Figure 6. Cuts of $S T_{5}^{6}$

Theorem 6.3. The average distance of the uniform n-star split graph $S T_{r}^{n}$ is given by

$$
\mu\left(S T_{r}^{n}\right)=\frac{2 n^{2} r^{2}+n^{2} r-2 n r+n r^{2}-r}{n(r+1)[n(r+1)-1]}
$$

Proof. We know from Theorem 5.2. that $W\left(S T_{r}^{n}\right)=\frac{1}{2}\left\{2 n^{2} r^{2}+n^{2} r-2 n r+n r^{2}-r\right\}$. Hence the average distance of $S T_{r}^{n}$ is

$$
\mu\left(S T_{r}^{n}\right)=\frac{2 n^{2} r^{2}+n^{2} r-2 n r+n r^{2}-r}{n(r+1)[n(r+1)-1]}
$$

7. Average Distance of Cyclic Split Graph

Definition 7.1. A cyclic split graph [17] is a split graph in which the vertices can be partitioned into a clique and an independent set of cycles. Thus, we consider a cyclic split graph $C_{n} K_{r}^{k}$ which has a complete graph K_{r} with vertices $v_{1}, v_{2}, \ldots, v_{r}$ and $k r$ wheels $W_{i, j}$ attached at the each vertex v_{i} in K_{r}, such that $W_{i, j}=v_{i}+C_{n, i, j}, 1 \leq i \leq r$ and $1 \leq j \leq k$ (A wheel graph $W_{i, j}$ is obtained from a cycle $C_{n, i, j}$ by adding new vertex v_{i} and joining it to all the n vertices of the cycle by an edge. The new edges are called the spokes of the wheel). The deletion of the spokes of the wheel results in the disjoint union of the complete graph K_{r} and $k r$ independent cycles $C_{n, i, j}, 1 \leq i \leq r$ and $1 \leq j \leq k$, where each cycle has n vertices which are labelled as $a_{n, i, j}$. See Figure 7. The number of vertices in $C_{n} K_{r}^{k}$ is $r(n k+1)$.

Figure 7. The graph $C_{3} K_{4}^{2}$

Theorem 7.2. The Wiener index of the cyclic split graph $C_{n} K_{r}^{k}$ is given by

$$
W\left(C_{n} K_{r}^{k}\right)=\frac{1}{2}\left\{3 n^{2} r^{2} k^{2}+4 n r^{2} k-n^{2} r k-n^{2} k^{2} r-3 n r k+r^{2}-r\right\}
$$

Proof. Let $\left\{S_{i}: 1 \leq i \leq r k\right\},\left\{S_{i}^{\prime}: 1 \leq i \leq r\right\}$ and $\left\{S_{i}^{\prime \prime}: 1 \leq i \leq n r k\right\}$ be the edge cuts of $C_{n} K_{r}^{k}$. See Figure 8. We observe that $\left\{S_{i}: 1 \leq i \leq r k\right\},\left\{S_{i}^{\prime}: 1 \leq i \leq r\right\}$ and $\left\{S_{i}^{\prime \prime}: 1 \leq i \leq n r k\right\}$ forms a partition of the edge set of $C_{n} K_{r}^{k}$. For $1 \leq i \leq r k$, the removal of S_{i} leaves $C_{n} K_{r}^{k}$ into two components $G_{S_{i}}$ and $G_{S_{i}}^{\prime}$ where $\left|V\left(G_{S_{i}}\right)\right|=n$ and $\left|V\left(G_{S_{i}}^{\prime}\right)\right|=r(n k+1)-n$.
For $1 \leq i \leq r$, the removal of S_{i}^{\prime} leaves $C_{n} K_{r}^{k}$ into two components $G_{S_{i}^{\prime}}$ and $G_{S_{i}^{\prime}}^{\prime}$ where $\left|V\left(G_{S_{i}^{\prime}}\right)\right|=(n k+1)$ and $\left|V\left(G_{S_{i}^{\prime}}^{\prime}\right)\right|=r(n k+1)-(n k+1)=(n k+1)(r-1)$. For $1 \leq i \leq n r k$, the removal of $S_{i}^{\prime \prime}$ leaves $C_{n} K_{r}^{k}$ into two components $G_{S_{i}^{\prime \prime}}$ and $G_{S_{i}^{\prime \prime}}^{\prime}$ where $\left|V\left(G_{S_{i}^{\prime \prime}}\right)\right|=1$ and $\left|V\left(G_{S_{i}^{\prime \prime}}^{\prime}\right)\right|=r(n k+1)-1$.

Figure 8. Cuts of $C_{3} K_{4}^{2}$

Hence,

$$
\begin{aligned}
W\left(C_{n} K_{r}^{k}\right) & =\frac{1}{2}\left\{r k[n(r(n k+1)-n)]+r\left[(n k+1)^{2}(r-1)\right]+n r k[r(n k+1)-1]\right\} \\
& =\frac{1}{2}\left\{3 n^{2} r^{2} k^{2}+4 n r^{2} k-n^{2} r k-n^{2} k^{2} r-3 n r k+r^{2}-r\right\}
\end{aligned}
$$

Theorem 7.3. The average distance of the cyclic split graph $C_{n} K_{r}^{k}$ is given by

$$
\mu\left(C_{n} K_{r}^{k}\right)=\frac{3 n^{2} r^{2} k^{2}+4 n r^{2} k-n^{2} r k-n^{2} k^{2} r-3 n r k+r^{2}-r}{r(n k+1)[r(n k+1)-1]} .
$$

Proof. We know from Theorem 5.2. that $W\left(C_{n} K_{r}^{k}\right)=\frac{1}{2}\left\{3 n^{2} r^{2} k^{2}+4 n r^{2} k-n^{2} r k-n^{2} k^{2} r-3 n r k+r^{2}-r\right\}$. Hence the average distance of $C_{n} K_{r}^{k}$ is

$$
\mu\left(C_{n} K_{r}^{k}\right)=\frac{3 n^{2} r^{2} k^{2}+4 n r^{2} k-n^{2} r k-n^{2} k^{2} r-3 n r k+r^{2}-r}{r(n k+1)[r(n k+1)-1]} .
$$

8. Concluding Remark

In this paper, the Wiener index and the average distance of generalised prisms, uniform n-wheel split graph, uniform n-star split graph and cyclic split graph were calculated. It is to be noted that the cut method was employed in order to find the Wiener index of these graphs. The problem of computing the average distance of other interconnection networks and finding new techniques to calculate the Wiener index is under investigation.

References

[1] I.Althofer, Average distance in undirected graphs and the removal of vertices, J. Combin.Theory Ser. B, 48(1990), 140-142.
[2] R.Albert, H.Jeong and A.Barabasi, Diameter of the world Wide Web, Nature, 401(1999), 130-131.
[3] Anita Saha, Computation of Average Distance, Radius and Centre of a Circular-Arc Graph in Parallel, Journal of Physical Sciences, 10(2006), 178-187.
[4] D.Bienstock and E.Gyon, Average distance in graphs with removed elements, J. Graph Theory, 12(1988), 375-390.
[5] P.Dankelmann, Average distance and independence numbers, Discrete Appl. Math., 51(1994), 75-83.
[6] P.Dankelmann, S.Mukwembi and H.C.Swart, Average distance and vertex connectivity, J. Graph Theory, 62(2)(2009), 157-177.
[7] J.K.Doyle and J.E.Graver, Mean distance in a graph, Discrete Math., 7(2)(1977), 147- 154.
[8] P.Erdos, J.Pach and J.Spencer, On the mean distance between points of a graph, Congr. Numer., 64(1988), 121-124.
[9] E.Estrada and N.Hatano, Network Science, Springer-Verlag London Limited, (2010).
[10] O.Favaron, M.Kouider and M.Maheo, Edge-vulnerability and mean distance, Networks, 19(1989), 493-504.
[11] S.Fajthlowich and W.A.Waller, On two conjectres of GRAFFITI, Congr. Numer., 55(1986), 51-56.
[12] G.R.T.Hendry, On mean distance in certain classes of graphs, Networks, 19(1989), 451-557.
[13] I.Rajasingh, J.Quadras, P.Manuel and A.William, Embedding of cycles and wheels into arbitrary trees, Networks, $44(2004), 173-178$.
[14] Y.Kins, Radio Labeling of Certain Graphs, Ph.d Thesis, (2011).
[15] S.Klavzar, A birds eye view of the cut method and a survey of its applications in chemical graph theory, MATCH Commun. Math. Comput. Chem., 60 (2008), 255.
[16] S.Klavzar and M.J.Nadjafi-Arani, Cut Method: Update on Recent Developments and Equivalence of Independent Approaches, Article in Current Organic Chemistry, (2015).
[17] S.M.Mahizl, Domination Parameters In Certain Networks And Chemical Graphs, Ph.d Thesis, (2015).
[18] L.March and P.Steadman, The Geometry of Environment: An introduction to spatial organization in design, M.I.T. Press, Cambridge, Mass., (1974).
[19] M.Arockiaraj and A.J.Shalini, Extended Cut Method for Edge Wiener, Schultz and Gutman Indices with Applications, MATCH Commun. Math. Comput. Chem., 76(2016), 233-250.
[20] B.Mohar, Eigenvalues, diameter, and mean distance in graphs, Graphs and Combinatories, 7(1991), 53-64.
[21] P.Manuel, I.Rajasingh and M.Arockiaraj, Weiener, szeged and vertex PI-indices of regular tesselations, Iranian Journal of Mathematical Chemistry, 3(2)(2012), 165-183.
[22] P.Winkler, Mean distance in a tree, Discrete Applied Mathematics, 27(1990), 179-185.
[23] K.A.Sugeng, M.Miller and M.Baca, Super edge-antimagic total labellings, Utilitas Math., 71(2006), 131-141.
[24] I.Tomescu and R.A.Malter, On distances in chromatic graphs, Quart. J. Math. Oxford., 40(2)(1989), 475-480.
[25] H.Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69(1)(1947), 17-20.
[26] P.Winkler, Mean distance and the four-thirds conjecture, Congr. Numer., 54(1986), 63-72.
[27] P.Winkler, Mean distance in a tree, Discrete Applied Math., 27(1990), 179-185.

[^0]: * E-mail: sara24solomon@gmail.com

