International Journal of Mathematics And its Applications

Complementary Tree Nil Domination Number of Splitting Graphs

Research Article

S.Muthammai ${ }^{1}$ and G.Ananthavalli ${ }^{2 *}$
1 Department of Mathematics, Government Arts College, Kadalai-Ramanathapuram, Tamilnadu, India.
2 Department of Mathematics, Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India.

Abstract

A set D of a graph $G=(V, E)$ is a dominating set, if every vertex in $V(G)-D$ is adjacent to some vertex in D . The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree nil dominating set, if $V(G)-D$ is not a dominating set and also the induced subgraph $\langle V(G)-D\rangle$ is a tree. The minimum cardinality of a complementary tree nil dominating set is called the complementary tree nil domination number of G and is denoted by $\gamma_{c t n d}(G)$. In this paper, some results regarding the complementary tree nil domination number of splitting graphs of connected graphs are found.

Keywords: Complementary tree domination, Complementary tree nil domination, Splitting graphs.
(C) JS Publication.

1. Introduction

Graphs discussed in this paper are finite, undirected and simple graphs. For a graph G , let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. A graph G with p vertices and q edges is denoted by $G(p, q)$. The concept of domination in graphs was introduced by Ore [5]. A set $D \subseteq V(G)$ is said to be a dominating set of G , if every vertex in $V(G)-D$ is adjacent to some vertex in D . The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by $\gamma(G)$. Muthammai, Bhanumathi and Vidhya [4] introduced the concept of complementary tree dominating set. A dominating set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd-set) if the induced subgraph $\langle V(G)-D\rangle$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. Any undefined terms in this paper may be found in Harary [1]. Splitting graphs were first studied by Sampathkumar and Walikar [7]. For a graph G, let $V^{\prime}(G)=\left\{v^{\prime}: v \in V(G)\right\}$ be a copy of $V(G)$. The splitting graph $S p(G)$ of G is the graph with vertex set $V(G) \cup V^{\prime}(G)$ and edge set $\left\{u v, u^{\prime} v, u v^{\prime}: u v \in E(G)\right\}$. A graph G and its splitting graph are given in Figure 1. The concept of complementary tree nil dominating set is introduced in [3]. A dominating set $D \subseteq V(G)$ is said to be a complementary tree nil dominating set (ctnd-set) if the induced subgraph $\langle V(G)-D\rangle$ is a tree and $V(G)-D$ is not a dominating set. The minimum cardinality of a ctnd-set is called the complementary tree nil domination number of G and is denoted by $\gamma_{c t n d}(G)$. In this paper, some results regarding the complementary tree nil domination number of splitting graphs of graphs are found.

[^0]

Figure 1:

2. Prior Results

Theorem 2.1 ([2]). Radius of $S p(G)=\max \{2$, radius of $G\}$.
Theorem $2.2([3])$. For any connected graph $G, \delta(G)+1 \leq \gamma_{c t n d}(G)$.
Theorem 2.3 ([3]). For any connected graph G with p vertices, $2 \leq \gamma_{c t n d}(G) \leq p$, where $p \geq 2$.

Theorem 2.4 ([3]). Let G be a connected graph with p vertices. Then $\gamma_{\text {ctnd }}(G)=2$ if and only if G is a graph obtained by attaching a pendant edge at a vertex of degree $p-2$ in $T+K_{1}$, where T is a tree on $(p-2)$ vertices.

Theorem 2.5 ([3]). For any connected graph $G, \gamma_{\text {ctnd }}(G)=p$ if and only if $G \cong K_{p}$, where $p \geq 2$.
Theorem 2.6 ([3]). Let G be a connected graph with $p \geq 3$ and $\delta(G)=1$. Then $\gamma_{c t n d}(G)=p-1$ if and only if the subgraph of G induced by vertices of degree atleast 2 is K_{2} or K_{1}.

That is, G is one of the graphs $K_{1, p-1}$ or $S_{m, n}(m+n=p, m, n \geq 1)$, where $S_{m, n}$ is a bistar which is obtained by attaching $m-1$ pendant edges at one vertex of K_{2} and $n-1$ pendant edges at other vertex of K_{2}.

Theorem 2.7 ([3]). Let G be a connected noncomplete graph such that $\delta(G) \geq 2$. Then $\gamma_{c t n d}(G)=p-1$ if and only if each edge of G is a dominating edge.

Theorem $2.8([3])$. Let T be a tree on p vertices such that $\gamma_{c t n d}(T) \leq p-2$. Then $\gamma_{c t n d}(T)=p-2$ if and only if T is one of the following graphs.

1. T is obtained from a path $P_{n}(n \geq 4$ and $n<p)$ by attaching pendant edges at atleast one of the end vertices of P_{n}.
2. T is obtained from P_{3} by attaching pendant edges at either both the end vertices or all the vertices of P_{3}.

Notation 2.9 ([3]). Let G be the class of connected graphs G with $\delta(G)=1$ having one of the following properties.

1. There exist two adjacent vertices u, v in G such that $\operatorname{deg}_{G}(u)=1$ and $\langle V(G)-\{u, v\}\rangle$ contains P_{3} as an induced subgraph such that end vertices of P_{3} have degree atleast 2 and the central vertex of P_{3} has degree atleast 3.
2. Let P be the set of all pendant vertices in G and let there exist a vertex $v \in V(G)-P$ having minimum degree in $V(G)-P$ and is not a support of G such that $V(G)-\left(N_{\langle V-P\rangle}[v]-P\right)$ contains P_{3} as an induced subgraph such that the end vertices of P_{3} have degree atleast 2 and the central vertex of P_{3} has degree atleast 3.

Theorem 2.10 ([3]). Let G be a connected graph with $\delta(G)=1$ and $\gamma_{\text {ctnd }}(G) \neq p-1$. Then $\gamma_{c t n d}(G)=p-2$ if and only if G does not belong to the class G of graphs.

Theorem 2.11 ([3]). Let G be a connected, noncomplete graph with p vertices $(p \geq 4)$ and $\delta(G) \geq 2$. Then $\gamma_{c t n d}(G)=p-2$ if and only if G is one of the following graphs.

1. A cycle on atleast five vertices.
2. A wheel on six vertices.
3. G is the one point union of complete graphs.
4. G is obtained by joining two complete graphs by an edges.
5. G is a connected noncomplete graph such that there exists a vertex $\in V(G)$ such that $G-v$ is a complete graph on ($p-1$) vertices.
6. G is a graph such that there exists a vertex $v \in V(G)$ such that $G-v$ is $K_{p-1}-e,\left(e \in E\left(K_{p-1}\right)\right)$ and $N(v)$ contains atleast one vertex of degree $(p-3)$ in $K_{p-1}-e$.

Theorem 2.12 ([7]). If G is a (p, q) graph, then $S p(G)$ is a (2p, 3q) graph.
Theorem $2.13([7])$. For every vertex $v_{i} \in G . \operatorname{deg}\left(v_{i}\right)=\operatorname{deg}\left(v^{\prime}{ }_{i}\right)$ for every v_{i}^{\prime} in $S p(G)$.

3. Main Results

Observation 3.1. For any connected graph $G, \gamma_{c t n d}(G) \leq \gamma_{c t n d}(S p(G))$.

This is illustrated by the following example.

Example 3.2. For the graph G given in Figure 2 a, $\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is a $\gamma_{c t n d}$-set of G and hence $\gamma_{c t n d}(G)=4$. For the graph $S p(G)$, given in Figure 2b, $\left\{v_{3}, v_{4}, v^{\prime}{ }_{5}, v^{\prime}{ }_{6}\right\}$ is a $\gamma_{c t n d}$-set of $\operatorname{Sp}(G)$ and $\gamma_{c t n d}(S p(G))=4$. Therefore $\gamma_{c t n d}(G)=\gamma_{c t n d}(S p(G))$.

(a)

(b)

Figure 2:

For the graph G given in Figure $3 \mathrm{a},\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is a $\gamma_{c t n d^{-} \text {-set }}$ of G and hence $\gamma_{c t n d}(G)=6$. For the graph $S p(G)$ given in Figure $3 \mathrm{~b},\left\{v_{1}, v_{2}, v_{8}, v^{\prime}{ }_{1}, v^{\prime}{ }_{4}, v^{\prime}{ }_{5}, v^{\prime}{ }_{6}\right\}$ is a $\gamma_{c t n d}$-set of $\operatorname{Sp}(\mathrm{G})$ and $\gamma_{c t n d}(S p(G))=7$. Therefore $\gamma_{c t n d}(G)<\gamma_{c t n d}(S p(G))$.

Figure 3:

Observation 3.3.

1. For any path P_{p} on p vertices, $\gamma_{c t n d}\left(S p\left(P_{p}\right)\right)=p, p \geq 5 . \gamma_{c t n d}\left(S p\left(P_{2}\right)\right)=3, \gamma_{c t n d}\left(S p\left(P_{3}\right)\right)=4, \gamma_{c t n d}\left(S p\left(P_{4}\right)\right)=5$.
2. For any cycle C_{p} on p vertices, $\gamma_{c t n d}\left(S p\left(C_{p}\right)\right)=p-1, p \geq 7$. $\gamma_{c t n d}\left(S p\left(C_{3}\right)\right)=3, \gamma_{c t n d}\left(S p\left(C_{4}\right)\right)=5, \gamma_{c t n d}\left(S p\left(C_{5}\right)\right)=$ 4, $\gamma_{c t n d}\left(S p\left(C_{6}\right)\right)=6$.
3. For any star $K_{1, p-1}, \gamma_{c t n d}\left(S p\left(K_{1, p-1}\right)\right)=p+1, p \geq 2$.
4. For any complete bipartite graph $K_{m, n} \gamma_{c t n d}\left(S p\left(K_{m, n}\right)\right)=2 m+n-1, m, n \geq 2$.
5. $\gamma_{c t n d}\left(S p\left(\overline{m K_{2}}\right)\right)=2 m+1, m \geq 2$.
6. For the graph $K_{p}-e, \gamma_{c t n d}\left(S p\left(K_{p}-e\right)\right)=p, p \geq 4$, where e is an edge in K_{p}.
7. For the graph $K_{m, n}-e, \gamma_{c t n d}\left(S p\left(K_{m, n}-e\right)\right)=2 m+n-3, m, n \geq 3$, where e is an edge in $K_{m, n}$.
8. For the graph $\overline{K_{m, n}-e}, \gamma_{c t n d}\left(S p\left(\overline{K_{m, n}-e}\right)\right)=m+n, m, n \geq 2$.
9. $\gamma_{c t n d}\left(S p\left(P_{n} \circ K_{1}\right)\right)=2 n+1, n \geq 3$.
10. $\gamma_{c t n d}\left(S p\left(C_{n} \circ K_{1}\right)\right)=2 n+2, n \geq 3$.

Theorem 3.4. For any connected graph G with atleast three vertices and $\delta(G) \geq 2,3 \leq \gamma_{c t n d}(S p(G)) \leq 2 p-1$.

Proof. Since radius of $S p(G)$ is atleast 2, $\gamma_{c t n d}(S p(G)) \geq 2$. By Theorem 2.4., if $\gamma_{c t n d}(G)=2$, then $S p(G)$ is a graph obtained by attaching a pendant edge at a vertex of degree $2 p-2$ in $T+K_{1}$, where T is a tree on $2 p-2$ vertices. But, no such connected graph $S p(G)$ exists. Therefore $\gamma_{c t n d}(S p(G)) \geq 3$. Also, since $S p(G)$ is not complete, $\gamma_{c t n d}(S p(G)) \leq 2 p-1$.

Remark 3.5. By Theorem 2.2, $\delta(S p(G))+1 \leq \gamma_{c t n d}(S p(G))$, for any connected graph G. But, $\delta(S p(G))=\delta(G)$. Therefore, $\delta(G)+1 \leq \gamma_{c t n d}(S p(G)) . \gamma_{c t n d}(S p(G)) \geq \delta(G)+1$. Equality holds, if $G \cong C_{3}$.

Theorem 3.6. Let G be a connected graph, which is not a star. Then $\gamma_{c t n d}(S p(G))=3$ if and only if $G \cong K_{2}, C_{3}$ or G is the graph obtained by attaching a pendant edge at exactly one vertex of C_{3} or C_{4}.

Proof. Let D be a ctnd-set of $\operatorname{Sp}(\mathrm{G})$ such that $|D|=3$. By Remark 3.5, $\delta(G)+1 \leq \gamma_{c t n d}(S p(G))$. Therefore $\delta(G)+1 \leq 3$ and this implies $\delta(G) \leq 2$.
Case 1: $\delta(G)=1$. Then D contains all the pendant vertices and atleast one support of $\operatorname{Sp}(\mathrm{G})$. Since $|D|=3$, D contains atmost two pendant vertices. Also, no vertex of G is a pendant vertex of $\mathrm{Sp}(\mathrm{G})$, since $d e g_{S p(G)}^{v}=2 d e g_{G}^{v}$, for every $v \in V(G)$.

Subcase 1: D contains exactly two pendant vertices. Then that vertices belong to $V^{\prime}(G)$ and the remaining vertex of D is a vertex of G. Let $v \in D$, where $v \in V(G)$. Since no two vertices of $V^{\prime}(G)$ in $\operatorname{Sp}(\mathrm{G})$ are adjacent, vertices of $V^{\prime}(G)$ other than v^{\prime} in $V(S p(G))-D$ is adjacent to v . But the vertex v^{\prime} is not adjacent to any of vertices in D . Therefore v^{\prime} must belong to D. If $V(S p(G))-D$ contains a P_{3} induced by any three vertices of G , then the vertex in $V^{\prime}(G)$ corresponding to the central vertex of P_{3} must belong to D. Otherwise $V(S p(G))-D$ contains C_{4}. Therefore $G \cong K_{2}$ or P_{3}. But $\gamma_{c t n d}\left(S p\left(P_{3}\right)\right)=4$. Therefore $G \cong K_{2}$.

Subcase 2: D contains one pendant vertex of $\mathrm{Sp}(\mathrm{G})$. Since any ctnd-set of a graph contains all the pendant vertices, both G and $\mathrm{Sp}(\mathrm{G})$ contain one pendant vertex. Let $v \in V(G)$ be the pendant vertex and u be the support in G , adjacent to v . Then $v^{\prime} \in V(S p(G))$ is a pendant vertex and $v^{\prime} \in D$. Also, since there exists a vertex $w \in D$ such that $N(w) \subseteq D$, and u is the only vertex adjacent to v^{\prime} in $\mathrm{Sp}(\mathrm{G})$, both $u, v^{\prime} \in D$. Let $v \in D$. If $V(G)-\left(D-\left\{v^{\prime}\right\}\right)$ contains a $P_{3}, V(S p(G))-D$ contains a C_{4}. Therefore, $V(G)-(D-\{v\}) \cong K_{2}$. Let $V\left(K_{2}\right)=\{w, x\}$. Since v is a pendant vertex in G , both w , x are adjacent to u . Then G is a graph obtained from C_{3} by attaching a pendant edge at a vertex of C_{3}. Let $v \in D$. Let $w \in D$, $w \in V(G)$ and $w \in v$. Then $v \in V(S p(G)-D) \cap\{v\})$. That is, $v \in(V(S p(G)) \cap V(G)$. If u is not adjacent to w , then $u^{\prime} \in V(S p(G)-D$ is not adjacent to any of the vertices in D. Therefore $u w \in E(G)$.

Also ($V(S p(G)-D) \cap V(G)$ contains atleast 2 vertices of G , other than v , since otherwise, $\langle V(S p(G))-D\rangle$ will not be a tree. Let $x, y \in\left(V(S p(G)-D) \cap V(G)\right.$. If atleast one of x and y is adjacent to both u and w , then $\left\langle\left\{x, y, u^{\prime}\right\}\right\rangle \in C_{3}$ in $V(S p(G))-D$. Each of x and y is adjacent to exactly one of u and w . Therefore G is a graph obtained from C_{4} by attaching a pendant edge at a vertex of C_{4}. If $(V(S p(G))-D) \cap V(G)$ contains atleast 3 vertices then $\langle V(S p(G)-D\rangle$ contains a cycle.

Case 2: $\delta(G)=2$. Therefore $\langle D\rangle$ is isomorphic to one of the graphs: $3 K_{1}, K_{2} \cup K_{1}, P_{3}, C_{3}$. Also, $(V(S p(G))-D) \bigcap V(G)$ contains atmost 2 vertices. If $\langle D\rangle$ is one of the graphs as above, then either $\delta(G)=1$ or there exist no vertex $u \in D$, $N(u) \in D$. Therefore D contains atleast one vertex of $V^{\prime}(G)$. Let $D=\left\{u, v, x^{\prime}\right\}$. Since there is a vertex $w \in D$ such that $N(w) \subseteq D x^{\prime} \neq u^{\prime}$ and v^{\prime}. Also x^{\prime} is adjacent to both u and v . That is, x is adjacent to both u and v in G . Also u and v are adjacent in G , otherwise D is not a dominating set of $\operatorname{Sp}(\mathrm{G})$. Further $(V(S p(G))-D) \cap V(G)$ contains no vertex other than x, otherwise, $\langle V(S p(G))-D\rangle$ contains a cycle. Therefore $G \cong C_{3}$. Hence $G \cong K_{2}, C_{3}$ or G is a graph obtained by attaching a pendant edge at exactly one vertex of C_{3} or C_{4}.

Conversely, if $G \cong K_{2}, C_{3}$ or G is a graph obtained by attaching a pendant edge at exactly one vertex of C_{3} or C_{4}, then $\gamma_{c t n d}(S p(G))=3$.

Theorem 3.7. For any nontrivial connected graph G, $\gamma_{\text {ctnd }}(S p(G))=2 p-1$ if and only if $G \cong K_{2}$.
Proof. Assume $\gamma_{c t n d}(S p(G))=2 p-1$. Let D be a $\gamma_{c t n d}$-set of $\operatorname{Sp}(G)$. Assume $p \geq 3$.
Case 1: $\delta(G)=1$. By Theorem 2.6., if $\delta(S p(G))=1$, then $\gamma_{c t n d}(S p(G))=2 p-1$ if and only if the subgraph of $\operatorname{Sp}(G)$ induced by vertices of degree atleast 2 is K_{2} or K_{1}. But there is no graph G with $\mathrm{Sp}(\mathrm{G})$ satisfying above condition. That is, the subgraph of $\operatorname{Sp}(\mathrm{G})$ induced by vertices of degree atleast 2 in $\operatorname{Sp}(\mathrm{G})$ is neither K_{2} nor K_{1}.
Case 2: $\delta(G) \geq 2$. By Theorem 2.7, if $\delta(S p(G)) \geq 2$, then $\gamma_{c t n d}(S p(G))=2 p-1$ if and only if each edge of $\operatorname{Sp}(\mathrm{G})$ is a dominating edge. But in $\operatorname{Sp}(\mathrm{G})$, there exists atleast one edge that is not a dominating edge. Therefore $p=2$. Then $G \cong K_{2}$.

Conversely, assume $G \cong K_{2}$, Since G is connected and $S p\left(K_{2}\right)=P_{4}$ and $\gamma_{c t n d}\left(P_{4}\right)=3=2 p-1$. Then $\gamma_{c t n d}(S p(G))=$ $2 p-1$.

Observation 3.8. If G is a connected graph with atleast three vertices, then $S p(G)$ is not a tree, since $S p\left(P_{3}\right)$ contains a C_{4} as an induced subgraph.

Theorem 3.9. Let G be a connected graph with atleast three vertices. Then $\gamma_{c t n d}(S p(G)) \leq 2 p-2$. Equality holds, if and only if $G \cong P_{3}$.

Proof. Assume $\gamma_{c t n d}(S p(G))=2 p-2$. Let D be a $\gamma_{c t n d}$-set of $\operatorname{Sp}(\mathrm{G})$.
Case 1: $\delta(\mathrm{G})=1$. By Theorem 2.8., if $\delta(S p(G))=1$, if G is a tree, then $S p(G) \cong T$. By Observation 3.8, if G is a connected graph with atleast three vertices, then $\operatorname{Sp}(\mathrm{G})$ is not a tree. Therefore, there is no graph G with $\mathrm{Sp}(\mathrm{G})$ to be a tree and hence $\operatorname{Sp}(\mathrm{G})$ is a graph satisfying one of the following

1. There exist two adjacent vertices u , v in $\operatorname{Sp}(\mathrm{G})$ such that $\operatorname{deg}_{S p(G)}(u)=1$ and $\langle V(S p(G))-\{u, v\}\rangle$ contains P_{3} as an induced subgraph such that end vertices of P_{3} have degree atleast 2 and the central vertex of P_{3} has degree atleast 3 .
2. Let P be the set of all pendant vertices in $\operatorname{Sp}(\mathrm{G})$ and let there exist a vertex $v \in V(S p(G))-P$ having minimum degree in $V(S p(G))-P$ and is not a support of $\operatorname{Sp}(\mathrm{G})$ such that $V(S p(G))-\left(N_{\langle V-P\rangle}[v]-P\right)$ contains P_{3} as an induced subgraph such that the end vertices of P_{3} have degree atleast 2 and the central vertex of P_{3} has degree atleast 3 . But the only case possible is $G \cong P_{3}$.

Case 2: $\delta(G) \geq 2$. There exists no graph G with $\mathrm{Sp}(\mathrm{G})$ to be one of the graphs mentioned in Theorem 2.11. Therefore $G \cong P_{3}$.

Conversely, if $G \cong P_{3}$, then $\gamma_{c t n d}(S p(G))=2 p-2$.

In the following, upper bounds of $\gamma_{c t n d}(S p(G))$ are found.

Remark 3.10. If G is a connected graph with atleast 4 vertices and is not a bistar, then $\gamma_{c t n d}(\operatorname{Sp}(G)) \leq 2 p-3$. Equality holds, if $G \cong C_{3}$.

Theorem 3.11. Let G be a connected noncomplete graph and $\delta(G) \geq 3$. Then $\gamma_{c t n d}(S p(G)) \leq 2 p-4$.

Proof. Since G is not complete, G contains P_{3} as an induced subgraph. Let the vertices of P_{3} be u, v, w, where v is the central vertex of P_{3}. Since $\operatorname{deg}_{G} v \geq 3$, there exists a vertex x in G, $x \in N(v)$ and $x \neq u$ or w. Let $D=\left\{v, u^{\prime}, w^{\prime}, x^{\prime}\right\}$ and $D^{\prime}=V(S p(G))-D$. Since $(G) \geq 3$, each vertex $V(S p(G))-D^{\prime}$ is adjacent to atleast one vertex in D^{\prime} and $\left\langle V(S p(G))-D^{\prime}\right\rangle \cong$ $K_{1,3}$ with v as the central vertex and $N\left(v^{\prime}\right) \subseteq D^{\prime}$. Therefore, D^{\prime} is a ctnd-set of $\mathrm{Sp}(\mathrm{G})$. Hence, $\gamma_{c t n d}(S p(G)) \leq 2 p-4$.

Theorem 3.12. Let G be a connected graph with $\delta(G) \geq 2$ and diam $(G) \geq 3$. Then $\gamma_{\text {ctnd }}(S p(G)) \leq 2 p-4$.

Proof. Since $\operatorname{diam}(G) \geq 3$, there exists a vertex say $u \in V(G)$ with eccentricity 3. Let $e=(u, v) \in E(G), v \in V(G)$. Let $D=\left\{u, v, u^{\prime}, v^{\prime}\right\} \subseteq V(S p(G))$ and let $D^{\prime}=V(S p(G))-D$. Since $(G) \geq 2$, each vertex in $V(S p(G))-D^{\prime}$ is adjacent to atleast one vertex in D^{\prime} and $\left\langle V(S p(G))-D^{\prime}\right\rangle \cong P_{4}$ in $\operatorname{Sp}(\mathrm{G})$. Let w be a vertex in G such that $\operatorname{deg}_{G}(w)=3$. Then w is adjacent to neither u nor v and $N_{S p(G)}(w) \subseteq D^{\prime}$ in $\operatorname{Sp}(\mathrm{G})$. Therefore D^{\prime} is a ctnd-set of G and hence $\gamma_{c t n d}(S p(G)) \leq\left|D^{\prime}\right|=2 p-4$.

Theorem 3.13. Let G be a connected noncomplete graph with $\delta(G) \geq 3$. If G contains a P_{3} as an induced subgraph and if there exists a vertex $x \in V(G)-V\left(P_{3}\right)$ such that $x \notin N\left(V\left(P_{3}\right)\right)$, then $\gamma_{c t n d}(S p(G)) \leq 2 p-5$.

Proof. Let G be a connected noncomplete graph with $\delta(G) \geq 3$ and G contains a P_{3} as an induced subgraph. Let $V\left(P_{3}\right)=\{u, v, w\}$, where $u, v, w \in V(G)$ where v is the central vertex of P_{3}. Let $D=\left\{u, v, w, u^{\prime}, w^{\prime}\right\}$ and $D^{\prime}=V(S p(G))-D$.

Since $\delta(G) \geq 3$, each vertex in $V(S p(G))-D^{\prime}$ is adjacent to atleast one vertex in D^{\prime} and $\left\langle V(S p(G))-D^{\prime}\right\rangle \cong K_{1,4}$ with v as the central vertex.

It is given that, there exists a vertex $x \in V(G)-V\left(P_{3}\right)$ not adjacent to any of the vertices of P_{3}. Hence, $N(x) \subseteq D^{\prime}$ in $\operatorname{Sp}(\mathrm{G})$. Therefore, D^{\prime} is ctnd-set of $\operatorname{Sp}(\mathrm{G})$ and $\gamma_{\text {ctnd }}(S p(G)) \leq\left|D^{\prime}\right|=2 p-5$.

Remark 3.14. Let G be a connected graph with $\delta(G) \geq 2$. If G contains a P_{3} as an induced subgraph such that central vertex of P_{3} is of degree atleast 3 and the other two vertices in P_{3} are of degree atleast two and if there exists a vertex $x \in V(G)-V\left(P_{3}\right)$ such that x is not adjacent to any of the vertices of P_{3}, then $\gamma_{c t n d}(S p(G)) \leq 2 p-5$.

Theorem 3.15. Let G be a connected graph with $\delta(G) \geq 2$. If diam $(G) \geq 2$, then $\gamma_{\text {ctnd }}(\operatorname{Sp}(G)) \leq 2 p-\delta(G)-1$.
Proof. Since $\operatorname{diam}(G) \geq 2$, there exists a vertex $v \in V(G)$ such that eccentricity of v is atleast 2 . Let $D=\left\{u^{\prime} \in\right.$ $V(S p(G)): u \in N(v)\}$ and $|D|=\operatorname{deg}_{G} u$. Let $D^{\prime}=V(S p(G))-D-\{v\} \subseteq V(S p(G))$. Then $V(S p(G))-D^{\prime}=D \cup\{v\}$ and $\left\langle V(S p(G))-D^{\prime}\right\rangle \cong K_{1, \operatorname{deg}}(v)$. Let $u \in N(v)$. Since $\delta(G) \geq 2$, degree of u in G is atleast 2 . Therefore, $N(u)-\{v\}$ is nonempty. Let $w \in N(u)-\{v\}$, where $w \in V(G)$. Then $w^{\prime} \in V(S p(G))-D^{\prime}$ is adjacent to a vertex in D^{\prime}. Also $v \in V(S p(G))-D^{\prime}$ is adjacent to a vertex in D^{\prime}. Since eccentricity of v in G is atleast 2 , there exists a vertex, say x in G such that $d_{G}(v, x) \geq 2$. Therefore, $N(x) \subseteq V(S p(G))$. Since $d_{G}(v, x) \geq 2$, no vertex in $N(x)$ is adjacent to a vertex in $V(S p(G))-D^{\prime}$ and hence $N(x) \subseteq D^{\prime}$. Therefore D^{\prime} is a ctnd-set of G and $\gamma_{c t n d}(S p(G)) \leq\left|D^{\prime}\right|=|V(S p(G))-D-\{v\}|$, which implies $\gamma_{c t n d}(S p(G)) \leq 2 p-\operatorname{deg}_{G} u-1=2 p-(G)-1$.

Remark 3.16. Let G be a connected graph with $\delta(G) \geq 2$ and diam $(G) \geq 2$. Let v be a vertex of maximum degree in G. If eccentricity of v is atleast 2 , then $\gamma_{c t n d}(S p(G)) \leq \gamma_{c t n d}(G)+\Delta(G)-1$.

Remark 3.17. Let D be a ctnd-set of $S p(G)$. Then D contain vertices from both $V(G)$ and $V^{\prime}(G)$.

Theorem 3.18. For any connected graph G with p vertices, $\gamma_{c t n d}(S p(G)) \leq \gamma_{c t n d}(G)+p-1$.

Proof. Let D and D^{\prime} be minimum ctnd-sets of G and $\operatorname{Sp}(\mathrm{G})$ respectively. Therefore, $\gamma_{\text {ctnd }}(G)=|D|$ and $\gamma_{c t n d}(S p(G))=$ $\left|D^{\prime}\right|$. By Remark 3.17, atleast one of the vertices of G , say $v \in D$ must be in D^{\prime}. Therefore, $\gamma_{c t n d}(\operatorname{Sp}(G)) \leq \gamma_{c t n d}(G)+$ $\left|V^{\prime}(G)\right|-1$. Hence $\gamma_{c t n d}(S p(G)) \leq \gamma_{c t n d}(G)+p-1$. In the following, upper bounds of $\gamma_{c t n d}(S p(G))$ are found.

Theorem 3.19. Let G be a connected noncomplete graph and graph such that $\delta(G) \geq 2$, then $\gamma_{\text {ctnd }}(S p(G)) \geq \gamma_{\text {ctnd }}(G)+1$.

Proof. Let D be a $\gamma_{c t n d}$-set of G. Then $\langle V(G)-D\rangle$ is a tree and there exists a vertex $u \in D$ such that $N(u) \subseteq D$. Also the vertex u^{\prime} in $\operatorname{Sp}(\mathrm{G})$ corresponding to $u \in D$ is isolated in $\langle V(S p(G)-D\rangle$. Therefore, atleast one vertex, say u in $\operatorname{Sp}(\mathrm{G})$ is to be added with D such that $D \cup\{u\}$ will be a ctnd-set of $\operatorname{Sp}(\mathrm{G})$ and hence $\gamma_{c t n d}(S p(G)) \geq \gamma_{c t n d}(G)+1$. Equality holds if $G \cong C_{p}, p \geq 7$.

In the following, the connected splitting graphs for which $\gamma_{c t n d}(S p(G))=\gamma_{c t n d}(G)$ is characterized.

Theorem 3.20. Let G be a connected graph such that $\delta(G)=1$ and let S and T be the set of supports and pendant vertices of G respectively such that $S \cup T$ is a minimum ctnd-set of G. Then $\gamma_{c t n d}(S p(G))=\gamma_{c t n d}(G)$ if and only if G is a graph obtained from C_{4} by attaching pendant vertices at atmost two adjacent vertices of C_{4}.

Proof. Let $D=S \cup T$. Assume $S \cup T$ is a minimum ctnd-set of G and $\gamma_{\text {ctnd }}(S p(G))=\gamma_{\text {ctnd }}(G)=|D|$. Let $T^{\prime}=\left\{v^{\prime} \in\right.$ $\left.V^{\prime}(G) / v \in T\right\}$. Since T^{\prime} is an independent set in $\operatorname{Sp}(\mathrm{G})$, and since $\gamma_{c t n d}(S p(G))=|D|$, the set $D^{\prime}=S \cup T^{\prime}$ is a minimum ctnd-set of $\mathrm{Sp}(\mathrm{G})$. If $\langle V(G)-D\rangle$ contains P_{3}, then $\left\langle V\left(S p(G)-D^{\prime}\right\rangle\right.$ contains C_{4} since $S p\left(P_{3}\right)$ contains C_{4}. Therefore,
$\langle V(G)-D\rangle \cong K_{2}$. If D contains atleast three vertices of G , then atleast one vertex in $\mathrm{V}(\mathrm{G})$-D is adjacent to atleast two vertices in D and $\langle V(G)-D\rangle$ contains P_{3}. Therefore D contains 1 or 2 vertices.
If D contains 1 vertex, then G is a graph obtained from C_{3} by attaching pendant vertices at a vertex of C_{3}. For this graph $\mathrm{G}, \gamma_{c t n d}(G)=2, \gamma_{c t d}(G)=2$. D contains exactly 2 vertices. Let $D=\left\{v_{1}, v_{2}\right\}$. If v_{1} and v_{2} are adjacent in G , then D is not a dominating set of G . Therefore, v_{1} and v_{2} are not adjacent in G . If a vertex in $\langle V(G)-D\rangle$ is adjacent to 2 vertices of D , then also $\langle V(G)-D\rangle$ contains P_{3}. Therefore each vertex in $V(G)-D$ is adjacent to exactly one vertex in D . Therefore, G is a graph obtained from C_{4} by attaching pendant vertices at atmost two adjacent vertices of C_{4}.

Conversely, if G is a graph obtained from C_{4} by attaching pendant vertices at atmost two adjacent vertices of C_{4}, then $S \cup T$ is a minimum ctnd-set of G where S and T be the set of supports and pendant vertices of G .

References

[1] F.Harary, Graph Theory, Addison-Wesley, Reading Mass, (1972).
[2] T.N.Janakiraman, S.Muthammai and M.Bhanumathi, On Splitting Graphs, Ars Combinatoria, 82(2007), 211-221.
[3] S.Muthammai and G.Ananthavalli, Complementary tree nil domination number of a graph, (submitted).
[4] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination in graphs, International Mathematical Forum, 6(26)(2011), 1273-1283.
[5] O.Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38(1962).
[6] H.P.Patil and S.Thangamari, Miscellaneous properties of splitting graphs and Related Concepts, Proceedings of the National Workshop on Graph Theory and its Applications, Manonmaniam Sundaranar University, Tirunelveli, February 21-27, (1996), 121-128.
[7] E.Sampathkumar and H.B.Walikar, On the Splitting graph of a Graph, J. Karnataka Univ. Sci., 25 and 26(1980-1981), 13-16.
[8] V.Swaminathan and A.Subramanian, Domination number of Splitting graph, J. Combin. Inform. System Sci., 26(14)(2001), 17-21.
[9] T.TamizhChelvam and S.Robinson Chellathurai, Complementary nil domination number of a graph, Tamkang Journal of Mathematics, 40(2)(2009), 165-172.

[^0]: * E-mail: dv.ananthavalli@gmail.com

