International Journal of Mathematics And its Applications

The Triple χ^{3} Sequence Spaces

Ayhan Esi ${ }^{1 *}$ and N.Subramanian ${ }^{2}$
1 Department of Mathematics, Adiyaman University, Adiyaman, Turkey.
2 Department of Mathematics, SASTRA University, Thanjavur, India.

```
Abstract: Let \(\chi^{3}\) denote the space of all triple gai sequences and \(\Lambda^{3}\) the space of all triple analytic sequences. This paper some theorems on general properties of \(\chi^{3}\) sequences have been established.
MSC: \(40 \mathrm{~A} 05,40 \mathrm{C} 05,40 \mathrm{D} 05\).
```

Keywords: Gai sequence, analytic sequence, triple sequence, dual space, AK space, solid, $\delta-$ dual.
(C) JS Publication.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write w^{3} for the set of all complex sequences $\left(x_{m n k}\right)$, where $m, n, k \in \mathbb{N}$, the set of positive integers. Then, w^{3} is a linear space under the coordinate wise addition and scalar multiplication. Let $\left(x_{m n k}\right)$ be a triple sequence of real or complex numbers. Then the series $\sum_{m, n, k=1}^{\infty} x_{m n k}$ is called a triple series. The triple series $\sum_{m, n, k=1}^{\infty} x_{m n k}$ is said to be convergent if and only if the triple sequence $\left(S_{m n k}\right)$ is convergent, where

$$
S_{m n k}=\sum_{i, j, q=1}^{m, n, k} x_{i j q}(m, n, k=1,2,3, \ldots) .
$$

A sequence $x=\left(x_{m n k}\right)$ is said to be triple analytic if

$$
\sup _{m, n, k}\left|x_{m n k}\right|^{\frac{1}{m+n+k}}<\infty
$$

The vector space of all triple analytic sequences are usually denoted by Λ^{3}. A sequence $x=\left(x_{m n k}\right)$ is called triple entire sequence if

$$
\left|x_{m n k}\right|^{\frac{1}{m+n+k}} \rightarrow 0 \text { as } m, n, k \rightarrow \infty .
$$

The vector space of all triple entire sequences are usually denoted by Γ^{3}. The space Λ^{3} and Γ^{2} is a metric space with the metric

$$
\begin{equation*}
d(x, y)=\sup _{m, n, k}\left\{\left|x_{m n k}-y_{m n k}\right|^{\frac{1}{m+n+k}}: m, n, k: 1,2,3, \ldots\right\} \tag{1}
\end{equation*}
$$

[^0]forall $x=\left\{x_{m n k}\right\}$ and $y=\left\{y_{m n k}\right\} i n \Gamma^{3}$. Let $\phi=\{$ finite sequences $\}$. Consider a double sequence $x=\left(x_{m n k}\right)$. The $(m, n, k)^{t h}$ section $x^{[m, n, k]}$ of the sequence is defined by $x^{[m, n, k]}=\sum_{i, j, q=0}^{m, n, k} x_{i j q} \delta_{i j q}$ for all $m, n, k \in \mathbb{N}$,
\[

\delta_{m n k}=\left($$
\begin{array}{cccccc}
0 & 0 & \ldots & 0 & 0 & \ldots \\
0 & 0 & \ldots & 0 & 0 & \ldots \\
\vdots & & & & \\
0 & 0 & \ldots & 1 & 0 & \ldots \\
0 & 0 & \ldots & 0 & 0 & \ldots
\end{array}
$$\right)
\]

with 1 in the $(m, n, k)^{t h}$ position and zero other wise. A sequence $x=\left(x_{m n k}\right)$ is called triple gai sequence if $\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}} \rightarrow 0$ as $m, n, k \rightarrow \infty$. The triple gai sequences will be denoted by χ^{3}. Consider a triple sequence $x=\left(x_{m n k}\right)$. The $(m, n, k)^{t h}$ section $x^{[m, n, k]}$ of the sequence is defined by $x^{[m, n, k]}=\sum_{i, j, q=0}^{m, n, k} x_{i j q} \Im_{i j q}$ for all $m, n, k \in \mathbb{N}$; where $\Im_{i j q}$ denotes the triple sequence whose only non zero term is a $\frac{1}{(i+j+k)!}$ in the $(i, j, k)^{t h}$ place for each $i, j, k \in \mathbb{N}$. An FK-space(or a metric space) X is said to have AK property if ($\Im_{m n k}$) is a Schauder basis for X, or equivalently $x^{[m, n, k]} \rightarrow x$. An FDK-space is a triple sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings are continuous. If X is a sequence space, we give the following definitions:
(1). X^{\prime} is continuous dual of X;
(2). $X^{\alpha}=\left\{a=\left(a_{m n k}\right): \sum_{m, n, k=1}^{\infty}\left|a_{m n k} x_{m n k}\right|<\infty\right.$, for each $\left.x \in X\right\}$;
(3). $X^{\beta}=\left\{a=\left(a_{m n k}\right): \sum_{m, n, k=1}^{\infty} a_{m n k} x_{m n k}\right.$ is convergent, for each $\left.x \in X\right\}$;
(4). $X^{\gamma}=\left\{a=\left(a_{m n}\right): \sup _{m, n \geq 1}\left|\sum_{m, n, k=1}^{M, N, K} a_{m n k} x_{m n k}\right|<\infty\right.$, for each $\left.x \in X\right\}$;
(5). Let X be an FK-space $\supset \phi$; then $X^{f}=\left\{f\left(\Im_{m n k}\right): f \in X^{\prime}\right\}$;
(6). $X^{\delta}=\left\{a=\left(a_{m n k}\right): \sup _{m, n, k}\left|a_{m n k} x_{m n k}\right|^{1 / m+n+k}<\infty\right.$, for each $\left.x \in X\right\}$;
$X^{\alpha} \cdot X^{\beta}, X^{\gamma}$ are called $\alpha-$ (or Köthe-Toeplitz) dual of $X, \beta-$ (or generalized-Köthe-Toeplitz) dual of $X, \gamma-$ dual of $X, \delta-$ dual of X respectively. X^{α} is defined by Gupta and Kamptan. It is clear that $X^{\alpha} \subset X^{\beta}$ and $X^{\alpha} \subset X^{\gamma}$, but $X^{\alpha} \subset X^{\gamma}$ does not hold.

2. Definitions and Preliminaries

A sequence $x=\left(x_{m n k}\right)$ is said to be triple analytic if $\sup _{m n k}\left|x_{m n k}\right|^{\frac{1}{m+n+k}}<\infty$. The vector space of all triple analytic sequences is usually denoted by Λ^{3}. A sequence $x=\left(x_{m n k}\right)$ is called triple entire sequence if $\left|x_{m n k}\right|^{\frac{1}{m+n+k}} \rightarrow 0$ as $m, n, k \rightarrow \infty$. The vector space of triple entire sequences is usually denoted by Γ^{3}. A sequence $x=\left(x_{m n k}\right)$ is called triple gai sequence if $\left((m+n+k)!\left|x_{m n k}\right|\right)^{1 / m+n+k} \rightarrow 0$ as $m, n, k \rightarrow \infty$. The vector space of triple gai sequences is usually denoted by χ^{3}. The space χ^{3} is a metric space with the metric

$$
\begin{equation*}
d(x, y)=\sup _{m, n, k}\left\{\left((m+n+k)!\left|x_{m n k}-y_{m n k}\right|\right)^{\frac{1}{m+n+k}}: m, n, k: 1,2,3, \ldots\right\} \tag{2}
\end{equation*}
$$

for all $x=\left\{x_{m n k}\right\}$ and $y=\left\{y_{m n k}\right\}$ in χ^{3}. In this chapter we study the general properties of χ^{3} establishing the following theorems:

3. Main Results

Proposition 3.1. $\chi^{3} \subset \Gamma^{3}$ with the hypothesis that $\left|x_{m n k}\right|^{\frac{1}{m+n+k}} \leq\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}$.
Proof. Let $x \in \chi^{3}$. Then we have the following implications

$$
\begin{equation*}
\left(\left((m+n+k)!\left|x_{m n}\right|\right)^{\frac{1}{m+n+k}}\right) \text { as } m, n, k \rightarrow \infty \tag{3}
\end{equation*}
$$

But $\left|x_{m n k}\right|^{\frac{1}{m+n+k}} \leq\left((m+n+k)!\left|x_{m n}\right|^{\frac{1}{m+n+k}}\right.$; by our assumption, implies that $\Rightarrow\left(\left|x_{m n k}\right|^{\frac{1}{m+n+k}}\right) \rightarrow 0$ as $m, n, k \rightarrow \infty$, by $(3) \Rightarrow x \in \Gamma^{3} \Rightarrow \chi^{3} \subset \Gamma^{3}$.

Proposition 3.2. The dual space of χ^{3} is Λ^{3}. In other words $\left(\chi^{3}\right)^{*}=\Lambda^{3}$.
Proof. We recall that

$$
\Im_{m n k}=\left(\begin{array}{ccccc}
0, & 0, & \ldots 0, & 0, & \ldots \\
0, & 0, & \ldots 0, & 0, & \ldots \\
\cdot & & & & \\
\cdot & & & & \\
. & & & \\
0, & 0, & \ldots \frac{1}{(m+n+k)!}, & 0, & \ldots \\
0, & 0, & \ldots 0, & 0, & \ldots \\
& & &
\end{array}\right)
$$

with $\frac{1}{(m+n+k)!}$ in the (m, n, k)th position and zero's else where. With
which is a triple gai sequence. Hence $\Im_{m n k} \in \chi^{3}$. We have $f(x)=\sum_{m, n, k=1}^{\infty} x_{m n k} y_{m n k}$. With $x \in \chi^{3}$ and $f \in\left(\chi^{3}\right)^{*}$ the dual space of χ^{3}. Take $x=\left(x_{m n k}\right)=\Im_{m n k} \in \chi^{3}$. Then

$$
\begin{equation*}
\left|y_{m n k}\right| \leq\|f\| d\left(\Im_{m n k}, 0\right)<\infty \quad \forall m, n, k \tag{4}
\end{equation*}
$$

Thus $\left(y_{m n k}\right)$ is a bounded sequence and hence an triple analytic sequence. In other words $y \in \Lambda^{3}$. Therefore $\left(\chi^{3}\right)^{*}=\Lambda^{3}$. This completes the proof.

Proposition 3.3. $\left(\Gamma^{3}\right)^{\beta} \nRightarrow \Lambda^{3}$.

Proof. Let $y=\left(y_{m n k}\right)$ be an arbitrary point in $\left(\Gamma^{3}\right)^{\beta}$. If y is not in Λ^{3}, then for each natural number p, we can find an index $m_{p} n_{p} k_{p}$ such that

$$
\begin{equation*}
\left(\left|y_{m_{p} n_{p} k_{p}}\right|^{\frac{1}{m_{p}+n_{p}+k_{p}}}\right)>p,(p=1,2,3, \cdots) \tag{5}
\end{equation*}
$$

Define $x=\left\{x_{m n k}\right\}$ by

$$
\left(x_{m n k}\right)= \begin{cases}\frac{1}{p^{m+n+k}}, & \text { for }(m, n, k)=\left(m_{p}, n_{p}, k_{p}\right) \text { for some } p \in \mathbb{N} \tag{6}\\ 0, & \text { otherwise }\end{cases}
$$

Then we have x is in Γ^{3}, but for infinitely $m n k$,

$$
\begin{equation*}
\left(\left|y_{m n k} x_{m n k}\right|\right)>1 . \tag{7}
\end{equation*}
$$

Consider the sequence $z=\left\{z_{m n k}\right\}$, where $M\left(\frac{z_{111}}{\rho}\right)=M\left(\frac{x_{111}}{\rho}\right)-s$ with

$$
\begin{equation*}
s=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left(x_{m n k}\right),\left(z_{m n k}\right)=\left(x_{m n k}\right) . \tag{8}
\end{equation*}
$$

Then z is a point of Γ^{3}. Also, $\sum \sum \sum\left(z_{m n k}\right)=0$. Hence, z is in Γ^{3}; but, by (7), $\sum \sum \sum\left(z_{m n k} y_{m n k}\right)$ does not converge:

$$
\begin{equation*}
\Rightarrow \sum \sum \sum x_{m n k} y_{m n k} \text { diverges } \tag{9}
\end{equation*}
$$

Thus, the sequence y would not be in $\left(\Gamma^{3}\right)^{\beta}$. This contradiction proves that

$$
\begin{equation*}
\left(\Gamma^{3}\right)^{\beta} \subset \Lambda^{3} . \tag{10}
\end{equation*}
$$

If we now choose $y_{1 n k}=x_{1 n k}=1$ and $y_{m n k}=x_{m n k}=0(m>1)$ for all n, k then obviously $x \in \Gamma^{3}$ and $y \in \Lambda^{3}$, but

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} x_{m n k} y_{m n k}=\infty . \text { Hence, } y \notin\left(\Gamma^{3}\right)^{\beta} \tag{11}
\end{equation*}
$$

From (10) and (11), we are granted $\left(\Gamma^{3}\right)^{\beta} \nRightarrow \Lambda^{3}$.
Proposition 3.4. The $\beta-$ dual space of χ^{3} is Λ^{3}.
Proof. First, we observe that $\chi^{3} \subset \Gamma^{3}$, by Proposition 3.1. Theorefore $\left(\Gamma^{3}\right)^{\beta} \subset\left(\chi^{3}\right)^{\beta}$. But $\left(\Gamma^{3}\right)^{\beta} \neq \Lambda^{3}$, by Proposition 3.2. Hence

$$
\begin{equation*}
\Lambda^{3} \subset\left(\chi^{3}\right)^{\beta} \tag{12}
\end{equation*}
$$

Next we show that $\left(\chi^{3}\right)^{\beta} \subset \Lambda^{3}$. Let $y=\left(y_{m n k}\right) \in\left(\chi^{3}\right)^{\beta}$. Consider $f(x)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} x_{m n k} y_{m n k}$ with $x=\left(x_{m n k}\right) \in \chi^{3}$. Here

$$
\Im_{m n k}=\left(\begin{array}{cccccc}
0 & 0 & \ldots 0 & 0 & \ldots \\
0 & 0 & \ldots 0 & 0 & \ldots \\
. & & & & & \\
. & & & & & \\
. & & & & & \\
0 & 0 & \ldots \frac{1}{(m+n+k)!} & 0 & \ldots \\
0 & 0 & \ldots 0 & 0 & \ldots
\end{array}\right)
$$

with $\frac{1}{(m+n+k)!}$ in the $(m, n, k)^{t h}$ position and zero otherwise.

$$
\begin{aligned}
& x=\left[\left(\Im_{m n}-\Im_{m n+1}-\Im_{m n+2}\right)-\left(\Im_{m+1 n}-\Im_{m+1 n+1}-\Im_{m+1 n+2}\right)-\left(\Im_{m+2 n}-\Im_{m+2 n+1}-\Im_{m+2 n+2}\right)\right]
\end{aligned}
$$

fore $\left[\left(\Im_{m n}-\Im_{m n+1}-\Im_{m n+2}\right)-\left(\Im_{m+1 n}-\Im_{m+1 n+1}-\Im_{m+1 n+2}\right)-\left(\Im_{m+2 n}-\Im_{m+2 n+1}-\Im_{m+2 n+2}\right)\right] \quad \in \quad \chi^{3}$. Hence $d\left(\left(\Im_{m n}-\Im_{m n+1}-\Im_{m n+2}\right)-\left(\Im_{m+1 n}-\Im_{m+1 n+1}-\Im_{m+1 n+2}\right)-\left(\Im_{m+2 n}-\Im_{m+2 n+1}-\Im_{m+2 n+2}\right), 0\right)=1$. But $\left|y_{m n k}\right| \leq$ $d\left(\left(\Im_{m n}-\Im_{m n+1}-\Im_{m n+2}\right)-\left(\Im_{m+1 n}-\Im_{m+1 n+1}-\Im_{m+1 n+2}\right)-\left(\Im_{m+2 n}-\Im_{m+2 n+1}-\Im_{m+2 n+2}\right), 0\right) \leq\|f\| \cdot 1<\infty$ for each m, n, k. Thus $\left(y_{m n k}\right)$ is a triple bounded sequence and hence an analytic sequence. In other words $y \in \Lambda^{3}$. But $y=\left(y_{m n k}\right)$ is arbitrary in $\left(\chi^{3}\right)^{\beta}$. Therefore

$$
\begin{equation*}
\left(\chi^{3}\right)^{\beta} \subset \Lambda^{3} \tag{13}
\end{equation*}
$$

From (12) and (13) we get $\left(\chi^{3}\right)^{\beta}=\Lambda^{3}$.
Proposition 3.5. χ^{3} has $A K$.
Proof. Let $x=\left(x_{m n k}\right) \in \chi^{3}$ and take $x^{[m, n, k]}=\sum_{i, j, u=0}^{m, n, k} x_{i j u} \Im_{i j u}$ for all $m, n, k \in \mathbb{N}$. Hence $d\left(x, x^{[r, s t]}\right)=$ $\sup _{m n k}\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}: m \geq r+1, n \geq s+1, k \geq t+1 \rightarrow 0$ as $m, n, k \rightarrow \infty$. Therefore, $x^{[r, s, t]} \rightarrow x$ as $r, s, t \rightarrow \infty$ in χ^{3} Thus χ^{3} has AK. This completes the proof.

Proposition 3.6. χ^{3} is solid.
Proof. Let $\left|x_{m n k}\right| \leq\left|y_{m n k}\right|$ and let $y=\left(y_{m n k}\right) \in \chi^{3}$. We have $\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right) \leq$ $\left(\left((m+n+k)!\left|y_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)$. But $\quad\left(\left((m+n+k)!\left|y_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right) \in \quad \chi^{3}$, because $y \quad \in \quad \chi^{3}$. That is $\left(\left((m+n+k)!\left|y_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right) \rightarrow 0 \Rightarrow\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right) \rightarrow 0 a s m, n, k \rightarrow \infty$. Therefore $x=\left(x_{m n k}\right) \in \chi^{3}$. This completes the proof.

Proposition 3.7. $\delta-$ dual of χ^{3} is Λ^{3}.

Proof. Let $y \in \delta-$ dual of χ^{3}. Then $\left|x_{m n k} y_{m n k}\right| \leq M^{m+n+k}$ for some constant $M>0$ and for each $x \in \chi^{3}$. Therefore $\left|y_{m n k}\right| \leq M^{m+n+k}$ for each m, n, k by taking

$$
x=\Im_{m n k}=\left(\begin{array}{cccccc}
0 & 0 & \ldots 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots 0 & 0 & \ldots & 0 \\
. & & & & & \\
. & & & & & \\
. & & & & & \\
0 & 0 & \ldots \frac{1}{(m+n+k)!} & 0 & \ldots & 0 \\
0 & 0 & \ldots 0 & 0 & \ldots & 0 \\
& & & & &
\end{array}\right) .
$$

This shows that $y \in \Lambda^{3}$. Then

$$
\begin{equation*}
\left(\chi^{3}\right)^{\delta} \subset \Lambda^{3} \tag{14}
\end{equation*}
$$

On the other hand, let $y \in \Lambda^{3}$. Let $\epsilon>0$ be given. Then $\left|y_{m n k}\right|<M^{m+n+k}$ for each m, n, k and for some constant $M>0$. But $x \in \chi^{3}$. Hence $\left((m+n+k)!\left|x_{m n k}\right|\right)<\epsilon^{m+n+k}$ for each m, n, k and for each $\epsilon>0$. i.e $\left|x_{m n k}\right|<\frac{\epsilon^{m+n+k}}{(m+n+k)!}$. Hence

$$
\begin{gather*}
\left|x_{m n k} y_{m n k}\right|=\left|x_{m n k}\right|\left|y_{m n k}\right|<\frac{\epsilon^{m+n+k}}{(m+n+k)!} M^{m+n+k}=\frac{(\epsilon M)^{m+n+k}}{(m+n+k)!} \Rightarrow y \in\left(\chi^{3}\right)^{\delta} \\
\Lambda^{3} \subset\left(\chi^{3}\right)^{\delta} \tag{15}
\end{gather*}
$$

From (14) and (15) we get $\left(\chi^{3}\right)^{\delta}=\Lambda^{3}$.
Proposition 3.8. $\left(\Lambda^{3}\right)^{\beta}=\Lambda^{3}$.
Proof. Step 1: Let $\left(x_{m n k}\right) \in \Lambda^{3}$ and let $\left(y_{m n k}\right) \in \Lambda^{3}$. Then we get $\left|y_{m n k}\right|^{\frac{1}{m+n+k}} \leq M$ for some constant $M>0$. Also

$$
\begin{aligned}
\left(x_{m n k}\right) \in \chi^{3} & \Rightarrow\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}} \leq \epsilon=\frac{1}{2 M} \\
& \Rightarrow\left|x_{m n k}\right| \leq \frac{1}{2^{m+n+k} M^{m+n+k}(m+n+k)!} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|x_{m n k} y_{m n k}\right| & \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|x_{m n k}\right|\left|y_{m n k}\right| \\
& <\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2^{m+n+k}} \frac{1}{M^{m+n+k}} M^{m+n+k} \frac{1}{(m+n+k)!} \\
& <\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{2^{m+n+k}} \frac{1}{(m+n+k)!}<\infty
\end{aligned}
$$

Therefore, we get that $\left(x_{m n k}\right) \in\left(\Lambda^{3}\right)^{\beta}$ and so we have

$$
\begin{equation*}
\chi^{3} \subset\left(\Lambda^{3}\right)^{\beta} \tag{16}
\end{equation*}
$$

Step 2: Let $\left(x_{m n k}\right) \in\left(\Lambda^{3}\right)^{\beta}$. This says that

$$
\begin{equation*}
\Rightarrow \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|x_{m n k} y_{m n k}\right|<\infty \text { for each }\left(y_{m n k}\right) \in \Lambda^{3} \tag{17}
\end{equation*}
$$

Assume that $\left(x_{m n k}\right) \notin \chi^{3}$, then there exists a sequence of positive integers ($m_{p}+n_{p}+k_{p}$) strictly increasing such that

$$
\left|x_{m_{p}+n_{p}+k_{p}}\right|>\frac{1}{2^{m_{p}+n_{p}+k_{p}}} \frac{1}{(m+n+k)!},(p=1,2,3, \cdots)
$$

Take

$$
y_{m_{p}, n_{p}, k_{p}}=2^{m_{p}+n_{p}+k_{p}}(m+n+k)!(p=1,2,3, \cdots)
$$

and $y_{m n k}=0$ otherwise. Then $\left(y_{m n k}\right) \in \Lambda^{3}$. But

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|x_{m n k} y_{m n k}\right|=\sum \sum \sum_{p=1}^{\infty}\left|x_{m_{p} n_{p} k_{p}} y_{m_{p} n_{p} k_{p}}\right|>1+1+1+\cdots .
$$

We know that the infinite series $1+1+1+\cdots$ diverges. Hence $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|x_{m n k} y_{m n k}\right|$ diverges. This contradicts (17). Hence $\left(x_{m n k}\right) \in \chi^{3}$. Therefore

$$
\begin{equation*}
\left(\Lambda^{3}\right)^{\beta} \subset \chi^{3} \tag{18}
\end{equation*}
$$

From (16) and (18) we get $\left(\Lambda^{3}\right)^{\beta}=\chi^{3}$.
Definition 3.9. Let $p=\left(p_{m n k}\right)$ is a triple sequence of positive real numbers. Then

$$
\chi^{3}(p)=\left\{x=\left(x_{m n k}\right):\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{p_{m n k}} \rightarrow 0 \text { as } m, n, k \rightarrow \infty\right\}
$$

suppose that $p_{m n k}$ is a constant for each m, n, k then $\chi^{3}(p)=\chi^{3}$.
Proposition 3.10. Let $0 \leq p_{m n k} \leq q_{m n k}$ and let $\left\{\frac{q_{m n k}}{p_{m n k}}\right\}$ be bounded. Then $\chi^{3}(q) \subset \chi^{3}(p)$.
Proof. Let

$$
\begin{equation*}
x \in \chi^{3}(q) \tag{19}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}} \rightarrow 0 \text { as } m, n, k \rightarrow \infty . \tag{20}
\end{equation*}
$$

Let $t_{m n k}=\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}}$ and $\lambda_{m n k}=\frac{p_{m n k}}{q_{m n k}}$. Since $p_{m n k} \leq q_{m n k}$, we have $0 \leq \lambda_{m n k} \leq 1$. Take $0<\lambda<\lambda_{m n k}$. Define

$$
u_{m n k}=\left\{\begin{array}{ll}
t_{m n k}, & \text { if }\left(t_{m n k} \geq 1\right) \tag{21}\\
0, & \text { if }\left(t_{m n k}<1\right)
\end{array} ; v_{m n k}= \begin{cases}0, & \text { if }\left(t_{m n k} \geq 1\right) \\
t_{m n k}, & \text { if }\left(t_{m n k}<1\right)\end{cases}\right.
$$

$t_{m n k}=u_{m n k}+v_{m n k} ; t_{m n k}^{\lambda_{m n k}}=u_{m n k}^{\lambda_{m n k}}+v_{m n k}^{\lambda_{m n k}}$. Now it follows that

$$
u_{m n k}^{\lambda_{m n k}} \leq u_{m n k} \leq t_{m n k} ; v_{m n k}^{\lambda_{m n k}} \leq u_{m n k}^{\lambda} .
$$

Since $t_{m n k}^{\lambda_{m n k}}=u_{m n k}^{\lambda_{m n k}}+v_{m n k}^{\lambda_{m n k}}$, then $t_{m n k}^{\lambda_{m n k}} \leq t_{m n k}+v_{m n k}^{\lambda}$.

$$
\begin{aligned}
& \left(\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}}\right)^{\lambda_{m n k}} \leq\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}} \\
\Rightarrow & \left(\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}}\right)^{\frac{p_{m n k}}{q_{m n k}}} \leq\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}} \\
\Rightarrow & \left(\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}}\right)^{p_{m n k}} \leq\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}} .
\end{aligned}
$$

But $\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}} \rightarrow 0$ as $m, n, k \rightarrow \infty$. (by (20)). Therefore $\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{p_{m n k}} \rightarrow 0$ as $m, n, k \rightarrow \infty$. Hence

$$
\begin{equation*}
x \in \chi^{3}(p) \tag{22}
\end{equation*}
$$

From (19) and (22) we get $\chi^{3}(q) \subset \chi^{3}(p)$.

Proposition 3.11.

(a) Let $0<$ infp $p_{m n k} \leq p_{m n k} \leq 1$. Then $\chi^{3}(p) \subset \chi^{3}$
(b) Let $1 \leq p_{m n k} \leq \operatorname{supp}_{m n k}<\infty$. Then $\chi^{3} \subset \chi^{3}(p)$.

Proof.
(a) Let $x \in \chi^{3}(p)$

$$
\begin{equation*}
\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{p_{m n k}} \rightarrow 0 \text { as } m, n, k \rightarrow \infty \tag{23}
\end{equation*}
$$

Since $0<i n f p_{m n k} \leq p_{m n k} \leq 1$,

$$
\begin{equation*}
\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right) \leq\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{p_{m n}} \tag{24}
\end{equation*}
$$

From (23) and (24) it follows that

$$
\begin{equation*}
x \in \chi^{3} \tag{25}
\end{equation*}
$$

Thus $\chi^{3}(p) \subset \chi^{3}$. This completes the proof.
(b) Let $p_{m n k} \geq 1$ for each $m n k$ and $\operatorname{supp}_{m n k}<\infty$ and let $x \in \chi^{3}$.

$$
\begin{equation*}
\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right) \rightarrow 0 \text { as } m, n, k \rightarrow \infty \tag{26}
\end{equation*}
$$

Since $1 \leq p_{m n k} \leq \operatorname{supp}_{m n k}<\infty$, we have

$$
\begin{equation*}
\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{p_{m n}} \leq\left(\left((m+n+k)!\left|x_{m n k}\right|^{\frac{1}{m+n+k}}\right)\right. \tag{27}
\end{equation*}
$$

$$
\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{p_{m n}} \rightarrow 0 \text { as } m, n, k \rightarrow \infty(\text { by using }(26)) . \text { Therefore } x \in \chi^{3}(p) .
$$

Proposition 3.12. Let $0<p_{m n k} \leq q_{m n k}<\infty$ for each m, n, k. Then $x \in \chi^{3}(p) \subseteq x \in \chi^{3}(q)$.
Proof. Let $x \in \chi^{3}(p)$

$$
\begin{equation*}
\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{p_{m n k}} \rightarrow 0 \text { as } m, n, k \rightarrow \infty \tag{28}
\end{equation*}
$$

This implies that $\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right) \leq 1$ for sufficiently large m, n, k. We get

$$
\begin{equation*}
\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}} \leq\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{p_{m n k}} \tag{29}
\end{equation*}
$$

$\Rightarrow\left(\left((m+n+k)!\left|x_{m n k}\right|\right)^{\frac{1}{m+n+k}}\right)^{q_{m n k}} \rightarrow 0$ as $m, n, k \rightarrow \infty($ by using $(28))$. Since $x \in \chi^{3}(q)$, hence $x \in \chi^{3}(p) \subseteq \chi^{3}(q)$.
Proposition 3.13. $\left(\chi^{3}\right)^{\mu}=\Lambda^{3}$ for $\mu=\alpha, \beta, \gamma, f$.
Proof. Step 1: We have χ^{3} has AK by Proposition (3.5). Hence by Lemma (2)(ii)[Wilansky], we get $\left(\chi^{3}\right)^{\beta}=\left(\chi^{3}\right)^{f}$. But $\left(\chi^{3}\right)^{\beta}=\Lambda^{3}$. Hence

$$
\begin{equation*}
\left(\chi^{3}\right)^{\beta}=\Lambda^{3} \tag{30}
\end{equation*}
$$

Step 2: Since AK implies AD, by Lemma 2(iii)[Wilansky] we get $\left(\chi^{3}\right)^{\beta}=\left(\chi^{3}\right)^{\gamma}$. Therefore

$$
\begin{equation*}
\left(\chi^{3}\right)^{\gamma}=\Lambda^{3} \tag{31}
\end{equation*}
$$

Step 3: We have χ^{3} is normal by Proposition (3.6). Hence, [Kampthan, Proposition 2.7], we get

$$
\begin{equation*}
\left(\chi^{3}\right)^{\alpha}=\left(\chi^{3}\right)^{\gamma}=\Lambda^{3} \tag{32}
\end{equation*}
$$

From (30), (31) and (32), we have $\left(\chi^{3}\right)^{\alpha}=\left(\chi^{3}\right)^{\beta}=\left(\chi^{3}\right)^{\gamma}=\left(\chi^{3}\right)^{f}=\Lambda^{3}$.

References

[1] T.Apostol, Mathematical Analysis, Addison-wesley , London, (1978).
[2] A.Esi and E.Savaş, On lacunary statistically convergent triple sequences in probabilistic normed space,Appl.Math.and Inf.Sci., 9(2015).
[3] A.Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures, 1(2)(2014), 16-25.
[4] A.Esi and M.Necdet Catalbas, Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2(1)(2014), 6-10.
[5] A.Sahiner, M.Gurdal and F.K.Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8(2)(2007), 49-55.
[6] G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
[7] N.Subramanian and U.K.Misra, Characterization of gai sequences via double Orlicz space, Southeast Asian Bulletin of Mathematics, (revised).
[8] N.Subramanian, B.C.Tripathy and C.Murugesan, The double sequence space of Γ^{2}, Fasciculi Math., 40(2008), 91-103.
[9] N.Subramanian, B.C.Tripathy and C.Murugesan, The Cesáro of double entire sequences, International Mathematical Forum, 4(2)(2009), 49-59.

[^0]: * E-mail: aesi23@hotmail.com

