International Journal of Mathematics And its Applications
Volume 5, Issue 2—-A (2017), 27-41.
ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Partial Sums for Multivalent Harmonic Maps Defined by
Generalized Hypergeometric Functions

Research Article

Vimlesh Kumar Gupta'* and Poonam Sharma?

1 Department of Mathematics & Astronomy, University of Lucknow, Lucknow, UP, India.

Abstract: In this paper,we study partial sums of the series of certain multivalent harmonic functions involving the generalized
hypergeometric functions which are in the class Py (m, A, B). We establish some new results giving the sharp bounds of
the real parts of the ratios of harmonic multivalent functions to its sequences of partial sums.

MSC: 30C45, 30C55

Keywords: Multivalent harmonic functions, Generalized hypergeometric functions, Partial sums.
© JS Publication.

1. Introduction and Preliminaries

A continuous complex-valued function f = u + iv defined in a simply connected domain D is said to be harmonic in D if
both v and v are real-valued harmonic in . In any simply connected domain D C C, a harmonic function f can be written
in the form: f = h + g, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A
necessary and sufficient condition for f to be locally univalent and orientation preserving in D is that |h'(z)| > |¢'(2)| in D
(see [6]). Let H denotes a class of functions f = h+¢ which are harmonic, univalent and orientation preserving in the open
unit disc U = {z : |z| < 1} and are normalized by f(0) = h(0) = f.(0) — 1 = 0. Harmonic functions are useful as they found
their applications in the problems related to minimal surfaces [8].

Note that the family H reduces to the well known class S of normalized univalent functions if the co-analytic part of f is
identically zero, that is if g = 0.

The concept of multivalent harmonic complex valued functions by using argument principle, was given by Duren, Hengartner
and Laugesen [7]. Using this concept, Ahuja and Jahangiri [1], [2] introduced a class H (m) of m-valent harmonic and

orientation preserving functions f = h+g € H (m), where h and g are m-valent functions of the form

h(z) = 2" + Z hn2" and g(z) = Z gnz" (lgm| <1,m e N={1,2,3....}) (1)
n=m-+1 n=m

which are analytic in U.

Motivated with the class conditions studied earlier in [2-4] and by observing various equivalent class conditions considered

in [18], we define a unified classes Py (m, A, B) as follows:
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Definition 1.1. A function f = h+g € H (m) of the form (1), is said to be in the class Pu(m, A, B) if it satisfies the

condition

> [C O b+ 3 [ <, ®
n=m-+1 n=m

where —1 < B< A<1.

Denote by TH(m) a subclass of functions f = h+g € H (m) such that

hz) =2"— 3 |hal2" and g(z) = 3 lgal =" (3)
n=m-+1 n=m

Also, we denote TPy(m,A,B) = Pu(m, A, B)N TH(m). Let p,q,€ Ng = NU{0}. For o; € C(i=1,...,p) and S; €

C(# —n;i=1,..,q,n € Ny), the generalized hypergeometric (gh) function
pFg(Qr, oy ap; By, Bes 2) = pFy (i) ;(Bi) 5 2)

is defined by
qu((ai);(ﬂi);2)=ZW% (p<q+1;z€0) (4)

which is analytic at z = 1if (incase p=¢+1) R (37, 8i — >.7_, a;) > 0, the symbol (A),, is the Pochhammer symbol

n=0
defined in terms of gamma function by

AA+1)...(A+n—-1),neN

In terms of generalized hypergeometric functions ,Fy ((a;);(8:);2) and »Fs ((7:) ; (0:) ; 2) , we consider a harmonic function

F(z) = H(z) + G(z) € H (m), where H(z) and G(z) are defined by
H(z) = 2" pFy ((a0);(B:);2) and G(z) = 2" [+ Fa () 5 (81) 3 2) — 1] (4)

T S
with ] |v:| < I |d:|. The series expression of F(z) is given by
i=1 i=1

Fz)=z"+ 3 =L z TR = (zeD). (6)

In 1985, Silvia [20] studied the partial sums of convex functions of order a.. Later on, Silverman [19], Abubaker and darus [5],
Dixit and Porwal [9], Frasin [10, 11], Murugusundaramoorthy et al. [12], Orahan et al. [21], Raina and Bansal [13] and Rosy
et al. [15] studied and generalized the results on partial sums for various classes of analytic functions. Also Ravichandran
[14] discussed the geometric properties of partial sums of univalent functions, Recently, Porwal [16], Porwal and Dixit [17]
studied the partial sums of harmonic univalent functions. Further, Yasar and Yalcin [22] studied the partial sums of certain
harmonic multivalent functions.

In this paper, we study partial sums of certain multivalent harmonic functions involving the generalized hypergeometric
functions for the class P (m, A, B). We establish some new results giving the sharp bounds of the real parts of ratios of

harmonic multivalent functions involving the generalized hypergeometric functions to its sequences of partial sums.



Vimlesh Kumar Gupta and Poonam Sharma

We denote the following sequences of certain partial sums of F(z) fon1 > m+1, no > m,

Fo(z) = 2"+ Z An 2"+ Zan”
n=m-+1
no
Fr(z) = 2 +ZA2 +ZB2”
n=m++1
Fnl,nz(z) = 2"+ Z An2"™ + ZBnZ s
n=m+1

where
lim Fn,(2) = F(z), lim Fn,(2) = F(z) and lim Fy, n,(2) = F(2)
n]—>o0 ng —> o0 ni,na—>00

and

P ka

H (a'b)nfm 1 H (ry’b)n m+1 1

A _ i=1 B _ =1 (7)
n q — ] I n s _ 1 l
J(CON [T (E)nomer M7 FD

1

-
Il

i=1

ny

F(z) Fry(2) ny (2) {F(z) { F(z) } {Fnl ny(2) Fhiy ng (2) F(2)
‘%{Fnz(z)} {F(z) 4 {F/(z) o R Fry np (2) Flz) | e L Fl oy (2 for F €

Py (m, A, B), where F'(z) = %F(z) (z=re").

In the subsequent results we determine sharp upper and lower bounds for f { (z> , R { F;}S) , { I;L}((:)) }, R { FF, (fz)) }

2. Main Results

Theorem 2.1. Let F(z) of the form (5) be in the class Pu(m, A, B). Then

mi+1)1-B)+m(A-1)—m(A-B) <%{ F(2) } )
(m+ 1) (1=B)+m(A-1) <M\ Fn )
(m+1)1-B)+mA—-1)+m(A—B)
< el).
= (ni+1)(1—B)+m(A—1) (z€l)
The result is sharp for the function
m m(A - B) ni+1
_ > ~ .
F(z)==2 +(n1+1)(1—B)+m(A—1)Z (n1 >m+1;2z€U) 9)
Proof. Since F € Py (m, A, B), by Definition 1.1 we have
= n(l-B)+m(A- m(A—l)
<
where A,, B, are given by (7). We observe that ”(l_fg:i”B(f_l) and "(l_fgginéf =1 are increasing functions of n, and
n(l—B)+m(A—-1) n(l—B)—m(A—-1)
> > > .
m(A—B) >1 (n>m+1), m(A—B) >1 (n>m) (11)
Therefore, from (10), we obtain
ni oo oo
(m+1)1-B)+m(A-1)
<1.
S A+ e S A+ Y B <1 (12
n=m-+1 n=ni1+1 n=m
Let
pl(z):(n1+1)(1—3)+m(A—1){F(Z) _(m+1)(A-B)+m(A- )—m(A—B)} (13)
m (A — B) Fr, (2) (mi+1)1-B)+m((A-1)
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which is analytic in U with p1(0) = 1. To obtain the lower bound of (8), we need to show that

1+ wi(z)

T 1-wi(z) (14)

p1(2)

where w1 (2) is a Schwarz function with w;(0) = 0 and |wi(z)| < 1 in U. Evidently, from (13) and (14), we get for z € U,

pi(z) —1

wi@) = 1

(n14+1)(1—B)+m(A—1) < n—m
: m(A—B) > Anz

n=ni+1

ny %) [e)
2+2( > Aperm4 Y annz—m> + OB 3 Apanm

n=m+1 n=m n=ni+1
and observe that

(n1+1)(1—B)+m(A—1) i |An|

m(A—B) i1
lwi(2)] < - = — = <1,
2o2( 3 A+ £ |pl) - eetlompaen £y
n=m-+1 n=m n=ni+1
if (12) holds. Similarly, for upper bound of (8), let
pa(2) = (ni+1)1-B)+m(A-1) {(nl +1)(1-B)+mA-1)+m(A-B) F(2) (15)
m (A — B) (ni+1)1-B)+m(A-1) F, (%)
which is analytic in U with p2(0) = 1. Now we need to show that
1+ wa(z)
- AT/ 1
p2(2) 1= wsl2) (16)

with w2(0) =0 and |w2(z)| < 1 in U. From (15) and (16), we get that for z € U,

p2(2) — 1
wa(z) =
2(2) p2(2) +1
n1+1)(1—B)+m(A—1 e n—m
A S D S I
o n=nji+1
ny oo 0o
n—m SN 4—m _ (n14+1)(1-B)+m(A-1) n—m
242 (nzgﬂ Anz + n;m B,z"z ) T A—F) n:nzlﬂ Az
and
n1+1)(1—B)+m(A—1 =
(n1t+ )En(A_)J];) (A-1) 7Z+1|An|
w2 (2)| < == <1,
a_of S 14 S~ 1B (m+DA=B)+m(A=1) S~ |4
B n:§+1| "‘ +n;m| n| B m(A=B) 71:’”21+1| n|

if (12) holds. For sharpness, we see that for the function F(z) given by (9), if z = re!™ ™1+ (n, >m 4+ 1;r < 1), we

get equality at the left hand side of (8):

F(z) m (A — B) n1t+1—m _ m(A— B)rmti-m
e - ST mana- B am@n: T e DA B Tm AT
:(m+”“*mJ$@5”*m“fBX%r%r

and we get equality at the right hand side of (8), if z = re*™/(M+1=m) (n; > m 4 1;7 < 1) as follows:

— _ ni+l—-m
F(z)  _ 14 m (A — B) gutlem g m(A—B)r
F,, (2) (ni+1)1-B)+m(A-1) (nm+1)(1-B)+m(A-1)
_ (nl+1)(1_B)7:(7Z(_AB_)1)+M(A_B),asr—>1_.
This completes the proof of Theorem 2.1. O
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Theorem 2.2. Let F(z) of the form (5) be in the class Pg(m, A, B), then

mi+1)1-B)+m(A-1) Fo, (2)
A D) (1-B) +m(A-1)+m(A-B) S%{ F(2) }
(nm+1)1-B)+m(A-1)

U 17
S A -Bim@A-1)-m@a-5 *<Y (17)
The result is sharp for the function given by (9).
Proof.  Similar to the proof of Theorem 2.1. Let
1+ ws(z) _ (m+1)(A-B)+m(A-1)+m(A—-B) [Fn, (2) (m+1)1-B)+m(A-1)
1 —ws(z) m (A — B) F(z) (n+1)1-B)+m(A-1)+m(A—-B)
ny oo o
1+ Z Az 4 Z B,z"z ™ — (n1+1)5711(—ABj—]§7;L(A—1) Z A, z"m
_ n=m-+1 n=m n=ni+1
ni oo
1+ > Apzn=m+ > Bpz'zm
n=m-+1 n=m
We see that
n+1)(1=B)+m(A-1D)+m(A-B) <
(L L(A(,B) o )n_;+1|14n|
lws(2)] < _ _ &z <
2-2( 5 A+ 5 |Bil) - otlsmiminonus § 1y,
n=m-+1 n=m n=nji+1
if (12) holds. This proves the left-hand side of (17). Further, let
14wi(z) (ma+1)1-B)+m(A-1)—m(A—B) (m+1)1-B)+m((A-1) _ Fy (2)
1—wi(z) m (A — B) (nm+1)1-B)+m(A-1)—m(A-B) F (z)
ny [e%s) ]
1 + Z+1 Anzn_m + Z annz—m + (n1+1)$i(ABBET(A 1) Z+1 Anzn_m
n=m n=m n=nj

ny [ee]
1+ > Apzr—m+ > Bpz'zm

n=m-+1 n=m

Now to prove right-hand side of inequality (17), we see that

+1)(1=B)4+m(A—1)—m(A—B =
(n1+1)( LLTX(B )—m( ) Z ‘An|

- n=ni+1

<1

= 5

lwa(2)| <

& & D(1-B)+m(A-1)+m(A=B)
2-2( 3 A+ 5 |Bi]) - omOsmimanmusn § g
n

=m+ n=m n=ni+1

if (12) holds. This completes the proof of Theorem 2.2. Sharpness can be verified for the function (9) similar to the proof

of Theorem 2.1. O

Theorem 2.3. Let F(z) of the form (5) be in the class Pu(m, A, B), then

(m+1)1-B)+m((A-1) Fp, (2)
T (-B) +m@A—D+ (m s DmA—B) S%{ F (o) }
(mi+1)(1-B)+m(A-1)

< U). (18
“(m+1)1-B)+mA-1)—(n1+1)m(A—-B) (z€D). (18)
The result is sharp for the function given by (9).
Proof. Since F € Pg(m, A, B) by Definition 1.1 we have (10). Again since "(lfrf()jiné’fﬂ) and "<177f(>;1"é’)471) are

increasing functions of n, so we observe that

n(l—B)+m(A—1)
m (A — B)

> (n>m+1),

3=
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and

n(l—-B)+m(A-1) _ (m+1)1—-B)+m(A—-1)n

— > 1).
- (n>n1+1)

>

m (A — B) (n1i+1)m(A - B)
So, from (10) we obtain
ni o [}
n n (m+1)1-B)+m((A-1) n
A, B, A, <1, 19
P B RS | Fxv ) R DI L (19)
n=m-+1 n=m n=nji+1
where A,, B, are given by (7). Let
ps(2) = (m+1)1-B)+mA-1)+(n1+1)m(A— B)
> (n1+ 1)m (A — B)
B (2) (nm+1)1-B)+m((A-1) (20)
F' (2) (m+1)1-B)+mA-1)4+(n1+1)m(A—- B)
which is analytic in U with p5(0) = 1. To obtain the lower bound of (18), we need to show that
1+ ws(2)
_ 21
() = 12, (21)
where ws(z) is a Schwarz function with ws(0) = 0 and |ws(z)| < 1. From (20) and (21), we get for z € U that
ps(z) — 1
ws (2
S e
(i) (A=B)4m(A—D4m(ni+1)(A=B) =~ n n—m
! (ni+1)m(A—B) : n:nzl_H i Anz
= ny %) [es)
n n—m n N ,—m (n1+1)(1=B)4+m(A—1)—(n1+1)m(A—B) n n—m
2 + 2 ( 72 EAnZ — E EB"Z z ) - 4 (n1+1)m(A—Bl) 72 EATLZ
n=m-1 n=m n=ni+1
and
(n1+1)(1=B)+m(A—D)+(n1+1)m(A=B) <= n
] (n1+1)m(A—Bl) n:%;_l m | Anl
lws(2)] < _ _ _ <1
n n (n14+1)(1—B)+m(A—1)—(n1+1)m(A—B) n
o S e e 5ol
n=m-+1 n=m n=ni+1
if (19) holds. Similarly to prove upper bound of (18), we consider
(mi+1)1-B)+m(A-1)—(n1+1)m(4A - B)
pe(z) =
(n1 =+ l)m (A — B)
(m+1)1-B)+m(A-1) _F,(2) (22)
(m+1)1-B)+mA-1)—(ni+1ym(A—-B) F'(2)
1+ ws(z)
_ 23
1 — we(2) (23)
with |we(z)] < 1 in U. From (22) and (23), we have for z € U that
pe(z) — 1
z) =2
w1
(n4+1)(1—B)4+m(A-1)—(n1+1)m(A-B) <  n _n-m
. (n1+1)m(A—Bl) n:§+l m?
= ni oo B B n (A 00 ?
2+2 ( 72 L Apzn—m — 2 %annz—m) 4 (b Bz:ﬁ(lf;m})AJr_(Bl)H) (A=B) 72 B Ay zn—m
n=m-+1 n=m n=nji+1
and
(n14+1)(1—B)+m(A—1)—(n1+1)m(A—B) <x n
: T Dm(A—B) ninZﬂ 7 |An|
— <1,

ws(2)] <

< n =, n n 1)(1—-B)+m(A-1 n 1)(A—B = n -
2—2( S5 on 4.+ zmm)—“* M=PImA-DHU=B) X n |y,
n=m

n=m-1 n=ni+1
if (19) holds. This completes the proof of Theorem 2.3. Sharpness can be verified for the function (9) similar to Theorem
2.1. O
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Theorem 2.4. Let F(z) of the form (5) be in the class Pg(m, A, B), then

(m+1)Q1-B)+mA-1)—(n1+1)m(A—-B) F' (2)
(m+ D)1 B) +m(A-1) <n {7 )
cm+1)(A-B)+m(A-1)+(nm+1)m(A—B)
- (mi+1)(1-B)+m(A-1)

The result is sharp for the function given by (9).

Proof.  The proof of the above theorem is based on the proof of Theorem 2.3, so we omit the details involved.

F(z) d an(z)

‘We next determine bounds for oy () oy

Theorem 2.5. Let F(z) of the form (5) be in the class Pu(m, A, B), then

(n2+1)(1—=B)—m(A—1)—m(A—B) F(2)
(n> 1) (1—B) —m(A—1) Sm{mxw}
< (n2+1)(1—B)—m(A—1)+m(A— B)

B (na+1)(1—B)—m(A—-1) (z€U).

The result is sharp for the function

m m (A - B) —no+1
F(z) = 2
@ = A —m@a-1n°
Proof. Since F € Py(m, A, B), by Definition 1.1 we have the coefficient inequality (10). Also we have

n(l—B)+m(A—-1) n(l—B)—m(A-1)

1 > 1 >1 > .
m (A= B) >1 (n>m+1) and m(A—B) >1 (n>m)
Therefore, from coefficient inequality (10), we obtain
oo no %)
(ne+1)(1—B)—m(A-1)
n n n < )
DUNES SEAI S TN SRS
n=m n=m n=ngy

where A,, B, are given by (7). Let

(e +1)(1—B)—m(A—1) { F(z) (n2a+1)(1-B)—m(A—1)—m(A—-B)

pr(z) = m(A—B) Foy (2) (ne+1)(1—B)—m(A—1)

which is analytic in U with p7(0) = 1. To obtain the lower bound of (24), we need to show that

_ 1+wr(?)

p7(Z) - 1— UJ7(2)’

where wr(z) is a Schwarz function with w7(0) = 0 and |w7(z)| < 1 in U. Evidently, from (27) and (28), we get

_pr(z)—1
wr(z) = o o | (€ )
(na+1)(1—B)—m(A—1) i B,z ™
_ _ nzm(A—B) n=ng+1 - (n2 >mize [U) .
2+2< SO Apznmo4 M BnE"z*m) + ("2+1)(T}1;f_);;n(‘471> > BpzhzT™

n=m-+1 n=m n=ng+1

(z€U).

(28)
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‘We observe that

(na+1)(A-B)—m(A-1) <~
2 m(AfB;n E B

n=ng+1

|w7(z)| < <1

oo no oo —
2-2( > Ant Y Bn> — B4 Y B.

n=m-+1 n=m n=ng+1

if (26) holds. Similarly for upper bound of (24), let

2 = (ne+1)(A1-=B)-m(A-1) [(n2+1)1-B)-m(A-1)+m(A-B) F(z)
ps(2) = m(A—B) { s+ ) (1=B)—m(A—1) P, (2) (29)
which is analytic in U with ps(0) = 1. Now we need to show that
1+ ws(z)
ps(Z) - 1 —UJg(Z) (30)

with wg(0) =0 and |w2(z)| < 1 in U. From (29) and (30), we get for z € U,

ps(z) — 1
ws(z) = —/—— (€U
o) = BE ()
(na+1)(1-B)—m(A—1) = —n_—m
— a2 T A—F) > Bpz"z
o n=ng+1
oo no oo
2+2( S Az S an"z—m) — 2O Pomd) S Bpzte
n=m-+1 n=m n=ng+1
(n2 >m).
Now
not+1)(1—B)—m(A—1 ad
(na+ >5711(A7)B) ( ) 72 1|Bn|
Jws(2)] < L <1

%) no oo
2-2( 5 A+ 5 |p) - ooy £ g,

n=m-+1 n=ng+1
if (26) holds. For sharpness, we see that for the function given by (25), if z = re™/("2F1=™) (1 < 1) we get equality at the
left hand side of (24) as follows:

F(z) m (A — B) nt o —in
P~ T DB —m@A_1) M (ng > m)
m (A — B) i1

T e+ 1)(1-B) -m(A-1)
(n2+1)1—-B)—m(A—-1)—m(A—B)

= (st (1= B)—m(A-1) asr = 1

and we get equality at the right hand side of (24), if z = re?mi/ (n2t1-m) (r < 1) as follows:

F]:ii) =1+ (nz +1) (TEAB; f;)m = 1)r"2+17me2”’ (n2 > m)
- 1+ TSy (TEAB; fzn — 1)Tn2+17m
_ DO mA DA oD) -
This completes the proof of Theorem 2.5. _

Theorem 2.6. Let F(z) of the form (5) be in the class Pu(m, A, B), then

(ne+1)(1—B)—m(A-1) Fn, (2)
)Sg’*{ }

st ) (1—B)—m(A—1)+m(A—B (31)

The result is sharp for the function given by (25).
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Proof.  Similar to the proof of Theorem 2.5, let

l+wo(z)  (m2+1)(1-B)-m(A-1)+m(A-B) [Fn, (2) (ne4+1)1—-B)—m(A-1)
1—wo(z) m (A — B) F (z) (ne+1)1—-B)—-m(A—-1)+m(A—-B)
14+ 72 1Anzn7m+ 22: B,z"2 ™ — (n2+1)(7rll(if_);;n(A71) 72 1annzfm
= n=m+ n_moo — n=nat (na >m;zel).
1+ > Apzn=m+ > Bpz'zTm
n=m-+1 n=m

We see that
na+1)(1-B)—m(A—1)—m(A—B)
— Zn(A(_B) = )nz%ﬂ | Bn|
wo(2)] < _ - <
2-2 ( > Aul+ X |Bn|) — OB TR A=EL S |By|
n=m-+1 n=m n=ng+1
if (26) holds. This proves the left-hand side of (31). Further, let
14+wio(z) (ma+1)(1-B)—m(A—-1)—m(A—B) (ne+1)(1—-B)—m(A-1) _ Fay (2)
1—wio(z) m(A— B) (ne+1)1-B)—-m(A-1)—m(A—-B) F(z)

%) no oo
1+ Z A, 2" 4 Z B,z"2 ™ + (n2+1)531<—fJE;n(A—l) Z B,z"2™

= 1 = = 1
= nemt noom o~ n=net (TLQEm;ZE[U).
14+ > Apzr ™+ Y Bpz"Bpz"z™
n=m-1 n=m

Now to prove right-hand side of inequality (31), we see that

nat1)(1-B)—m(A—1)+m(A—B el
(n2+1)( ) (_B> )+m( ) Z |Bn|

m(A

n=ng+1

|w10(z)| < <1

)

s 2 no+1)(1—B)—m(A—1)—m(A—B &
2-2( 5 df+ B p.)) - oOsBopGooneen g,

n=m+1 n=nz+1

if (26) holds. This complete the proof of Theorem 2.5. Sharpness can be verified for the function (25) similar to Theorem
2.5. O

Fly ()

()
Figsy and

We next give bounds for ) in the form of Theorems 2.7 and 2.8 without proof as the proofs are similar to
ng

that of Theorem 2.5.

Theorem 2.7. Let F(z) of the form (5) be in the class Pg(m, A, B), then

(no+1)(1 = B) —m (A —1) F, (2)
et (A= B)—mA—1)+ (na + ) m(A—B) 5%{ F () }
(m2e+1)(1-B)—-m(A-1)

S i (-B -mA-—D—(mi)m@A—5 €Y
The result is sharp for the function given by (25).
Theorem 2.8. Let F(z) of the form (5) be in the class Pu(m, A, B), then
(ne+1)1-B)—m(A—-1)—(n2+1)m(A— B) F' (2)
(2 + Dm(1—B) —m(A_1) Sm{FJLQ(z}
me+1)(1-B)-mA-1)+(n2+1)m(A- B)
= (et Hm(1—B) —m(A_1) (zel).

The result is sharp for the function given by (25).

F(z)
Fny,ng(z

Fryiny (2)

‘We next determine bounds for 7

) and
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Theorem 2.9. Let F(z) of the form (5) be in the class Pa(m, A, B), then

(i)
(m+1)(1—B)+m(A—1)—m(A—B)<%{ F(2) } (32)
(n1+1)(1-B)+m(A-1) T e (2)
<(m+1)(1fB)+m(A71)+m(A7B) (ne >m >m+1;2€0)
= (m+1)(1-B)+m(A-1) == ’ '
(1)
(ne+1)(1-B)—m(A—1)—m(A—B) F(z)
BT DB At < ) (3

_ () (1-B)-m(A-1)+m(A-B)

< (s £ 1) (1= B) —m (A—1) (n1 > max (n2,m+1);z € U).

The above results (i) and (i) are sharp for the functions given, respectively, by (9) and (25).

Proof. (i) Since F € Pu(m, A, B), by Definition 1.1 we have inequality (10), and the observation 11. Further, observe

that
n(l—B)+m(A—-1)
m(A— B)

mi+1)(1-B)+m(A-1)
m (A — B)

> (n>ni+1,n>n2+1).

Therefore, from coefficient inequality (10), and since n; < no we obtain

1 ng o -
(ma+1)(1- B)+m(A1)
" " n W] <1,
n:;H'A \+7;1|B E B n:nzﬁlm |+n:nz2+1|3 <1 (34)

where A,, B, are given by (7). Let

pl(z):(m—l—l)(l—B)—Fm(A—l) F (z) _(n1+1)(1—B)+m(A—1)—m(A—B)} (35)
' m (A - B) Foy iy (2) (n1+1)(1—B) +m(A—1)
which is analytic in U with p;1(0) = 1. To obtain lower bound of (32), we need to show that
1 + wu(z)
_ 36
pus) = {2, (36)
where w11(2) is a Schwarz function with wy1(0) = 0 and |wi1(2)| < 1 in U. Evidently, from (35) and (28), we get
_pu(z)—1
wn(z) = p11(z) +1
(1 1) (= B)+m(A-1) i A,z i B,3"2~™
. n=nji+1 n=ng+1
ni ng oo oo
2+2( S Apzrmo4 3 annz—m) + (mANAZBIAmAZD | S gopn-m Y Bzrzom
n=m-+1 n=m n=nj-+1 n=ng+1
(n2 > m,n1 > m+ 1;z € U) and hence,
) P A=) { > |Aul+ X |Bal
n=ni+1 n=ng+1
|wi1(2)] < <1
ny no oo oo
2-2( 3 A+ B jp) - oteipan | £ 4y £ 5|
n=m-1 n=m n=ni+1 n=ng+1
if (34) holds. Similarly for upper bound of (32), let
pra(z) = (nm+1)(1-B)+m(A-1) [(m—kl)(l—B)+m(A—1)+m(A—B) . F(?) } (37)
" m (A - B) (n+1)(1 - B) +m(A—1) Foy g (2)
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which is analytic in U with p12(0) = 1. Now we need to show that

B 1+ wlg(z)

pl?(z) T 1= le(Z)

with w12(0) =0 and |wi2(z)| < 1 in U. From (37) and (38), we get

_p2(2) -1

wial®) = ) T 1

<m+1><1B)+m<A1)[ f A, 2™ 4 i annzm}

A—B
™ ) n=nj+1 n=ng+1

ni no oo 0o
2+2( S Apzrm4 3 annz—m) — a0 B mia L [ S Apzrm4 Y an”z—m]

n=m-+1 n=m n=nji+1 n=ng-+1

(n2 > m,n1 > m+ 1;z € U). Hence

n — m(A— = =
e “[ > A+ 3 |Bul

n=ni+1 n=ng+1

<1

= 5

lwi2(2)| <

ni n2 00 &)
2-2( 3 ja+ 3 |Bn|)—<”1“)5¢(f_>;;”<“>{ S oAt S B,

=m n=ni+1 n=ng+1

if (34) holds.
(ii) Since F' € Py(m, A, B), by Definition 1.1 we have the coefficient inequality (10) and the observation (11). Further we

observe that
n(l—B)+m(A—-1) S (m+1)1-B)+m(A-1)

> 1
m(A—B) = m(A—B) (n 2 +1)
and
n(l=B)—m(A—1) _ (na+1)(1—B)—m(4A—1)
> > .
m(A-B) = m(A—B) (nzmna+1)
Therefore, from (10) by using the fact that n1 > na, we obtain
. S na+1)(1—B) —m(A—1 = =
S A+ Y By 2 F DU B omAZ DTS S | <1, (39)
n=m-+1 n=m m (A B) n=ni+1 n=ng+1

where A,, B, are given by (7). Let

» (Z):(n2+1)(173)7m(1471) F(2) 7(n2+1)(lfB)fm(Afl)fm(AfB)} (40)
8 m (A - B) Foyna () (nz+1)(1—B)—m(A-1)
which is analytic in U with p13(0) = 1. To obtain lower bound of (33), we need to show that
1+ wisz(z
pal) = o “

where wi3(2) is a Schwarz function with wi3(0) = 0 and |wi3(z)| < 1 in U. Evidently, from (40) and (41), we get

_pis(z) — 1

wia(2) p13(z) +1

(n241)(1—B)—m(A—1)
m(A—B)

o0 o0
Z An anm _"_ Z an’!szm
n=ni+1 n=ng+1

ny nog [e%) [es)
2+2< > Apzmg 3 annz*m) + leat Q- Senia-l) [ > Apznm4 S Buztem

n=m-1 n=m n=ni+1 n=ng+1
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(n2 >m,n1 > m+1;z € U). We observe that

n —B)—m(A— e e
(Do ”{ > A+ 3 |Bal

N n=ng+1 n=ng+1

<1

= b

lwia(2)] <

n=m-+1 n=ng+1 n=ng+1

ni P! " CB)—m(A— ] =
272( 5 |An\+;Bn)f‘2“>ii(le>< “[ > A+ X (Bl

if (39) holds. Similarly for upper bound of (33), let

(2) = (ne+1)(1-B)—m(A-1) [(n2+1)(1—B)—m(A—1)+m(A—B) _ F(») } (42)
b m (A - B) (ne+ 1) (1-B)—m(A—1) Fryns (2)
which is analytic in U with p14(0) = 1. Now we need to show that
. 1+ w14(z)
p14(2) 1= L«.)14(Z) (43)
with w14(0) =0 and |wi4(z)| < 1 in U. From (42) and (43), we get
_pu(z) -1
wia(z) = p1a(z) +1
~ecpgey | § gy § aae
o n=ni+1 n=no+1
242 < S Apznomg 3 annfm) — (DO D) omA-l) S Agmomt S Buztem
n=m-+1 n=m n=ni+1 n=ng+1
(ne >m,n1 >m+1;2 € U). Now
(2t )(-B)-m(A=1) | 5% 1414 S g
U L=§+l A+ 5 1B
lwia(2)] < <1
ni no 0o 0o
2-2( 35 A+ B (i) - Cattopopiany [ S+ S Bl
n=m-1 n=m n=ni+1 n=ns+1
if (39) holds. O
Theorem 2.10. Let F(z) of the form (5) be in the class Pa(m, A, B), then
()
DO B o) g Fn()) )
(nmi+1)1-B)+m(A-1)+m(A- B) F(2)
(mi+1)1-B)+m(A-1)
< .
SmA-Bim@A-D-m@a-p *€Y
(ii)
(n2+1)(A—-B)—m(A-1) {Fnlnz(z)}
<R : 45
(ne+1)1-B)—-mA-1)+m(A-B) — F(2) (45)
(ne4+1)(1—-B)—m(A-1)
< .
St )(-B) -m@A-D)-m@a-p *€Y

The above results (i) and (ii) are sharp for the functions given, respectively, by (9) and (25).
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Proof. (i) Similar to proof of Theorem 2.9. Let

l+wis(2) _ (m+1)(1-B)+m(A-1)+m(A-B) {Fnl,w(z)i (n+1)1-—B)+m((A-1) }
1 —wis(2) m (A — B) F(2) (mi+1)(1—B)+m(A—1)+m(A—B)
1+ 21: Anz" M+ 22 Bnz"z"" — (n1+1)53z(_fjggn(A_l) > A"+ 30 Baztz™
B n=m+1 n=m n=ni+1 n=ng+1
1+ > Apzn=m+ > Bpz'zm 1+ > Apzn—m+ > Bpztz ™
n=m-1 n=m n=m+1 n=m

(n2 > m,n1 > m+1;z € U). Now, we see that

m(A—

n14+1)(1—B)+m(A—1)+m(A—B = =
. ceor )[ > a4 X Bl

n=ni+1 n=ngo+1
|wis(2)] < . 2 <1,
ny no %) 0o
2-2( 3 A+ B (b)) - otesmmumnuen | E a4 £ 5|
n=m-1 n=m n=nji+1 n=ng+1
if (34) holds. This proves the left-hand side of (44). Further, to prove right hand side of inequality (44), let
l+wie(z) _ (m+1)(1-B)+m(A—1)—mi(A-B) { (nmi+1)1-B)+m(A-1) 7Fn1,n2(z)]
1 —wie(2) m(A— B) (ni+1)1-B)+m(A-1)—m(A—-B) F(z)
1+ % Ap 2" 4 § B.z"z"™ (n1+1)%(_ABB-1§;n(A_1) Yo Ap"TT YT BpzteT™
n=m-+1 n=m n=ni+1 n=ng+1
= ny1 na Jr ni n2
1+ > Apzn=m+ > BpzlzTm 1+ > Apzn=™+ > Bpztz—m

n=m-+1 n=m n=m-+1 n=m

(n2 > m,n1 > m+ 1;z € U), from which we see that

n14+1)(1—B)+m(A—1)—m(A—B = =
= ﬂ S al+ 3 |Bal

n=ni1+1 n=no+1
lwis(2)] < : ’ <1,
ni no oo o
2-2( 35 A+ B ()] - Com0smimn [ S A+ S 1B
n=m-+1 n=m n=ni+1 n=ng+1
if (34) holds.
(ii) Similar to proof of Theorem 2.9. Let
l+wir(2) _ (n2e+1)(1-B)—m(A-1)+m(A—B) {Fnl,nz(z)_ (no+1)(1-B)—m(A-1) }
1 —wir(2) m (A — B) F(z) (ne+1)1—-B)—m((A-1)+m(A—-B)
24 22 n —B)—m(A— = n—m S =n ,—m
1+ >, A"+ 3> Bzt ( 2+1)E111(‘f_)3) (4-1) S Anz + > Bpz"z
_ n=m+1 n=m _ n=ni+1 n=ng+1
1+ > Apzn=m+ > Bpztz—m 1+ > Apzn~m+ > Bpz'zm
n=m-+1 n=m n=m++1 n=m

(n2 >m,n1 > m+1;z € U). We see that

<n2+1)(1—B>—$<AB—)1)+m<A—B>{ S Al + Y |Bal

A n=no+1 n=ns-+1
lwrz(2)] < = 2 <1
ny no %) 0o
2-2( 35 A+ B ||| - Comt0oBpGonontan) [ S+ S 1B
n=m-1 n=m n=ni+1 n=ng+1
if (39) holds. This proves the left-hand side of (45). Further, to prove right hand side of inequality (45), let
14+wis(z) (m2+1)(1-B)—m(A—-1)—m(A—-B) (ne+1)(1—B)—m(A-1) Py (2)
1—wis(z) m (A — B) (ne+1)(1-B)—m(A-1)—m(A-B) F(2)
o 22 n —B)—m(A— = n—m = =n ,—m
1 + Z Anznf'm + Z annzfm ( 2+1)5711(AB_)B) (A-1) Z+l Anz + Z BnZ z :|
n=m-41 n=m n=ni n=m
= oo o0 + oo o0
1+ > Apzn=m+ > BpztzTm 14+ > Apzn=™4 > Bpztz™
n=m-+1 n=m n=m-+1 n=m
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(n2 >m,n1 > m+ 1;z € U) and we see that

m(A—

n —B)—m(A—1)—m(A— e =
e Ll Dl ) o ﬂ S A+ > Bl

n=nqy+1 n=ns+1
lwis(z)| < . 2 <1,
<4 <2 (na+1)(1—B)—m(A—1)+m(A—B) & &
2-2( 3 JAu+ 3 B) - s S A+ > [Bul
n=m-+1 n=m n=nj+1 n=ng+1
if (39) holds. O

Theorem 2.11. Let F(z) of the form (5) be in the class Pu(m, A, B), then

(m+1)(1-B)+m(A-1) <%{F4L17n2(z)}< (m+1)(1-B)+m(4A-1)
(m+1)A-B)4+mA-1)+m1+1)(A-B) — Fr(z) J-(m+1)(1-B)+m(A-1)—(m+1)(A-B)

(ne > m,n1 > m+ 1;z € U). The result is sharp for the function given by (9).

Proof.  The proof of the above theorem is based on the similar lines of the proof of Theorem 2.10 so we omit the details

involved. O

Theorem 2.12. Let F(z) of the form (5) be in the class Pa(m, A, B), then

(n1+1)(17B)+m(A71)f(n1+1)(AfB)<%{ F' (2) }<(n1+1)(17B)+m(A71)+(n1+1)(AfB)
(nm+1)1-B)+m((A-1) - Fln(2) ] — (m+1)1-B)+m((A-1)

(n2 >m,n1 > m+ 1;z € U). The result is sharp for the function given by (9).

Proof.  The proof of the above theorem is based on the similar lines of the proof of Theorem 2.10 so we omit the details

involved. O
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