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Abstract: In this paper, we consider the fractional model for heat conduction in polar bear hairs equation. A relatively new method
called the q-homotopy analysis method (q-HAM) is adopted to obtain an analytical solution of the fractional model for

heat conduction in polar bear hairs in series form. The convergence rate of the method used is faster in the sense that just

very few terms of the series solution are needed for a good approximation due to the presence of the auxiliary parameter h
comparable to exact solutions. Numerical solution obtained by this method is compared with the exact solution. Our error

analysis shows that the analytical solution converges very rapidly to the exact solution. Numerical results are obtained

using the software Mathematica.
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1. Introduction

For the importance of obtaining the exact and approximate solutions of fractional nonlinear partial differential equations

in physics and mathematics is still a significant problem that needs new methods to discover the exact and approximate

solutions. But these fractional nonlinear partial differential equations are difficult to get their exact solutions [1, 2]. So,

numerical methods have been used to handle these equations [3], and some semi analytical techniques have also largely

been used to solve these equations. Such as, Adomian decomposition method [4], variational iteration method [5, 6],

differential transform method [7], Laplace decomposition method [8], homotopy perturbation method [9] and homotopy

analysis method (HAM) [10, 11].

The HAM initially proposed by Liao in his Ph.D. thesis [10] is a powerful method to solve nonlinear problems. In recent

years, this method has been successfully employed to solve many types of nonlinear problems in science and engineering

[12, 13]. HAM contains a certain auxiliary parameter h, which provides us with a simple way to adjust and control the

convergence region and rate of convergence of the series solution. Many workers applied HAM to solve fractional differential

equations [14, 15]. El-Tawil and Huseen [16] established a method namely q-homotopy analysis method (q-HAM) which

is a more general method of HAM, the q-HAM contains an auxiliary parameter n as well as h such that the case of
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n = 1(q −HAM ; = 1) the standard homotopy analysis method (HAM) can be reached. The q-HAM has been successfully

applied to numerous problems in science and engineering [16]. In this paper, we have applied the q-homotopy analysis

method (q-HAM) [17, 18] to construct an appropriate solution to the fractional model for heat conduction in polar bear

hairs equation [19] with given initial condition. The main advantage of the method is the fact that it provides its user with

an analytical approximation solution, in a rapidly convergent series with elegantly computed terms. The structure of this

paper is organized as follows:

In section 2, we begin with the basic definition of Caputo’s fractional derivative. In section 3, we give the basic concept

of the q-homotopy analysis method (q-HAM). In section 4, we apply this method to solve the fractional model for heat

conduction in polar bear hairs equation with given initial condition.

2. Preliminaries

This section is devoted to some definitions and some known results. Caputo’s fractional derivative is adopted in this work.

Definition 2.1. The Riemann-Liouville’s (RL) fractional integral operator of order α ≥ 0, of a function f ∈ L1(a, b) is

given as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1 f(τ)dτ, t > 0, α > 0, (1)

where Γ is the Gamma function and I0f(t) = f(t).

Definition 2.2. The fractional derivative in the Caputo’s sense is defined as [4]

Dαf(t) = In−αDnf(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1 f (n)(τ)dτ, (2)

where n− 1 < α ≤ n, n ∈ N , t > 0.

Lemma 2.3. Let t ∈ (a, b]. Then

[
Iα(t− a)β

]
(t) =

Γ(β + 1)

Γ(β + α+ 1)
(t− a)β+α, α ≥ 0, β > 0. (3)

3. Basic Concepts of q-homotopy Analysis Method

Considering the following differential equation of the form:

N [Dα
t u(x, t)]− f(x, t) = 0, (4)

where N is a nonlinear operator, Dα
t denote the Caputo’s fractional derivative, u(x, t) is an unknown function, x and t denote

the space and time variables and f(x, t) is a known function, respectively. To generalize the original homotopy method, the

zeroth-order deformation equation is constructed as

(1− nq)L [ϕ (x, t; q)− u0(x, t) ] = q ~H(x, t) (N [Dα
t ϕ (x, t; q)] − f(x, t)), (5)

where n ≥ 1, q ∈
[
0, 1

n

]
denotes the so called embedding parameter, ~ 6= 0 is a non-zero auxiliary parameter, H(x, t) is a

non-zero auxiliary function, L is an auxiliary linear operator, u0(x, t) is an initial guess of u(x, t) and ϕ(x, t; q) is an unknown
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function. It is important to note that one has great freedom to choose the auxiliary things in q-HAM. Clearly, when q = 0

and q = 1
n

, it holds that:

ϕ (x, t; 0) = u0 (x, t) and ϕ (x, t;
1

n
) = u (x, t). (6)

Thus, as q increases from 0 to 1
n

, the solution ϕ(x, t; q) varies from the initial guess u0(x, t) to the solution u(x, t). If

u0 (x, t), L, h, H(x, t) are chosen approximately, the solution ϕ(x, t; q) of equation (5) exists for q ∈
[
0, 1

n

]
. Expanding

ϕ(x, t; q) in Taylor’s series about q = 0, we have:

ϕ(x, t; q) = u0(x, t) +

∞∑
m=1

um(x, t)qm, (7)

where

um (x, t) =
1

m!

∂mϕ(x, t; q)

∂qm

∣∣∣∣
q=0

. (8)

We suppose that the auxiliary linear operator L, the initial guess u0, the nonzero auxiliary function H(x, t) and the nonzero

auxiliary parameter ~ are properly chosen such that the above series (7) converges at q = 1
n

, and then we have:

u(x, t) = ϕ (x, t;
1

n
) = u0 (x, t) +

∞∑
m=1

um (x, t)

(
1

n

)m
, (9)

which must be one of the solutions of the original non-linear differential equation. Let the vector un be defined as follows:

−→un = {u0(x, t), u1(x, t), u2(x, t), ..., un(x, t)}. (10)

Differentiating the equation (5), m-times with respect to the (embedding) parameterq, then evaluating at q = 0 and finally

dividing them by m! throughout, we obtain the m-th order deformation equation (Lioa [13]) as:

L[um (x, t)− χ∗m um−1 (x, t)] = ~H Rm (
→

um−1 (x, t)) (11)

with initial conditions u
(k)
m (x, t) = 0, k = 0, 1, 2, 3, ...,m− 1

Rm (
→

um−1 (x, t)) =
1

(m− 1)!

∂m−1(N [Dα
t ϕ(x, t; q)]− f(x, t))

∂qm−1

∣∣∣∣
q=0

(12)

and

χ∗m =

 0, m ≤ 1,

n, otherwise.
(13)

Remark 3.1. It should be emphasized that um(x, t) for m ≥ 1 is governed by the linear operator (11) with the linear

boundary conditions that come from the original problem. The existence of the factor
(
1
n

)m
, more chances for convergence

may occur or even much faster convergence can be obtained better than the standard HAM. It should be noted that the cases

of (n = 1) in equation (5), the standard HAM can be reached.

4. Approximate Series Solution of the Problem

In this section, we shall apply the q-HAM to obtain the series solution of the fractional model for heat conduction in polar

bear hairs equation with given initial condition.
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4.1. The Fractional Model for Heat Conduction in Polar Bear Hairs Equation

We consider the following fractional model for heat conduction in polar bear hairs equation proposed by Qing-Li et al. as,

Dα
t u+ η

∂2u

∂x2
= 0, t > 0, 0 < α ≤ 1, (14)

where Dα
t u is the modified Rieman-Liouville derivative and η is a constant, with the initial condition

u(x, 0) = a− a− b
1− exp

(
−1/k η

) +
a− b

1− exp
(
−1/k η

) exp
(
−x/k η

)
, (15)

where a is the body temperature, b is the environment temperature, and k is a constant. The true solution for α = 1of the

equation (14) which is obtained by the MFRDTM [24] is given by

u(x, t) = a− a− b
1− exp

(
−1/k η

) +
a− b

1− exp
(
−1/k η

) exp
(
−x/k η−t

/
k2 η

)
. (16)

Let us now solve the equation (14) by the q-homotopy analysis method (q-HAM). We choose the linear non-integer order

operator as:

L[ϕ(x, t; q)] = Dα
t ϕ(x, t; q), (17)

with the property L(c1) = 0,where c1 is constant. Also, we use u(x, 0) = a− a−b

1−exp

(−1/k η
) + a−b

1−exp

(−1/k η
) exp

(
−x/k η

)
,

as the initial approximation. From the equation (14), we define the non-linear fractional partial differential operator as:

N [ϕ(x, t; q)] = Dα
t ϕ(x, t; q) + ηϕxx(x, t; q). (18)

Using the above definitions, we construct the zero-order deformation equation:

(1− nq)L[ϕ(x, t; q)− u0(x, t)] = q~H(x, t)N [Dα
t ϕ(x, t; q)]. (19)

Choosing the H(x, t) = 1, we define the mth-order deformation equation as:

L[um(x, t)− χ∗mum−1(x, t)] = ~Rm(
→

um−1(x, t)), (20)

with the initial condition for m ≥ 1, um(x, 0) = 0, where χ∗m =

 0, m ≤ 1,

n, otherwise
and

Rm(
→

um−1(x, t)) = Dα
t um−1(x, t) + η (um−1(x, t))xx . (21)

Now the solution of equation (20), for m ≥ 1 becomes

um(x, t) = χ∗mum−1(x, t) + ~L−1[Rm(
→

um−1(x, t))]. (22)

It is straightforward to choose the initial approximation u0(x, t) = u(x, 0) which is given by the equation (15). Therefore,

using the q-HAM, we obtain the components of the solution successively as follows. We, therefore, obtain:

u(x, 0) = a− a− b
1− exp

(
−1/k η

) +
a− b

1− exp
(
−1/k η

) exp
(
−x/k η

)
u1(x, t) = ~D−αt [Dα

t u0 + η (u0)xx]

= ~ Iαt [Dα
t u0 + η (u0)xx] =

~ (a− b) e
−x/k η

η

(
1− e

−1/k η
)
k2

tα

Γ(α+ 1)
, (23)
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u2(x, t) = nu1 + ~D−αt [Dα
t u1 + η (u1)xx]

= nu1 + ~ Iαt [Dα
t u1 + η (u1)xx]

=
~ (~ + n) (a− b) e

−x/k η

η

(
1− e

−1/k η
)
k2

tα

Γ(α+ 1)
+

~2 (a− b) e
−x/k η

η2
(

1− e
−1/k η

)
k4

t2α

Γ(2α+ 1)
, (24)

u3(x, t) = nu2 + ~D−αt [Dα
t u2 + η (u2)xx]

= nu2 + ~ Iαt [Dα
t u2 + η (u2)xx]

=
~ (~ + n)2 (a− b) e

−x/k η

η

(
1− e

−1/k η
)
k2

tα

Γ(α+ 1)
+

2 ~2 (~ + n) (a− b) e
−x/k η

η2
(

1− e
−1/k η

)
k4

t2α

Γ(2α+ 1)

+
~3 (a− b) e

−x/k η

η3
(

1− e
−1/k η

)
k6

t3α

Γ(3α+ 1)
. (25)

From the equations (23), (24) and (25), we obtain u1(x, t), u2(x, t) and u3(x, t) similarly by putting m = 4, 5, . . . in equation

(22), we can obtain ui(x, t), i ≥ 4 by using the Methematica. Therefore, the four-terms approximate series solution to the

problem (14) in terms of convergence parameter h and n is given by

u(x, t, n, h) ∼= u4(x, t, n, h) =

4∑
i=0

ui(x, t, n, h)

(
1

n

)i
. (26)

Remark 4.1. It should be emphasized that um(x; t) for m > 1, is governed by the linear operator (7) with the linear

boundary conditions that come from the original problem. The existence of the factor
(
1
n

)i
gives more chances for better

convergence, faster that the solution obtained by the standard HAM. Of course, when n = 1, we are in the case of the standard

HAM.

4.2. The h-curve

The question that comes to the mind when the following this method of solution is how one chooses the auxiliary parameter

h to get a good approximate solution. The answer is in the h-curve. Apparently, our choice in the plots can be seen directly

from the graph, the range of which is by drawing a horizontal line on the curve parallel to x-axis. Fig. 1 is made with n = 1

and α = 1.

Figure 1: The h-curve of u(x, t, n, h) of the four-terms approximate series solution of the equation (26) obtained by q-HAM

for fixed the value of n = 1 and α = 1.
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5. Numerical Analysis

In this section, we give some numerical results using series solution obtained above. Comparison is made with the exact

solution for a special case using the four-terms series solution. We also seen the graph displaying the best choice of h for

fast convergence and the effects of different fractional order α on the solution obtained.

5.1. Comparison of the Approximate Solution with Exact Solution

Exact solution is known in the case of α = 1 and so we present the numerical result (four-terms series solution) obtained by

the q-homotopy analysis method and the exact solution of equation the (14) under some conditions.

Figure 2: The seven-terms approximation solution of the q-HAM plot of u(x, t) for h = 0.88, n = 1 and α = 1 against the

exact solution obtained by VIM.

Remark 5.1. It should be noted that we have used only the four-terms of the series solution obtained by the q-homotopy

analysis method to make Fig.2 as against the solution obtained by the variation iteration method [VIM]. Fig.2 shows a perfect

match with exact solution. This shows the effectiveness of the homotopy analysis method over other analytical methods due

to the ability to control or choose appropriately the auxiliary parameter h.

5.2. Solution Plots with Different Fractional Values of α

Here, we give the solution plots of the four-terms series solution (26) of the equation (14) using the MATHEMATICA

obtained by q-homotopy analysis method (q-HAM). This shows the effect of the different fractional values of α on the

obtained solution (26) in figure 4 and 5.

Figure 3: The q-HAM solution plot of Eq. (14) for different fractional values of α with fixed t = 0.5, h = −0.88 and n = 1.
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t x α = 1 α = 0.75 α = 0.50 α = 0.25
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Table 1: Absolute errors for u(x, t) obtained by the four-terms approximate series solution (26) the equation (14) obtained

the q-HAM against with the exact solution obtained by variation iteration method [VIM] for n=1 and h=-0.95

A very good agreement between the results of the q-HAM and the exact solutions is observed in Figures 2, 3 and Table 1,

which confirms the validity of the q-HAM.

6. Conclusion

In this paper, we have successfully applied q-homotopy analysis method (q-HAM) to obtain an approximation of the analytic

solution of the fractional model for heat conduction in polar bear hairs equation. In this method, the solution is found in the

form of a convergent series with easily computed terms. The results obtained by the q-homotopy analysis method (q-HAM)

are compared with the variation iteration method [VIM] solution, which show a very good agreement, even using only few

terms of the recursive relations. In general, this method provides highly accurate numerical solutions and can be applied

to a wide class of nonlinear problems. Also, the method avoids linearization and physically unrealistic assumptions. The

results demonstrate reliability and efficiency of the q-homotopy analysis method (q-HAM). The fact that this technique

solves the linear and nonlinear problems can be considered as a clear advantage of this algorithm over the decomposition

method. Finally, we conclude that the q-HAM can be considered as a nice refinement in existing numerical techniques and

have wide applications in different fields of sciences.
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