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1. Introduction

Throughout w, x and A denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write w>

3

for the set of all complex sequences (Zmnk), where m,n, k € N, the set of positive integers. Then, w* is a linear space under

the coordinate wise addition and scalar multiplication. Let (mnk) be a triple sequence of real or complex numbers. Then

the series > Tmnk is called a triple series. The triple series > Zynk is said to be convergent if and only if the triple
m,n, k=1 m,n,k=1

sequence (Spmnk)is convergent, where

m,n,k

Smnk = Z xijq(m7 n,k = 1,273, )

4,5,q=1

A sequence © = (Tmnk)is said to be triple analytic if

1
SUp | Tmnk| mFrTE < oo.
m,n,k

The vector space of all triple analytic sequences are usually denoted by A. A sequence & = (Z.nnk) is called triple entire

sequence if

1
|Tmnk| mFrFE — 0 as m,n, k — oo.

The vector space of all triple entire sequences are usually denoted by I'*. The space A® and I'? is a metric space with the

metric

1
d(x,y) = SUPm,n.k {|9cmnk = Ymnk| " FE tmyn k:1,2,3, } , (1)
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forall x = {Zmnr} and y = {ymnk}mFS. Let ¢ = {finite sequences}. Consider a double sequence x = (Zmnk). The

m,n,k

(m,n, k)" section z™™* of the sequence is defined by z[™™* = S 2;,8:;, for all m,n,k € N,
4,J,q=0
00...00
00...00
5mnk =

00...10

00...00
with 1 in the (m,n,k)*" position and zero other wise. A sequence & = (Zmnk) is called triple gai sequence if

1
((m +n 4+ k) |Zmnk|) ™75 — 0 as m,n, k — oo. The triple gai sequences will be denoted by x*. Consider a triple sequence
m,n,k
= > xijqSijq for all m,n, k € N; where
,5,q=0
Sijq denotes the triple sequence whose only non zero term is a m in the (1,7, k)th place for each i,5,k € N. An

[m,n, k] m,n,k]

% = (Zmnk). The (m,n, k)™ section of the sequence is defined by z!

FK-space(or a metric space) X is said to have AK property if (Spmnk) is a Schauder basis for X, or equivalently gkl o g,
An FDK-space is a triple sequence space endowed with a complete metrizable; locally convex topology under which the

coordinate mappings are continuous. If X is a sequence space, we give the following definitions:

(1). X' is continuous dual of X;

o0

(2). X« = {a = (amnk): D,  |@mnk@mnk| < 00, for each x € X};

m,n,k=1

[ee]

(3). X8 = {a = (@mnk): Y., GmnkTmnk 1S convergent, for each x € X};

m,n,k=1

M,N,K

Z AmnkTmnk
m,n,k=1

(4). X7 = {a = (@mn) : sup

m,n>1

< 00, for each xeX};
(5). Let X be an FK-space D ¢; then X7 = {f(%mnk) 1 fe X/};

(6). X° = {a = (@mnk) : SUP |@mnkZmnk|"/ ™" < o0, for each x € X};

m,n,k
X XP X7 are called a—(or Kéthe-Toeplitz) dual of X, 3—(or generalized-Kéthe-Toeplitz) dual of X, y—dual of X, d—dual
of X respectively. X is defined by Gupta and Kamptan. It is clear that X ¢ X? and X C X7, but X® C X" does not

hold.

2. Definitions and Preliminaries

1
A sequence T = (Tmnk)is said to be triple analytic if supmnk [Tmnk|™F7T% < oco. The vector space of all triple analytic
1
sequences is usually denoted by A3 A sequence & = (Zmnk) is called triple entire sequence if |Zpnk| ™% — 0 as
m,n, k — oo. The vector space of triple entire sequences is usually denoted by I'*. A sequence x = (Zmnk) is called triple gai

1/m+n+k

sequence if ((m +n 4+ k)! |Zmnk|) — 0 as m,n, k — oo. The vector space of triple gai sequences is usually denoted

by x®. The space x® is a metric space with the metric
1
d(z,y) = Supm,n.k {((m +n+ k) [ Tmnk — Ymnk|) T FF cmyon k1,2, 3, } (2)

for allz = {Tmnkyandy = {Ymnsinx>. In this chapter we study the general properties of x* establishing the following

theorems:
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3. Main Results

Proposition 3.1. x* C I'® with the hypothesis that |Tmnk| T < ((m+n+ k) zmnk|) R

Proof. Let x € x*. Then we have the following implications
1
(((m—l—n—!—k)! |xmn\)7n+n+k) asm,n,k — oo 3)

1 1
But |Zmnk| ™ FE < ((m+ n + k) |Zmn|) »F7FF ; by our assumption, implies that = (|xmnk| '"L+'1"+k) — 0 as m,n, k — oo,
by 3) =z eI = x* c I O

Proposition 3.2. The dual space of x* is A>. In other words (x*)* = A®.

Proof. We recall that

0, 0, 0, 0,
0, 0, 0, 0,
g'rnnk =
1
07 07 ..-m, O’ e
0, 0, 0, 0,

with m in the (m,n, k)th position and zero’s else where. With

03, . . QR 0,. . 0

1 .
T = Smnk, (|xmnk¢|) mintk = =

1
# 1 m 11 c m 11 1 mtnthk
0**’“’(m)*“"0+” 0, (m) , - 0
(m,n)™" (m,n, k)"
O FFIFE , . QmFRrREE 0, . .0
which is a triple gai sequence. Hence Syuni € X5, We have f(2) = 3 ZimnkYmnk. With 2 € x* and f € (x®)* the dual
m,n,k=1
space of 3. Take © = (Tmnk) = Smnk € x>. Then
[Ymnk| < [ FI1d(Smnk,0) < oo Vm,n, k (4)

Thus (Ymnk) is a bounded sequence and hence an triple analytic sequence. In other words y € A3. Therefore (x3)* = A3.

This completes the proof. O

c .
Proposition 3.3. (F3)ﬁ £ A3,
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Proof. Let y = (ymni) be an arbitrary point in (FS)B. If y is not in A3, then for each natural number p, we can find an

index mpnpkyp such that
(,ympnpkp,m) >p(p=1,2,3-) (5)

Define = {Zmnr} by

Boms) = W, for (m,n,k) = (myp,np, kp) for somep € N

0, otherwise

Then we have z is in '}, but for infinitely mnk,

([ymnk@mnk]) > 1. (7)

Consider the sequence z = {Zmnk}, where M (lell) =M (zl—p“> — s with

NgE

m=1n

D @mnk), (zmnk) = (@mn) - (8)

co
k=1

1

Then z is a point of T3. Also, 333" (2mnk) = 0. Hence, z is in T'®; but, by (7), 3233 (Zmnk¥ymnk) does not converge:

= Z Z Z TmnkYmnk diverges. 9)

Thus, the sequence y would not be in (F3)ﬂ . This contradiction proves that
3\ B 3
(T%)" c A, (10)

If we now choose yink = Zink = 1 and Ymnk = Tmnk = 0(m > 1) for all n, k then obviously = € I and s A3, but

Z Z TmnkYmnk — OO. Hence7 Y ¢ (FS)B (11)

m=1n=1n=1
c
From (10) and (11), we are granted (FB)B # A3 O
Proposition 3.4. The f— dual space of x> is A3.
E c .

Proof.  First, we observe that x*> C I'®, by Proposition 3.1. Theorefore (F3)B - (X3)ﬁ. But (F3)B # A®, by Proposition
3.2. Hence

A ()’ (12)

TmnkYmnk With © = (Tmnk) € X3-

18

Next we show that (X3)ﬂ C A3 Let y = (Ymnk) € (X3)ﬂ. Consider f (z) = i io:

1n=1k=1
Here
00 .0 0
00 ...0 0
s’mnk =
1
00 (m4n+k)! 0
00 .0 0
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. 1
Wlthm

57 in the (m, n, k)" position and zero otherwise.

00 .0 0 0 00 .0 0 0
00 0 0 0 00 ...0 0 0
1 _1 _1 1 _1 _1
00 .. (m+n+k)!  (m4n+k)! (m4+n+k)! 0 00 .. (m+n+k)!  (m4n+k)! (m+n+k)! 0
00 .0 0 0 00 ...0 0 0
00 .0 0 0
00 .0 0, 0
m+n+ k) |ZTmnk TR = . Hence converges to zero. There-
(( k) ) g
1 —1 —1
00 .. (m4n+k)!  (m+n+k)! (m+n+k)! -0
—1 1 1
00 .. (m4+n+k)!  (m+n+k)! (m+n+k)! -0
00 .0 0, 0
fore [(%mn - %mn+l - gmn-&-2) - (C\\Ym+1n - %m+1n+1 - %m+ln+2) - (C\?m+2n - gm—&-2n+1 - %m+2n+2)} € X - Hence

d((Smn = Smn+1 — Smn+2) = (Smtin — Smtint1 — Smtint2) = (Smt2n — Smt2nt1 — Smt2nt2),0) = 1. But [ymak| <

A ((Smn — Smnt1 — Smat2) = (Smtin — Smtint1 — Smtint2) = (Smt2n — Smtant1 — Smtant2),0) < [|f]] -1 < oo for
each m,n, k. Thus (Ymnk) is a triple bounded sequence and hence an analytic sequence. In other words y € A% But
Y = (Ymnk) is arbitrary in (X3)5 . Therefore

() cA® (13)

From (12) and (13) we get (XS)ﬁ =A% O

Proposition 3.5. x® has AK.

Proof. Let z = (Tmnk) € x> and take plmmkl — Z;@Z’iowijugzju for all m,n,k € N. Hence d(w,m[T’St]> =

SUPmnk ((m+n+k)!|xmnk|)m+ln+k cm>r+1ln>s+1,k>t+1— 0asm,n, k — oco. Therefore, z">% — z as

r, 8,t — oo in x® Thus x® has AK. This completes the proof. O

Proposition 3.6. x® is solid.

Proof. Let |Tmnk] < |Yymnk| and let y =

(Ymnk) € x°. We have (((m+n+k)!|xmnk|)4m+%+7c) <

(((m + 1+ k) Ymnk|) m+1"+k) . But (((m + 1+ k) Ymnk|) R € %%  because y € x> That is
(((m—i—n—i— k)! |ymnk|)m+it+k> - 0= (((m+n+ k)! \xmnk|)m+i+k> — 0asm,n,k — co. Therefore © = (Tmnr) € X°.

This completes the proof. O

Proposition 3.7. §— dual of x> is A3.
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Proof. Let y € 6— dual of XS. Then |TmnkYmnk| < M™+t"+E for some constant M > 0 and for each z € x3. Therefore

[Ymnk| < M™FHE for each m,n, k by taking

00 ...0 0 0
00 ...0 0 0
T = C\}mnk =
1
00 CEEwuaY 0 0
00 ...0 0 0
This shows that y € A3. Then
(") cA® (14)

On the other hand, let y € A%. Let € > 0 be given. Then |ymnk| < M™+n*k for each m, n, k and for some constant M > 0.

But z € x®. Hence ((m +n 4 k)! [Tmnk|) < €™T"T* for each m,n, k and for each € > 0. i.e [Tmnk| < % Hence
€m+n+k etk (EM)ernJrk 306
|mmnkymnk| = |xmnk| |ymnk| < m = m =y E (X )
AP ()’ (15)
From (14) and (15) we get (X3)5 =A% O

Proposition 3.8. (As)ﬂ = A3,
Proof.  Step 1: Let (Tmnk) € A? and let (Ymnk) € A3. Then we get |Ymnk]| TR < M for some constant M > 0. Also

1
(@mnk) € X = (1 + 1+ K)o ) 7HF < €= o
1

= [Emnk] S S T (o pn E R

Hence

oo

NE
NgE

0o oo oo

m=1n=1k=1

3
I
H
3
Il
H
Eod
I
_

< Z ZZQm+n+k Mm+n+kM (m+n+k)!
m=1n=1k=1
Therefore, we get that (zpmnk) € (AS)’B and so we have
3 3\8
x° C (A?%) (16)
Step 2: Let (Tmnk) € (AS)B. This says that
= Z Z Z |ZrmnkYmnk| < 00 for each (Ymnk) € A (17)

m=1n=1k=1
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Assume that (Tmnk) € x>, then there exists a sequence of positive integers (my + np + kp) strictly increasing such that

1 1
>
2mptnrptkp (m 4 n+k

Tmp+np+ky )',(p: 1,2,3,--+)

Take
ympvnpakp = 2mp+np+kp (m +n+ k)' (p = 17 27 37 U )
and Ymnk = 0 otherwise. Then (ymnk) € A3. But

5>

m=1n=1

oo
|ZmnkYmnk| = ZZZ ‘fl?mpnpkpympn,,k,,| S14+14+14---.

1 p=1

NgE

ES
Il

118

>

1n=1

We know that the infinite series 1 + 1+ 1 + --- diverges. Hence |mnkYmnk| diverges. This contradicts (17).

T8

>
Il

1
Hence (Zmnk) € x>. Therefore

(A7 c ¥ (18)
From (16) and (18) we get (AS)B =3 0

Definition 3.9. Let p = (pmnk) is a triple sequence of positive real numbers. Then

Pm

X 0) = {£ = @) : (((m 4714+ B i) 75755 )™ = 0asmyn,k — oo}

suppose that pmnk is a constant for each m,n,k then x* (p) = 2.

Proposition 3.10. Let 0 < prnk < @mnk and let {Z”"i"Z} be bounded. Then x*(q) C x* (p)-

Proof.  Let

zex’(q) (19)

Therefore we have

9mnk

(((m + 1+ k) [ Zmnk|) mﬁ#k) — 0asm,n, k — oo. (20)

9mn
Let tmnk = (((m+n+k)!|xmnk|)m+i+k) " and Amnk = fmnk - Since Pmnk < Gmnk, we have 0 < Apnp < 1. Take

mnk

0 < A < Amnk. Define

tonk, i (tmng > 1) 0, i (tmnk > 1)
Umnk = ; Umnk = (21)
0, if (tmnk < 1) tmnk, if (Bmnk < 1)

A A A .
tmnk = Umnk + Umnk; t,70F = u mek 4y mek Now it follows that

Amnk

o Amnk A
mnk S Umnk S tmnky’u ke S Umnk-

u mnk

. A A A . A
Since t,mnk = wpmuk 4 o7 mek then 670 < bk + Uy

((((m +n+k) |$mnk|)m)qm"k)mnk < (((m 14 k) (@i |) TR )"m"’“
Pmnk

= (6 + 4 D) 727 ) ) < (04 ) k) )

Imnk

Pmnk Imnk

= (((n+ 0+ B) a7 ) ) < (n 4t B k) )

Pmnk

But (((m +n+ k) [Zmnk]) TR )qmnk — 0 as m,n, k — oo. (by (20)). Therefore (((m +n+ k) [Tmnk|) m+1"+k) -0
as m,n, k — oo. Hence

z€x’(p) (22)

From (19) and (22) we get x° (¢) C x* (p) . O
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Proposition 3.11.

(a) Let 0 < infpmnk < pmnk < 1. Then x* (p) C x*
(b) Let 1 < ponk < SUPPmnk < 00. Then x* C x> (p).
Proof.

(a) Let = € x* (p)

(((m + 14 k) [Zmnk|) T )pmnk — 0asm,n,k — oo (23)
Since 0 < infpomnk < Pmnk < 1,
((0n 4+ 1+ )i ) 7575 ) < (((m+ 14 B! [ ) 77055 ) (24)
From (23) and (24) it follows that
zex® (25)
Thus x® (p) C x3. This completes the proof.
(b) Let pmnk > 1 for each mnk and suppmnr < co and let x € x3.
(((m+n+k)!|xmnk|)m+h+k) —0asm,n,k — oo (26)
Since 1 < pmnk < SUPPmnk < 00, We have
Pmn
((m+ 4 ) ) 7757 ) < (414 K i) 7 ) (27)

(((m + 1+ k) [ Zmnk]) R )pmn — 0asm,n,k — oo (by using (26)). Therefore z € x> (p).

O
Proposition 3.12. Let 0 < prmnk < Gmnk < 00 for each m,n, k. Then z € x* (p) C z € x*(q).
Proof. Let z € x° (p)
(((m+n+k)!|xmnk|)m)pmnk —0asm,n,k — oo (28)
This implies that (((m +n+k)! |mmnk|)m> < 1 for sufficiently large m,n, k. We get
(L e RS (G R e ) (29)
= (((m +n+k)! |xmnk|)m)qmnk — 0asm,n,k — oo (by using (28)). Since z € x*(¢), hence = € x* (p) C x*(¢q). O

Proposition 3.13. (X?’)” =A% forp=ao,p,7, f.
Proof. Step 1: We have x® has AK by Proposition (3.5). Hence by Lemma (2)(ii)[Wilansky], we get (X3)ﬁ = (X3)f.
But (XS)B = A3. Hence

()" = A° (30)
Step 2: Since AK implies AD, by Lemma 2(iii)[Wilansky] we get (x3)B = (XB)W . Therefore

(XB)W — A3 (31)

Step 3: We have x® is normal by Proposition (3.6). Hence, [Kampthan, Proposition 2.7], we get

From (30), (31) and (32), we have (x*)”

|
—~
>0
w
~
©
Il
—~
=
w
~—
2
[
—~
>
w
~
[
|
-
w
O
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