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Abstract: A set D of a graph G = (V,E) is a dominating set, if every vertex in V (G) − D is adjacent to some vertex in D.

The domination number γ(G) of G is the minimum cardinality of a dominating set. A dominating set D is called a
complementary tree nil dominating set, if V (G)−D is not a dominating set and also the induced subgraph 〈V (G)−D〉
is a tree. The minimum cardinality of a complementary tree nil dominating set is called the complementary tree nil

domination number of G and is denoted by γctnd(G). In this paper, some results regarding the complementary tree nil
domination number of splitting graphs of connected graphs are found.
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1. Introduction

Graphs discussed in this paper are finite, undirected and simple graphs. For a graph G, let V (G) and E(G) denote its vertex

set and edge set respectively. A graph G with p vertices and q edges is denoted by G(p, q). The concept of domination in

graphs was introduced by Ore [5]. A set D ⊆ V (G) is said to be a dominating set of G, if every vertex in V (G) − D is

adjacent to some vertex in D. The cardinality of a minimum dominating set in G is called the domination number of G and

is denoted by γ(G). Muthammai, Bhanumathi and Vidhya [4] introduced the concept of complementary tree dominating

set. A dominating set D ⊆ V (G) is said to be a complementary tree dominating set (ctd-set) if the induced subgraph

〈V (G)−D〉 is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and

is denoted by γctd(G). Any undefined terms in this paper may be found in Harary [1]. Splitting graphs were first studied

by Sampathkumar and Walikar [7]. For a graph G, let V ′ (G) = {v′ : v ∈ V (G)} be a copy of V (G). The splitting graph

Sp(G) of G is the graph with vertex set V (G) ∪ V ′(G) and edge set {uv, u′v, uv′ : uv ∈ E(G)}. A graph G and its splitting

graph are given in Figure 1. The concept of complementary tree nil dominating set is introduced in [3]. A dominating set

D ⊆ V (G) is said to be a complementary tree nil dominating set (ctnd-set) if the induced subgraph 〈V (G)−D〉 is a tree and

V (G)−D is not a dominating set. The minimum cardinality of a ctnd-set is called the complementary tree nil domination

number of G and is denoted by γctnd(G). In this paper, some results regarding the complementary tree nil domination

number of splitting graphs of graphs are found.
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Figure 1:

2. Prior Results

Theorem 2.1 ([2]). Radius of Sp(G) = max{2, radius of G}.

Theorem 2.2 ([3]). For any connected graph G, δ(G) + 1 ≤ γctnd(G).

Theorem 2.3 ([3]). For any connected graph G with p vertices, 2 ≤ γctnd(G) ≤ p, where p ≥ 2.

Theorem 2.4 ([3]). Let G be a connected graph with p vertices. Then γctnd(G) = 2 if and only if G is a graph obtained by

attaching a pendant edge at a vertex of degree p− 2 in T +K1, where T is a tree on (p− 2) vertices.

Theorem 2.5 ([3]). For any connected graph G, γctnd(G) = p if and only if G ∼= Kp, where p ≥ 2.

Theorem 2.6 ([3]). Let G be a connected graph with p ≥ 3 and δ(G) = 1. Then γctnd(G) = p−1 if and only if the subgraph

of G induced by vertices of degree atleast 2 is K2 or K1.

That is, G is one of the graphs K1,p−1 or Sm,n (m+n = p,m, n ≥ 1), where Sm,n is a bistar which is obtained by attaching

m− 1 pendant edges at one vertex of K2 and n− 1 pendant edges at other vertex of K2.

Theorem 2.7 ([3]). Let G be a connected noncomplete graph such that δ(G) ≥ 2. Then γctnd(G) = p− 1 if and only if each

edge of G is a dominating edge.

Theorem 2.8 ([3]). Let T be a tree on p vertices such that γctnd(T ) ≤ p− 2. Then γctnd(T ) = p− 2 if and only if T is one

of the following graphs.

1. T is obtained from a path Pn (n ≥ 4 and n < p) by attaching pendant edges at atleast one of the end vertices of Pn.

2. T is obtained from P3 by attaching pendant edges at either both the end vertices or all the vertices of P3.

Notation 2.9 ([3]). Let G be the class of connected graphs G with δ(G) = 1 having one of the following properties.

1. There exist two adjacent vertices u, v in G such that degG (u) = 1 and 〈V (G) − {u, v}〉 contains P3 as an induced

subgraph such that end vertices of P3 have degree atleast 2 and the central vertex of P3 has degree atleast 3.

2. Let P be the set of all pendant vertices in G and let there exist a vertex v ∈ V (G) − P having minimum degree in

V (G)− P and is not a support of G such that V (G)− (N〈V−P 〉[v]− P ) contains P3 as an induced subgraph such that

the end vertices of P3 have degree atleast 2 and the central vertex of P3 has degree atleast 3.
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Theorem 2.10 ([3]). Let G be a connected graph with δ(G) = 1 and γctnd(G) 6= p− 1. Then γctnd(G) = p− 2 if and only

if G does not belong to the class G of graphs.

Theorem 2.11 ([3]). Let G be a connected, noncomplete graph with p vertices (p ≥ 4) and δ(G) ≥ 2. Then γctnd(G) = p−2

if and only if G is one of the following graphs.

1. A cycle on atleast five vertices.

2. A wheel on six vertices.

3. G is the one point union of complete graphs.

4. G is obtained by joining two complete graphs by an edges.

5. G is a connected noncomplete graph such that there exists a vertex ∈ V (G) such that G − v is a complete graph on

(p− 1) vertices.

6. G is a graph such that there exists a vertex v ∈ V (G) such that G− v is Kp−1 − e, (e ∈ E(Kp−1)) and N(v) contains

atleast one vertex of degree (p− 3) in Kp−1 − e.

Theorem 2.12 ([7]). If G is a (p, q) graph, then Sp(G) is a (2p, 3q) graph.

Theorem 2.13 ([7]). For every vertex vi ∈ G. deg(vi) = deg(v′i) for every v′i in Sp(G).

3. Main Results

Observation 3.1. For any connected graph G, γctnd(G) ≤ γctnd(Sp(G)).

This is illustrated by the following example.

Example 3.2. For the graph G given in Figure 2 a, {v3, v4, v5, v6} is a γctnd-set of G and hence γctnd(G) = 4. For the graph

Sp(G), given in Figure 2b, {v3, v4, v′5, v′6} is a γctnd-set of Sp(G) and γctnd(Sp(G)) = 4. Therefore γctnd(G) = γctnd(Sp(G)).

(a) (b)

Figure 2:

For the graph G given in Figure 3a, {v1, v2, v3, v4, v5, v6} is a γctnd-set of G and hence γctnd(G) = 6. For the graph Sp(G) given

in Figure 3b, {v1, v2, v8, v′1, v′4, v′5, v′6} is a γctnd-set of Sp(G) and γctnd(Sp(G)) = 7. Therefore γctnd(G) < γctnd(Sp(G)).
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(a) (b)

Figure 3:

Observation 3.3.

1. For any path Pp on p vertices, γctnd(Sp(Pp)) = p, p ≥ 5. γctnd(Sp(P2)) = 3, γctnd(Sp(P3)) = 4, γctnd(Sp(P4)) = 5.

2. For any cycle Cp on p vertices, γctnd(Sp(Cp)) = p−1, p ≥ 7. γctnd(Sp(C3)) = 3, γctnd(Sp(C4)) = 5, γctnd(Sp(C5)) =

4, γctnd(Sp(C6)) = 6.

3. For any star K1,p−1, γctnd(Sp(K1,p−1)) = p+ 1, p ≥ 2.

4. For any complete bipartite graph Km,nγctnd(Sp(Km,n)) = 2m+ n− 1, m,n ≥ 2.

5. γctnd(Sp(mK2)) = 2m+ 1, m ≥ 2.

6. For the graph Kp − e, γctnd(Sp(Kp − e)) = p, p ≥ 4, where e is an edge in Kp.

7. For the graph Km,n − e, γctnd(Sp(Km,n − e)) = 2m+ n− 3, m,n ≥ 3, where e is an edge in Km,n.

8. For the graph Km,n − e, γctnd(Sp(Km,n − e)) = m+ n, m,n ≥ 2.

9. γctnd(Sp(Pn ◦K1)) = 2n+ 1, n ≥ 3.

10. γctnd(Sp(Cn ◦K1)) = 2n+ 2, n ≥ 3.

Theorem 3.4. For any connected graph G with atleast three vertices and δ(G) ≥ 2, 3 ≤ γctnd(Sp(G)) ≤ 2p− 1.

Proof. Since radius of Sp(G) is atleast 2, γctnd(Sp(G)) ≥ 2. By Theorem 2.4., if γctnd(G) = 2, then Sp(G) is a graph

obtained by attaching a pendant edge at a vertex of degree 2p−2 in T+K1, where T is a tree on 2p−2 vertices. But, no such

connected graph Sp(G) exists. Therefore γctnd(Sp(G)) ≥ 3. Also, since Sp(G) is not complete, γctnd(Sp(G)) ≤ 2p− 1.

Remark 3.5. By Theorem 2.2, δ(Sp(G))+1 ≤ γctnd(Sp(G)), for any connected graph G. But, δ(Sp(G)) = δ(G). Therefore,

δ(G) + 1 ≤ γctnd(Sp(G)). γctnd(Sp(G)) ≥ δ(G) + 1. Equality holds, if G ∼= C3.

Theorem 3.6. Let G be a connected graph, which is not a star. Then γctnd(Sp(G)) = 3 if and only if G ∼= K2, C3 or G is

the graph obtained by attaching a pendant edge at exactly one vertex of C3 or C4.
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Proof. Let D be a ctnd-set of Sp(G) such that |D| = 3. By Remark 3.5, δ(G) + 1 ≤ γctnd(Sp(G)). Therefore δ(G) + 1 ≤ 3

and this implies δ(G) ≤ 2.

Case 1: δ(G) = 1. Then D contains all the pendant vertices and atleast one support of Sp(G). Since |D| = 3, D contains

atmost two pendant vertices. Also, no vertex of G is a pendant vertex of Sp(G), since degvSp(G) = 2degvG, for every v ∈ V (G).

Subcase 1: D contains exactly two pendant vertices. Then that vertices belong to V ′(G) and the remaining vertex of D is a

vertex of G. Let v ∈ D, where v ∈ V (G). Since no two vertices of V ′(G) in Sp(G) are adjacent, vertices of V ′(G) other than

v′ in V (Sp(G))−D is adjacent to v. But the vertex v′ is not adjacent to any of vertices in D. Therefore v′ must belong to

D. If V (Sp(G))−D contains a P3 induced by any three vertices of G, then the vertex in V ′(G) corresponding to the central

vertex of P3 must belong to D. Otherwise V (Sp(G)) − D contains C4. Therefore G ∼= K2 or P3. But γctnd(Sp(P3)) = 4.

Therefore G ∼= K2.

Subcase 2: D contains one pendant vertex of Sp(G). Since any ctnd-set of a graph contains all the pendant vertices, both

G and Sp(G) contain one pendant vertex. Let v ∈ V (G) be the pendant vertex and u be the support in G, adjacent to v.

Then v′ ∈ V (Sp(G)) is a pendant vertex and v′ ∈ D. Also, since there exists a vertex w ∈ D such that N(w) ⊆ D, and u

is the only vertex adjacent to v′ in Sp(G), both u, v′ ∈ D. Let v ∈ D. If V (G)− (D − {v′}) contains a P3, V (Sp(G))−D

contains a C4. Therefore, V (G) − (D − {v}) ∼= K2. Let V (K2) = {w, x}. Since v is a pendant vertex in G, both w, x are

adjacent to u. Then G is a graph obtained from C3 by attaching a pendant edge at a vertex of C3. Let v ∈ D. Let w ∈ D,

w ∈ V (G) and w ∈ v. Then v ∈ V (Sp(G) − D) ∩ {v}). That is, v ∈ (V (Sp(G)) ∩ V (G). If u is not adjacent to w, then

u′ ∈ V (Sp(G)−D is not adjacent to any of the vertices in D. Therefore uw ∈ E(G).

Also (V (Sp(G) −D) ∩ V (G) contains atleast 2 vertices of G, other than v, since otherwise, 〈V (Sp(G)) −D〉 will not be a

tree. Let x, y ∈ (V (Sp(G) − D) ∩ V (G). If atleast one of x and y is adjacent to both u and w, then 〈{x, y, u′}〉 ∈ C3 in

V (Sp(G))−D. Each of x and y is adjacent to exactly one of u and w. Therefore G is a graph obtained from C4 by attaching

a pendant edge at a vertex of C4. If (V (Sp(G)) − D) ∩ V (G) contains atleast 3 vertices then 〈V (Sp(G) − D〉 contains a

cycle.

Case 2: δ(G) = 2. Therefore 〈D〉 is isomorphic to one of the graphs: 3K1,K2 ∪K1, P3, C3. Also, (V (Sp(G))−D)
⋂
V (G)

contains atmost 2 vertices. If 〈D〉 is one of the graphs as above, then either δ(G) = 1 or there exist no vertex u ∈ D,

N(u) ∈ D. Therefore D contains atleast one vertex of V ′(G). Let D = {u, v, x′}. Since there is a vertex w ∈ D such that

N(w) ⊆ Dx′ 6= u′ and v′. Also x′ is adjacent to both u and v. That is, x is adjacent to both u and v in G. Also u and v

are adjacent in G, otherwise D is not a dominating set of Sp(G). Further (V (Sp(G))−D) ∩ V (G) contains no vertex other

than x, otherwise, 〈V (Sp(G)) − D〉 contains a cycle. Therefore G ∼= C3. Hence G ∼= K2, C3 or G is a graph obtained by

attaching a pendant edge at exactly one vertex of C3 or C4.

Conversely, if G ∼= K2, C3 or G is a graph obtained by attaching a pendant edge at exactly one vertex of C3 or C4, then

γctnd(Sp(G)) = 3.

Theorem 3.7. For any nontrivial connected graph G, γctnd(Sp(G)) = 2p− 1 if and only if G ∼= K2.

Proof. Assume γctnd(Sp(G)) = 2p− 1. Let D be a γctnd-set of Sp(G). Assume p ≥ 3.

Case 1: δ(G) = 1. By Theorem 2.6., if δ(Sp(G)) = 1, then γctnd(Sp(G)) = 2p − 1 if and only if the subgraph of Sp(G)

induced by vertices of degree atleast 2 is K2 or K1. But there is no graph G with Sp(G) satisfying above condition. That

is, the subgraph of Sp(G) induced by vertices of degree atleast 2 in Sp(G) is neither K2 nor K1.

Case 2: δ(G) ≥ 2. By Theorem 2.7, if δ(Sp(G)) ≥ 2, then γctnd(Sp(G)) = 2p − 1 if and only if each edge of Sp(G) is a

dominating edge. But in Sp(G), there exists atleast one edge that is not a dominating edge. Therefore p = 2. Then G ∼= K2.
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Conversely, assume G ∼= K2, Since G is connected and Sp(K2) = P4 and γctnd(P4) = 3 = 2p − 1. Then γctnd(Sp(G)) =

2p− 1.

Observation 3.8. If G is a connected graph with atleast three vertices, then Sp(G) is not a tree, since Sp(P3) contains a

C4 as an induced subgraph.

Theorem 3.9. Let G be a connected graph with atleast three vertices. Then γctnd(Sp(G)) ≤ 2p− 2. Equality holds, if and

only if G ∼= P3.

Proof. Assume γctnd(Sp(G)) = 2p− 2. Let D be a γctnd-set of Sp(G).

Case 1: δ(G) = 1. By Theorem 2.8., if δ(Sp(G)) = 1, if G is a tree, then Sp(G) ∼= T . By Observation 3.8, if G is a

connected graph with atleast three vertices, then Sp(G) is not a tree. Therefore, there is no graph G with Sp(G) to be a

tree and hence Sp(G) is a graph satisfying one of the following

1. There exist two adjacent vertices u, v in Sp(G) such that degSp(G) (u) = 1 and 〈V (Sp(G)) − {u, v}〉 contains P3 as an

induced subgraph such that end vertices of P3 have degree atleast 2 and the central vertex of P3 has degree atleast 3.

2. Let P be the set of all pendant vertices in Sp(G) and let there exist a vertex v ∈ V (Sp(G))− P having minimum degree

in V (Sp(G))−P and is not a support of Sp(G) such that V (Sp(G))− (N〈V−P 〉[v]−P ) contains P3 as an induced subgraph

such that the end vertices of P3 have degree atleast 2 and the central vertex of P3 has degree atleast 3. But the only case

possible is G ∼= P3.

Case 2: δ(G) ≥ 2. There exists no graph G with Sp(G) to be one of the graphs mentioned in Theorem 2.11. Therefore

G ∼= P3.

Conversely, if G ∼= P3, then γctnd(Sp(G)) = 2p− 2.

In the following, upper bounds of γctnd(Sp(G)) are found.

Remark 3.10. If G is a connected graph with atleast 4 vertices and is not a bistar, then γctnd(Sp(G)) ≤ 2p − 3. Equality

holds, if G ∼= C3.

Theorem 3.11. Let G be a connected noncomplete graph and δ(G) ≥ 3. Then γctnd(Sp(G)) ≤ 2p− 4.

Proof. Since G is not complete, G contains P3 as an induced subgraph. Let the vertices of P3 be u, v, w, where v is the

central vertex of P3. Since degGv ≥ 3, there exists a vertex x in G, x ∈ N(v) and x 6= u or w. Let D = {v, u′, w′, x′} and

D′ = V (Sp(G))−D. Since (G) ≥ 3, each vertex V (Sp(G))−D′ is adjacent to atleast one vertex in D′ and 〈V (Sp(G))−D′〉 ∼=

K1,3 with v as the central vertex and N(v′) ⊆ D′. Therefore, D′ is a ctnd-set of Sp(G). Hence, γctnd(Sp(G)) ≤ 2p− 4.

Theorem 3.12. Let G be a connected graph with δ(G) ≥ 2 and diam(G) ≥ 3. Then γctnd(Sp(G)) ≤ 2p− 4.

Proof. Since diam(G) ≥ 3, there exists a vertex say u ∈ V (G) with eccentricity 3. Let e = (u, v) ∈ E(G), v ∈ V (G). Let

D = {u, v, u′, v′} ⊆ V (Sp(G)) and let D′ = V (Sp(G))−D. Since (G) ≥ 2, each vertex in V (Sp(G))−D′ is adjacent to atleast

one vertex in D′ and 〈V (Sp(G))−D′〉 ∼= P4 in Sp(G). Let w be a vertex in G such that degG(w) = 3. Then w is adjacent to

neither u nor v and NSp(G)(w) ⊆ D′ in Sp(G). Therefore D′ is a ctnd-set of G and hence γctnd(Sp(G)) ≤ |D′| = 2p− 4.

Theorem 3.13. Let G be a connected noncomplete graph with δ(G) ≥ 3. If G contains a P3 as an induced subgraph and if

there exists a vertex x ∈ V (G)− V (P3) such that x /∈ N(V (P3)), then γctnd(Sp(G)) ≤ 2p− 5.

Proof. Let G be a connected noncomplete graph with δ(G) ≥ 3 and G contains a P3 as an induced subgraph. Let

V (P3) = {u, v, w}, where u, v, w ∈ V (G) where v is the central vertex of P3. LetD = {u, v, w, u′, w′} andD′ = V (Sp(G))−D.

236



S.Muthammai and G.Ananthavalli

Since δ(G) ≥ 3, each vertex in V (Sp(G)) −D′ is adjacent to atleast one vertex in D′ and 〈V (Sp(G)) −D′〉 ∼= K1,4 with v

as the central vertex.

It is given that , there exists a vertex x ∈ V (G) − V (P3) not adjacent to any of the vertices of P3. Hence, N(x) ⊆ D′ in

Sp(G). Therefore, D′ is ctnd-set of Sp(G) and γctnd(Sp(G)) ≤ |D′| = 2p− 5.

Remark 3.14. Let G be a connected graph with δ(G) ≥ 2. If G contains a P3 as an induced subgraph such that central

vertex of P3 is of degree atleast 3 and the other two vertices in P3 are of degree atleast two and if there exists a vertex

x ∈ V (G)− V (P3) such that x is not adjacent to any of the vertices of P3, then γctnd(Sp(G)) ≤ 2p− 5.

Theorem 3.15. Let G be a connected graph with δ(G) ≥ 2. If diam(G) ≥ 2, then γctnd(Sp(G)) ≤ 2p− δ(G)− 1.

Proof. Since diam(G) ≥ 2, there exists a vertex v ∈ V (G) such that eccentricity of v is atleast 2. Let D = {u′ ∈

V (Sp(G)) : u ∈ N(v)} and |D| = degGu. Let D′ = V (Sp(G)) − D − {v} ⊆ V (Sp(G)). Then V (Sp(G)) − D′ = D ∪ {v}

and 〈V (Sp(G)) − D′〉 ∼= K1,deg (v). Let u ∈ N(v). Since δ(G) ≥ 2, degree of u in G is atleast 2. Therefore, N(u) − {v}

is nonempty. Let w ∈ N(u) − {v}, where w ∈ V (G). Then w′ ∈ V (Sp(G)) − D′ is adjacent to a vertex in D′. Also

v ∈ V (Sp(G)) − D′ is adjacent to a vertex in D′. Since eccentricity of v in G is atleast 2, there exists a vertex, say x in

G such that dG (v,x) ≥ 2. Therefore, N(x) ⊆ V (Sp(G)). Since dG (v,x) ≥ 2, no vertex in N(x) is adjacent to a vertex in

V (Sp(G)) −D′ and hence N(x) ⊆ D′. Therefore D′ is a ctnd-set of G and γctnd(Sp(G)) ≤ |D′| = |V (Sp(G))−D − {v}|,

which implies γctnd(Sp(G)) ≤ 2p− degGu− 1 = 2p− (G)− 1.

Remark 3.16. Let G be a connected graph with δ(G) ≥ 2 and diam(G) ≥ 2. Let v be a vertex of maximum degree in G. If

eccentricity of v is atleast 2, then γctnd(Sp(G)) ≤ γctnd(G) + ∆(G)− 1.

Remark 3.17. Let D be a ctnd-set of Sp(G). Then D contain vertices from both V(G) and V ′(G).

Theorem 3.18. For any connected graph G with p vertices, γctnd(Sp(G)) ≤ γctnd(G) + p− 1.

Proof. Let D and D′ be minimum ctnd-sets of G and Sp(G) respectively. Therefore, γctnd(G) = |D| and γctnd(Sp(G)) =

|D′|. By Remark 3.17, atleast one of the vertices of G, say v ∈ D must be in D′. Therefore, γctnd(Sp(G)) ≤ γctnd(G) +

|V ′(G)| − 1. Hence γctnd(Sp(G)) ≤ γctnd(G) + p− 1. In the following, upper bounds of γctnd(Sp(G)) are found.

Theorem 3.19. Let G be a connected noncomplete graph and graph such that δ(G) ≥ 2, then γctnd(Sp(G)) ≥ γctnd(G) + 1.

Proof. Let D be a γctnd-set of G. Then 〈V (G)−D〉 is a tree and there exists a vertex u ∈ D such that N(u) ⊆ D. Also

the vertex u′ in Sp(G) corresponding to u ∈ D is isolated in 〈V (Sp(G)−D〉. Therefore, atleast one vertex, say u in Sp(G)

is to be added with D such that D ∪{u} will be a ctnd-set of Sp(G) and hence γctnd(Sp(G)) ≥ γctnd(G) + 1. Equality holds

if G ∼= Cp, p ≥ 7.

In the following, the connected splitting graphs for which γctnd(Sp(G)) = γctnd(G) is characterized.

Theorem 3.20. Let G be a connected graph such that δ(G) = 1 and let S and T be the set of supports and pendant vertices

of G respectively such that S ∪ T is a minimum ctnd-set of G. Then γctnd(Sp(G)) = γctnd(G) if and only if G is a graph

obtained from C4 by attaching pendant vertices at atmost two adjacent vertices of C4.

Proof. Let D = S ∪ T . Assume S ∪ T is a minimum ctnd-set of G and γctnd(Sp(G)) = γctnd(G) = |D|. Let T ′ = {v′ ∈

V ′(G)/v ∈ T}. Since T ′ is an independent set in Sp(G), and since γctnd(Sp(G)) = |D|, the set D′ = S ∪ T ′ is a minimum

ctnd-set of Sp(G). If 〈V (G) − D〉 contains P3, then 〈V (Sp(G) − D′〉 contains C4 since Sp(P3) contains C4. Therefore,
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〈V (G) − D〉 ∼= K2. If D contains atleast three vertices of G, then atleast one vertex in V(G)-D is adjacent to atleast two

vertices in D and 〈V (G)−D〉 contains P3. Therefore D contains 1 or 2 vertices.

If D contains 1 vertex, then G is a graph obtained from C3 by attaching pendant vertices at a vertex of C3. For this graph

G, γctnd(G) = 2, γctd(G) = 2. D contains exactly 2 vertices. Let D = {v1, v2}. If v1 and v2 are adjacent in G, then D is not

a dominating set of G. Therefore, v1 and v2 are not adjacent in G. If a vertex in 〈V (G)−D〉 is adjacent to 2 vertices of D,

then also 〈V (G)−D〉 contains P3. Therefore each vertex in V (G)−D is adjacent to exactly one vertex in D. Therefore, G

is a graph obtained from C4 by attaching pendant vertices at atmost two adjacent vertices of C4.

Conversely, if G is a graph obtained from C4 by attaching pendant vertices at atmost two adjacent vertices of C4, then S∪T

is a minimum ctnd-set of G where S and T be the set of supports and pendant vertices of G.
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