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1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write w3

for the set of all complex sequences (xmnk), where m,n, k ∈ N, the set of positive integers. Then, w3 is a linear space under

the coordinate wise addition and scalar multiplication. Let (xmnk) be a triple sequence of real or complex numbers. Then

the series
∞∑

m,n,k=1

xmnk is called a triple series. The triple series
∞∑

m,n,k=1

xmnk is said to be convergent if and only if the triple

sequence (Smnk)is convergent, where

Smnk =

m,n,k∑
i,j,q=1

xijq(m,n, k = 1, 2, 3, ...).

A sequence x = (xmnk)is said to be triple analytic if

sup
m,n,k

|xmnk|
1

m+n+k <∞.

The vector space of all triple analytic sequences are usually denoted by Λ3. A sequence x = (xmnk) is called triple entire

sequence if

|xmnk|
1

m+n+k → 0 as m,n, k →∞.

The vector space of all triple entire sequences are usually denoted by Γ3. The space Λ3 and Γ2 is a metric space with the

metric

d(x, y) = supm,n,k
{
|xmnk − ymnk|

1
m+n+k : m,n, k : 1, 2, 3, ...

}
, (1)
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The Triple χ3 Sequence Spaces

forall x = {xmnk} and y = {ymnk} inΓ3. Let φ = {finite sequences}. Consider a double sequence x = (xmnk). The

(m,n, k)th section x[m,n,k] of the sequence is defined by x[m,n,k] =
m,n,k∑
i,j,q=0

xijqδijq for all m,n, k ∈ N,

δmnk =



0 0 . . . 0 0 . . .

0 0 . . . 0 0 . . .

...

0 0 . . . 1 0 . . .

0 0 . . . 0 0 . . .


with 1 in the (m,n, k)th position and zero other wise. A sequence x = (xmnk) is called triple gai sequence if

((m+ n+ k)! |xmnk|)
1

m+n+k → 0 as m,n, k →∞. The triple gai sequences will be denoted by χ3. Consider a triple sequence

x = (xmnk). The (m,n, k)th section x[m,n,k] of the sequence is defined by x[m,n,k] =
m,n,k∑
i,j,q=0

xijq=ijq for all m,n, k ∈ N ; where

=ijq denotes the triple sequence whose only non zero term is a 1
(i+j+k)!

in the (i, j, k)th place for each i, j, k ∈ N. An

FK-space(or a metric space)X is said to have AK property if (=mnk) is a Schauder basis for X, or equivalently x[m,n,k] → x.

An FDK-space is a triple sequence space endowed with a complete metrizable; locally convex topology under which the

coordinate mappings are continuous. If X is a sequence space, we give the following definitions:

(1). X
′

is continuous dual of X;

(2). Xα =

{
a = (amnk) :

∞∑
m,n,k=1

|amnkxmnk| <∞, for each x ∈ X

}
;

(3). Xβ =

{
a = (amnk) :

∞∑
m,n,k=1

amnkxmnk is convergent, for each x ∈ X

}
;

(4). Xγ =

{
a = (amn) : sup

m,n≥1

∣∣∣∣∣ M,N,K∑
m,n,k=1

amnkxmnk

∣∣∣∣∣ <∞, for each x ∈ X

}
;

(5). Let X be an FK-space ⊃ φ; then Xf =
{
f(=mnk) : f ∈ X

′
}

;

(6). Xδ =

{
a = (amnk) : sup

m,n,k
|amnkxmnk|1/m+n+k <∞, for each x ∈ X

}
;

Xα.Xβ , Xγ are called α−(or Köthe-Toeplitz) dual of X,β−(or generalized-Köthe-Toeplitz) dual of X, γ−dual of X, δ−dual

of X respectively. Xα is defined by Gupta and Kamptan. It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ , but Xα ⊂ Xγ does not

hold.

2. Definitions and Preliminaries

A sequence x = (xmnk)is said to be triple analytic if supmnk |xmnk|
1

m+n+k < ∞. The vector space of all triple analytic

sequences is usually denoted by Λ3. A sequence x = (xmnk) is called triple entire sequence if |xmnk|
1

m+n+k → 0 as

m,n, k →∞. The vector space of triple entire sequences is usually denoted by Γ3. A sequence x = (xmnk) is called triple gai

sequence if ((m+ n+ k)! |xmnk| )1/m+n+k → 0 as m,n, k → ∞. The vector space of triple gai sequences is usually denoted

by χ3. The space χ3 is a metric space with the metric

d(x, y) = supm,n,k
{

((m+ n+ k)! |xmnk − ymnk|)
1

m+n+k : m,n, k : 1, 2, 3, ...
}

(2)

for allx = {xmnk} and y = {ymnk}inχ3. In this chapter we study the general properties of χ3 establishing the following

theorems:
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3. Main Results

Proposition 3.1. χ3 ⊂ Γ3 with the hypothesis that |xmnk|
1

m+n+k ≤ ((m+ n+ k)! |xmnk|)
1

m+n+k .

Proof. Let x ∈ χ3. Then we have the following implications

(
((m+ n+ k)! |xmn|)

1
m+n+k

)
asm, n, k →∞ (3)

But |xmnk|
1

m+n+k ≤ ((m+ n+ k)! |xmn|)
1

m+n+k ; by our assumption, implies that ⇒
(
|xmnk|

1
m+n+k

)
→ 0 as m,n, k →∞,

by (3) ⇒ x ∈ Γ3 ⇒ χ3 ⊂ Γ3.

Proposition 3.2. The dual space of χ3 is Λ3. In other words (χ3)∗ = Λ3.

Proof. We recall that

=mnk =



0, 0, ...0, 0, ...

0, 0, ...0, 0, ...

.

.

.

0, 0, ... 1
(m+n+k)!

, 0, ...

0, 0, ...0, 0, ...


with 1

(m+n+k)!
in the (m,n, k)th position and zero’s else where. With

x = =mnk, (|xmnk|)
1

m+n+k =



0
1
3 , . . . 0

1
m+n+k

.

.

.

0
1

m+n+k , ( 1
(m+n+k)!

)
1

m+n+k , . 0
1

m+n+k

(m,n)th

0
1

m+2+k , . . 0
1

m+n+2+k



=



0, . . . 0

.

.

.

0,
(

1
(m+n+k)!

) 1
m+n+k

, . 0

(m,n, k)th

0, . . 0



which is a triple gai sequence. Hence =mnk ∈ χ3. We have f(x) =
∞∑

m,n,k=1

xmnkymnk. With x ∈ χ3 and f ∈ (χ3)∗ the dual

space of χ3. Take x = (xmnk) = =mnk ∈ χ3. Then

|ymnk| ≤ ‖f‖ d(=mnk, 0) <∞ ∀ m,n, k (4)

Thus (ymnk) is a bounded sequence and hence an triple analytic sequence. In other words y ∈ Λ3. Therefore (χ3)∗ = Λ3.

This completes the proof.

Proposition 3.3.
(
Γ3
)β ⊂6= Λ3.
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Proof. Let y = (ymnk) be an arbitrary point in
(
Γ3
)β
. If y is not in Λ3, then for each natural number p, we can find an

index mpnpkp such that (∣∣ympnpkp

∣∣ 1
mp+np+kp

)
> p, (p = 1, 2, 3, · · · ) (5)

Define x = {xmnk} by

(xmnk) =


1

pm+n+k , for (m,n, k) = (mp, np, kp) for somep ∈ N

0, otherwise

(6)

Then we have x is in Γ3, but for infinitely mnk,

(|ymnkxmnk|) > 1. (7)

Consider the sequence z = {zmnk} , where M
(
z111
ρ

)
= M

(
x111
ρ

)
− s with

s =

∞∑
m=1

∞∑
n=1

∞∑
k=1

(xmnk) , (zmnk) = (xmnk) . (8)

Then z is a point of Γ3. Also,
∑∑∑

(zmnk) = 0. Hence, z is in Γ3; but, by (7),
∑∑∑

(zmnkymnk) does not converge:

⇒
∑∑∑

xmnkymnk diverges. (9)

Thus, the sequence y would not be in
(
Γ3
)β
. This contradiction proves that

(
Γ3)β ⊂ Λ3. (10)

If we now choose y1nk = x1nk = 1 and ymnk = xmnk = 0 (m > 1) for all n, k then obviously x ∈ Γ3 and y ∈ Λ3, but

∞∑
m=1

∞∑
n=1

∞∑
n=1

xmnkymnk =∞. Hence, y /∈
(
Γ3)β (11)

From (10) and (11), we are granted
(
Γ3
)β ⊂6= Λ3.

Proposition 3.4. The β− dual space of χ3 is Λ3.

Proof. First, we observe that χ3 ⊂ Γ3, by Proposition 3.1. Theorefore
(
Γ3
)β ⊂ (χ3

)β
. But

(
Γ3
)β ⊂6= Λ3, by Proposition

3.2. Hence

Λ3 ⊂
(
χ3)β (12)

Next we show that
(
χ3
)β ⊂ Λ3. Let y = (ymnk) ∈

(
χ3
)β
. Consider f (x) =

∞∑
m=1

∞∑
n=1

∞∑
k=1

xmnkymnk with x = (xmnk) ∈ χ3.

Here

=mnk =



0 0 ...0 0 ...

0 0 ...0 0 ...

.

.

.

0 0 ... 1
(m+n+k)!

0 ...

0 0 ...0 0 ...
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with 1
(m+n+k)!

in the (m,n, k)th position and zero otherwise.

x = [(=mn −=mn+1 −=mn+2)− (=m+1n −=m+1n+1 −=m+1n+2)− (=m+2n −=m+2n+1 −=m+2n+2)]

=



0 0 ...0 0 ... 0

0 0 ...0 0 ... 0

.

.

.

0 0 ... 1
(m+n+k)!

−1
(m+n+k)!

−1
(m+n+k)!

... 0

0 0 ...0 0 ... 0



−



0 0 ...0 0 ... 0

0 0 ...0 0 ... 0

.

.

.

0 0 ... 1
(m+n+k)!

−1
(m+n+k)!

−1
(m+n+k)!

... 0

0 0 ...0 0 ... 0



(
((m+ n+ k)! |xmnk|)

1
m+n+k

)
=



0 0 ...0 0 ... 0

0 0 ...0 0, ... 0

.

.

.

0 0 ... 1
(m+n+k)!

−1
(m+n+k)!

−1
(m+n+k)!

... 0

0 0 ... −1
(m+n+k)!

1
(m+n+k)!

1
(m+n+k)!

... 0

0 0 ...0 0, ... 0



. Hence converges to zero. There-

fore [(=mn −=mn+1 −=mn+2)− (=m+1n −=m+1n+1 −=m+1n+2)− (=m+2n −=m+2n+1 −=m+2n+2)] ∈ χ3. Hence

d ((=mn −=mn+1 −=mn+2)− (=m+1n −=m+1n+1 −=m+1n+2)− (=m+2n −=m+2n+1 −=m+2n+2) , 0) = 1. But |ymnk| ≤

d ((=mn −=mn+1 −=mn+2)− (=m+1n −=m+1n+1 −=m+1n+2)− (=m+2n −=m+2n+1 −=m+2n+2) , 0) ≤ ‖f‖ · 1 < ∞ for

each m,n, k. Thus (ymnk) is a triple bounded sequence and hence an analytic sequence. In other words y ∈ Λ3. But

y = (ymnk) is arbitrary in
(
χ3
)β
. Therefore (

χ3)β ⊂ Λ3 (13)

From (12) and (13) we get
(
χ3
)β

= Λ3.

Proposition 3.5. χ3 has AK.

Proof. Let x = (xmnk) ∈ χ3 and take x[m,n,k] =
∑m,n,k

i,j,u=0xiju=iju for all m,n, k ∈ N. Hence d
(
x, x[r, s t]

)
=

supmnk ((m+ n+ k)! |xmnk|)
1

m+n+k : m ≥ r + 1, n ≥ s + 1, k ≥ t + 1 → 0 as m, n, k → ∞. Therefore, x[r, s, t] → x as

r, s, t→∞ in χ3 Thus χ3 has AK. This completes the proof.

Proposition 3.6. χ3 is solid.

Proof. Let |xmnk| ≤ |ymnk| and let y = (ymnk) ∈ χ3. We have
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)
≤(

((m+ n+ k)! |ymnk|)
1

m+n+k

)
. But

(
((m+ n+ k)! |ymnk|)

1
m+n+k

)
∈ χ3, because y ∈ χ3. That is(

((m+ n+ k)! |ymnk|)
1

m+n+k

)
→ 0 ⇒

(
((m+ n+ k)! |xmnk|)

1
m+n+k

)
→ 0asm, n, k → ∞. Therefore x = (xmnk) ∈ χ3.

This completes the proof.

Proposition 3.7. δ− dual of χ3 is Λ3.
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Proof. Let y ∈ δ− dual of χ3. Then |xmnkymnk| ≤ Mm+n+k for some constant M > 0 and for each x ∈ χ3. Therefore

|ymnk| ≤Mm+n+k for each m,n, k by taking

x = =mnk =



0 0 ...0 0 ... 0

0 0 ...0 0 ... 0

.

.

.

0 0 ... 1
(m+n+k)!

0 ... 0

0 0 ...0 0 ... 0



.

This shows that y ∈ Λ3. Then (
χ3)δ ⊂ Λ3 (14)

On the other hand, let y ∈ Λ3. Let ε > 0 be given. Then |ymnk| < Mm+n+k for each m,n, k and for some constant M > 0.

But x ∈ χ3. Hence ((m+ n+ k)! |xmnk|) < εm+n+k for each m,n, k and for each ε > 0. i.e |xmnk| < εm+n+k

(m+n+k)!
. Hence

|xmnkymnk| = |xmnk| |ymnk| <
εm+n+k

(m+ n+ k)!
Mm+n+k =

(εM)m+n+k

(m+ n+ k)!
⇒ y ∈

(
χ3)δ

Λ3 ⊂
(
χ3)δ (15)

From (14) and (15) we get
(
χ3
)δ

= Λ3.

Proposition 3.8.
(
Λ3
)β

= Λ3.

Proof. Step 1: Let (xmnk) ∈ Λ3 and let (ymnk) ∈ Λ3. Then we get |ymnk|
1

m+n+k ≤M for some constant M > 0. Also

(xmnk) ∈ χ3 ⇒ ((m+ n+ k)! |xmnk|)
1

m+n+k ≤ ε =
1

2M

⇒ |xmnk| ≤
1

2m+n+kMm+n+k (m+ n+ k)!
.

Hence

∞∑
m=1

∞∑
n=1

∞∑
k=1

|xmnkymnk| ≤
∞∑
m=1

∞∑
n=1

∞∑
k=1

|xmnk| |ymnk|

<

∞∑
m=1

∞∑
n=1

∞∑
k=1

1

2m+n+k

1

Mm+n+k
Mm+n+k 1

(m+ n+ k)!

<

∞∑
m=1

∞∑
n=1

∞∑
k=1

1

2m+n+k

1

(m+ n+ k)!
<∞.

Therefore, we get that (xmnk) ∈
(
Λ3
)β

and so we have

χ3 ⊂
(
Λ3)β (16)

Step 2: Let (xmnk) ∈
(
Λ3
)β
. This says that

⇒
∞∑
m=1

∞∑
n=1

∞∑
k=1

|xmnkymnk| <∞ for each (ymnk) ∈ Λ3 (17)
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Assume that (xmnk) /∈ χ3, then there exists a sequence of positive integers (mp + np + kp) strictly increasing such that

∣∣xmp+np+kp

∣∣ > 1

2mp+np+kp

1

(m+ n+ k)!
, (p = 1, 2, 3, · · · )

Take

ymp,np,kp = 2mp+np+kp (m+ n+ k)! (p = 1, 2, 3, · · · )

and ymnk = 0 otherwise. Then (ymnk) ∈ Λ3. But

∞∑
m=1

∞∑
n=1

∞∑
k=1

|xmnkymnk| =
∑∑ ∞∑

p=1

∣∣xmpnpkpympnpkp

∣∣ > 1 + 1 + 1 + · · · .

We know that the infinite series 1 + 1 + 1 + · · · diverges. Hence
∞∑
m=1

∞∑
n=1

∞∑
k=1

|xmnkymnk| diverges. This contradicts (17).

Hence (xmnk) ∈ χ3. Therefore (
Λ3)β ⊂ χ3 (18)

From (16) and (18) we get
(
Λ3
)β

= χ3.

Definition 3.9. Let p = (pmnk) is a triple sequence of positive real numbers. Then

χ3 (p) =
{
x = (xmnk) :

(
((m+ n+ k)! |xmnk|)

1
m+n+k

)pmnk

→ 0asm, n, k →∞
}

suppose that pmnk is a constant for each m,n, k then χ3 (p) = χ3.

Proposition 3.10. Let 0 ≤ pmnk ≤ qmnk and let
{
qmnk
pmnk

}
be bounded. Then χ3 (q) ⊂ χ3 (p).

Proof. Let

x ∈ χ3 (q) (19)

Therefore we have (
((m+ n+ k)! |xmnk|)

1
m+n+k

)qmnk

→ 0asm, n, k →∞. (20)

Let tmnk =
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk

and λmnk = pmnk
qmnk

. Since pmnk ≤ qmnk, we have 0 ≤ λmnk ≤ 1. Take

0 < λ < λmnk. Define

umnk =


tmnk, if (tmnk ≥ 1)

0, if (tmnk < 1)

; vmnk =


0, if (tmnk ≥ 1)

tmnk, if (tmnk < 1)

(21)

tmnk = umnk + vmnk; t
λmnk
mnk = u

λmnk
mnk + v

λmnk
mnk . Now it follows that

u
λmnk
mnk ≤ umnk ≤ tmnk; v

λmnk
mnk ≤ u

λ
mnk.

Since t
λmnk
mnk = u

λmnk
mnk + v

λmnk
mnk , then t

λmnk
mnk ≤ tmnk + vλmnk.((

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk
)λmnk

≤
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk

⇒
((

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk
) pmnk

qmnk ≤
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk

⇒
((

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk
)pmnk

≤
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk

.

But
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk

→ 0 as m,n, k →∞. (by (20)). Therefore
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)pmnk

→ 0

as m,n, k →∞. Hence

x ∈ χ3 (p) (22)

From (19) and (22) we get χ3 (q) ⊂ χ3 (p) .

121



The Triple χ3 Sequence Spaces

Proposition 3.11.

(a) Let 0 < infpmnk ≤ pmnk ≤ 1. Then χ3 (p) ⊂ χ3

(b) Let 1 ≤ pmnk ≤ suppmnk <∞. Then χ3 ⊂ χ3 (p) .

Proof.

(a) Let x ∈ χ3 (p) (
((m+ n+ k)! |xmnk|)

1
m+n+k

)pmnk

→ 0asm, n, k →∞ (23)

Since 0 < infpmnk ≤ pmnk ≤ 1,(
((m+ n+ k)! |xmnk|)

1
m+n+k

)
≤
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)pmn

(24)

From (23) and (24) it follows that

x ∈ χ3 (25)

Thus χ3 (p) ⊂ χ3. This completes the proof.

(b) Let pmnk ≥ 1 for each mnk and suppmnk <∞ and let x ∈ χ3.(
((m+ n+ k)! |xmnk|)

1
m+n+k

)
→ 0asm, n, k →∞ (26)

Since 1 ≤ pmnk ≤ suppmnk <∞, we have(
((m+ n+ k)! |xmnk|)

1
m+n+k

)pmn

≤
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)
(27)(

((m+ n+ k)! |xmnk|)
1

m+n+k

)pmn

→ 0asm, n, k →∞ (by using (26)). Therefore x ∈ χ3 (p) .

Proposition 3.12. Let 0 < pmnk ≤ qmnk <∞ for each m,n, k. Then x ∈ χ3 (p) ⊆ x ∈ χ3 (q) .

Proof. Let x ∈ χ3 (p) (
((m+ n+ k)! |xmnk|)

1
m+n+k

)pmnk

→ 0asm, n, k →∞ (28)

This implies that
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)
≤ 1 for sufficiently large m,n, k. We get(

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk

≤
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)pmnk

(29)

⇒
(

((m+ n+ k)! |xmnk|)
1

m+n+k

)qmnk

→ 0asm, n, k →∞ (by using (28)). Since x ∈ χ3 (q) , hence x ∈ χ3 (p) ⊆ χ3 (q) .

Proposition 3.13.
(
χ3
)µ

= Λ3 for µ = α, β, γ, f .

Proof. Step 1: We have χ3 has AK by Proposition (3.5). Hence by Lemma (2)(ii)[Wilansky], we get
(
χ3
)β

=
(
χ3
)f
.

But
(
χ3
)β

= Λ3. Hence (
χ3)β = Λ3 (30)

Step 2: Since AK implies AD, by Lemma 2(iii)[Wilansky] we get
(
χ3
)β

=
(
χ3
)γ
. Therefore

(
χ3)γ = Λ3 (31)

Step 3: We have χ3 is normal by Proposition (3.6). Hence, [Kampthan, Proposition 2.7], we get

(
χ3)α =

(
χ3)γ = Λ3 (32)

From (30), (31) and (32), we have
(
χ3
)α

=
(
χ3
)β

=
(
χ3
)γ

=
(
χ3
)f

= Λ3.
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[9] N.Subramanian, B.C.Tripathy and C.Murugesan, The Cesáro of double entire sequences, International Mathematical

Forum, 4(2)(2009), 49-59.

123


	Introduction
	Definitions and Preliminaries
	Main Results
	References

