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1. Introduction

Let
∑

denote the class of functions of the form

f (z) =
a−1

z
+

∞∑
k=1

akz
k, (a−1 6= 0) (1)

which are regular in the punctured unit disk E = {z : 0 < |z| < 1}. Define

D0f (z) = f (z) (2)

Df (z) =D1f (z) =
a−1

z
+

∞∑
k=1

kakz
k = zf ′ (z) +

2a−1

z
(3)

D2f (z) = z
(
Dn−1f (z)

)1
+

2a−1

z
(4)

and in general

Dnf (z) = z
(
Dn−1f (z)

)1
+

2a−1

z
(5)

Let Bn (α) denote the class consisting of functions in
∑

, which satisfies

Re

{
Dn+1f (z)

Dnf (z)
− 2

}
< −α, (z ∈ E, 0 ≤ α < 1, n ∈ N0 = N ∪ 0) (6)
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Let σ be the subclass of
∑

which consists of functions of the form

f (z) =
a−1

z
+

∞∑
k−7

(−1)k−1akz
k, (a−1 > 0, ak ≥ 0) (7)

Further, let

σ (n, α, β) = B (n, α, β) ∩ σ (8)

In [6], Uralegaddi and Somanetha defined a class Bn (α) which consists of functions of the form

f (z) =
a−1

z
+

∞∑
k=1

akz
k (a−1 6= 0)

which are analytic in E. Further, Aouf and Darwish [1] considered Meromorphic starlike univalent functions with alternating

coefficients and obtained coefficient inequalities, distortion theorem and integral operators. In the present paper coefficient

inequalities, distortion theorem and closure theorems for the class σ (n, α, β) are obtained. Techniques used are similar to

those of Aouf and Darwish [1]. Finally, the class preserving integrals of the form

fc+1 (z) = (c+ 1)

∫ 1

0

uc+1f (uz) du, (0 ≤ u < 1, 0 < c <∞) (9)

is considered.

Definition 1.1. Let the function f(z) be defined by (7). The f (z) ∈ σ (n, α, β) if and only if∣∣∣∣∣∣
Dn+1f(z)
Dnf(z)

− 1

2β
[
Dn+1f(z)
Dnf(z)

−1
]
−
[
Dn+1f(z)
Dnf(z)

+1− 2α
]
∣∣∣∣∣∣< 1 for |z|< 1, 0 ≤ α< 1,

1

2
<β ≤ 1

2. Coefficient Inequalities

Theorem 2.1. Let the function f(z) be defined by (1). If

∞∑
k=1

kn [(k − 1)β − 1 + α] |ak| ≤ (1− α) |a−1| then f (z) ∈ B (n, α, β) (10)

Proof. To establish the theorem, it will be sufficient to show that∣∣∣∣∣∣
Dn+1f(z)
Dnf(z)

−1

2β
[
Dn+1f(z)
Dnf(z)

−1
]
−
[
Dn+1f(z)
Dnf(z)

+ 1− 2α
]
∣∣∣∣∣∣ < 1 for |z| < 1, 0 ≤ α < 1,

1

2
< β ≤ 1 (11)

We have

∣∣∣∣∣∣
Dn+1f(z)
Dnf(z)

− 1

2β
[
Dn+1f(z)
Dnf(z)

− 1
]
−
[
Dn+1f(z)
Dnf(z)

+ 1− 2α
]
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∞∑
k=1

kn (k − 1) akz
k

(2− 2α)
a−1

z
−
∞∑
k=1

kn [2β (k − 1)− (k + 1− 2α)] akzk

∣∣∣∣∣∣∣∣
≤

∞∑
k=1

kn (k − 1) |ak|

2 (1− α) a−1 −
∞∑
k=1

kn [2β (k − 1)− (k + 1− 2α)] |ak|

The last expression is bounded by 1 if

∞∑
k=1

kn (k − 1) |ak| ≤ 2 (1−α) |a−1| −
∞∑
k−1

kn [2β (k − 1)− (k + 1− 2α)] |ak|

58



Adluru Narasimha Murthy and P.Thirupathi Reddy

which reduces to
∞∑
k=1

kn [(k − 1)β − 1 + α] |ak| ≤ (1− α) |a−1| (12)

But (12) is true by hypothesis. Hence the result follows.

Theorem 2.2. Let the function f(z) be defined by (7) then f (z) ∈ σ (n, α, β) if and only if

∞∑
k=1

kn [(k − 1)β − 1 + α] ak ≤ (1− α) a−1 (13)

Proof. In view of Theorem 2.1, it is sufficient to prove the only if part. Let us assume that f (z) defined by (7) is in

σ (n, α, β) then ∣∣∣∣∣∣
Dn+1f(z)
Dnf(z)

−1

2β
[
Dn+1f(z)
Dnf(z)

−1
] [

Dn+1f(z)
Dnf(z)

+1− 2α
]
∣∣∣∣∣∣< 1

reduces to ∣∣∣∣∣
∑∞
k=1 (−1)k−1 kn (k − 1) akz

k+1

2 (1− α) a−1

∑∞
k=1 (−1)k−1 kn [2β (k − 1) (k + 1− 2α)] akzk+1

∣∣∣∣∣< 1 (14)

Hence
∞∑
k=1

kn [(k − 1)β−1+α] ak ≤ (1−α) a−1. Thus the result follows.

Corollary 2.3. Let the function f (z) defined by (7), be in the class σ (n, α, β) then

ak ≤
(1−α) a−1

kn [(k − 1)β−1+α]
(15)

The result is sharp for the function

f (z) =
a−1

z
+

(1− α) a−1

kn [(k − 1)β−1+α]
zk, (k ≥ 1) (16)

3. Distortion Theorem

Theorem 3.1. Let the function f(z), defined by (7) be in the class σ (n, α, β) then for 0 < |z| = r < 1 we have

a−1

r
− a−1r ≤ |f (z)| ≤ a−1

r
+ a−1r (17)

where equality holds for the function

f (z) =
a−1

z
+

(1− α) a−1

kn [(k − 1)β−1+α]
z, z = ir, r (18)

Proof. In view of Theorem 2.2 we have
∞∑
k=1

ak ≤
(1−α) a−1

kn [(k − 1)β−1+α]
(19)

Thus

|f (z)| ≤ a−1

r
+r

∞∑
k−1

ak, 0 < |z|= r < 1

∑ a−1

r
+a−1r (20)

and

|f (z)| ≥ a−1

r
−r

∞∑
k−1

ak ≥
a−1

r
−a−1r (21)

Thus (17) follows.
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4. Closure Theorems

Let the function fj(z), be defined for j ∈ {1, 2, 3, . . . ,m}, by

fj (z) =
a−1, j

z
+

∞∑
k=1

(−1)k−1 ak,jz
k,
(
a−1,j> 0, ak,j ≥ 0

)
, z ∈ E (22)

We shall prove the following closure theorems for the class σ (n, α, β)

Theorem 4.1. Let the functions fj(z) defined by (22) be in the class σ(n, α, β) for every j = 1, 2, . . .,m. Then the function

f (z) defined by

f (z) =
b−1

z
+

∞∑
k=1

(−1)k−1 bkz
k, b−1 > 0, bk ≥ 0 (23)

is a member of the class σ (n, α, β) where

b−1 =
1

m

m∑
j=1

a−1, j and bk =
1

m
ak, j , (k = 1, 2, ....) (24)

Proof. Since fj (z) ∈ σ (n, α, β) it follows from Theorem 2.2, that

∞∑
k=1

kn [(k − 1)β−1+α] ak, j ≤ (1−α) a−1, j (25)

for every j = 1, 2, 3, . . .,m. Hence

∞∑
k=1

kn [(k − 1)β−1+α] bk =
1

m

∞∑
j=1

[
∞∑
k=1

(kn (k − 1)β−1+α) ak, j

]

≤ (1−α)

(
1

m

m∑
j=1

a−1,j

)

= (1−α) b−1

which (in view of Theorem 2) implies that f (z) ∈ σ (n, α, β).

Theorem 4.2. The class σ (n, α, β) is closed under convex linear combination.

Proof. Let the function fj (z), (j=1, 2) defined by (22) be in the class σ (n, α, β). It is sufficient to prove that the function

H (z) = λ1 f1 (z) + (1−λ) f2 (z) , (0 ≤ λ ≤ 1) (26)

is also in the class σ (n, α, β). Since for 0 ≤ λ ≤ 1 ,

H (z) =
λa−1,1 + (1−λ) a−1, 2

z
−
∞∑
k=1

{λak,1+ (1−λ) ak,2} zk (27)

we observe by virtue of Theorem 2.2 that

∞∑
k=1

kn [(k − 1)β−1+α] {λak,1 + (1− λ) ak,2} = λ

∞∑
k=1

[kn (k − 1)β−1+α] ak,1 + (1− λ)

∞∑
k=1

[kn (k − 1)β−1+α] ak,2

≤ (1−α) {λa−1,1 + (1− λ) a−1,2} (28)

Hence, H(z) ∈ σ (n, α, β).
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Theorem 4.3. Let

f0 (z) =
a−1

z
(29)

and

fk (z) =
a−1

z
+ (−1)k−1 (1− α) a−1

kn [(k − 1)β − 1 + α]
zk, (k ≥ 1) (30)

Then, f (z)∈ σ (n, α, β) and only if it can be expressed in the form

f (z) =

∞∑
k=1

λkfk (z) (31)

where λk ≥ 0 (k ≥ 1) and
∞∑
k=1

λk = 1.

Proof. Let f (z) =
∞∑
k=1

λkfk (z) where λk ≥ 0 (k ≥ 1) and
∞∑
k=1

λk = 1. Then

f (z) =

∞∑
k=1

λkfk (z) = λ0f0 (z) +

∞∑
k=1

λkfk (z) (32)

=
a−1

z
+

∞∑
k=1

(−1)k−1 (1−α) a−1λk
kn [(k − 1)β−1+α]

zk (33)

since, by Theorem 2, we have

=

∞∑
k=1

kn [(k − 1)β−1+α]
(1−α) a−1λk

kn [(k − 1)β−1+α]
(34)

= (1−α) a−1

∞∑
k=1

λk (35)

= (1−α) a−1 (1−λ0) ≤ (1−α) a−1 (36)

Hence, f (z) ∈ σ (n, α, β).

Conversely, we suppose that f (z), defined by (7), is in the class σ (n, α, β). Then by using (15) we get,

ak ≤
(1−α) a−1

kn [(k − 1)β−1+α]
, (k ≥ 1) (37)

Setting

λk =
kn [(k − 1)β−1+α]

(1− α) a−1
, (k ≥ 1) (38)

and λ0 = 1−
∞∑
k=1

λk.

5. Integral Operators

In this section we consider integral transforms of functions in the class σ (n, α, β).

Theorem 5.1. Let the function f(z), defined by (7) be in the class σ (n, α, β) then the integral transforms.

fc+1 (z) = (c+ 1)

∫ 1

0

uc+1f (uz) du, (0 ≤ u ≤ 1, 0 < c <∞) (39)

are in σ (n, δ) where

δ (α, β, c) =
[(k − 1) + α−1] (k + c+ 2)− [(k − 1)β−1] (c+ 1) (1−α)

[(k − 1)β+α−1] (k + c+ 2) + (c+ 1) (1−α)
(40)

The result is sharp for the function

f (z) =
a−1

z
+ (−1)k−1 (1−α) a−1

kn [(k − 1)β+α−1]
zs. (41)
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Proof. Let

fc+1 (z) = (c+ 1)

∫ 1

0

uc+1f (uz) du (42)

=
a−1

z
+

∞∑
k=1

(−1)k−1 c+ 1

k + c+ 2
akz

k (43)

In view of Theorem 2, it is sufficient to show that

∞∑
k=1

kn [(k − 1)β + δ−1]

(1− δ) a−1

(
c+ 1

(k + c+ 2)

)
ak ≤ 1 (44)

since f (z) ∈ σ (n, α, β), we have
∞∑
k=1

kn [(k − 1)β−1+α]

(1− α) a−1
ak ≤ 1 (45)

Thus (43) will be satisfied if [(k−1)β+δ−1](c+1)
(1−δ)(k+c+2)

≤ (k−1)β+α−1
1−α , for each k, solving for δ, we obtain

δ ≤ [(k − 1)β+α−1] (k + c+ 2)− [(k − 1)β−1] (c+ 1) (1−α)

(k + c+ 2) ((k − 1)β + α− 1) + (c+ 1) (1−α)
(46)

for each α, β and c fixed, let

ψ (k) =
[(k − 1)β+α−1] (k + c+ 2)− [(k − 1)β−1] (c+ 1) (1−α)

((k − 1)β+α−1) (k + c+ 2) + (c+ 1) (1−α)

Then ψ (k + 1) − ψ (k)> 0 for each k. Hence ψ (k) is an increasing function of k. Since ψ (1) = (c+3)(α−1)+(1−α)(c+1)
(c+3)(α−1)+(c+1)(1−α) The

result follows.
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