

International Journal of Mathematics And its Applications

On Special Primitive Elements over Finite Fields

Research Article

Anju¹ and Meenu Khatkar^{1*}

1 Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.

Abstract: Let \mathbb{F}_{q^n} be an extension of the field \mathbb{F}_q of degree n, where $q = p^k$ for some prime p and positive integer k. In this article, we establish a sufficient condition for the existence of a primitive element $\alpha \in \mathbb{F}_{q^n}$ such that $\alpha^2 + \alpha + 1$ is also primitive and $Tr_{\mathbb{F}_{q^n}|\mathbb{F}_q}(\alpha) = a$ for any $a \in \mathbb{F}_q$.

MSC: 12E20, 11T23.

Keywords: Finite Fields, Primitive Element, Characters. © JS Publication.

1. Introduction

Let \mathbb{F}_q denotes a finite field of order $q = p^k$ for some prime p and some positive integer k, and \mathbb{F}_{q^n} denotes an extension of \mathbb{F}_q of degree n. The multiplicative group \mathbb{F}_q^* of \mathbb{F}_q is cyclic and its generators are called *primitive elements* of \mathbb{F}_q . Any field \mathbb{F}_q has $\phi(q-1)$ primitive elements, where ϕ is the Euler's phi-function. For $\alpha \in \mathbb{F}_{q^n}$, the trace $Tr_{\mathbb{F}_{q^n}|\mathbb{F}_q}(\alpha)$ of α is defined by $Tr_{\mathbb{F}_{q^n}|\mathbb{F}_q}(\alpha) = \alpha + \alpha^q + \ldots + \alpha^{q^n-1}$.

In 1985, Cohen [5] considered the problem of existence of two consecutive primitive elements in \mathbb{F}_q . Chou and Cohen [4] completely resolved the question of the existence of a primitive element α such that α and α^{-1} both have trace zero over \mathbb{F}_q . He and Han [8] studied primitive elements of the form $\alpha + \alpha^{-1}$ over finite fields. In 2012, Wang et al. [11] established a sufficient condition for the existence of α such that α and $\alpha + \alpha^{-1}$ are both primitive for the case 2|q. Liao et al. [9] generalized their results to the case when q is any prime power. In 2014, Cao and Wang [2] proved that for all q and $n \geq 29$, \mathbb{F}_{q^n} contains an element α such that $\alpha + \alpha^{-1}$ ia also primitive, and $Tr_{\mathbb{F}_{q^n}|\mathbb{F}_q}(\alpha) = a$, $Tr_{\mathbb{F}_{q^n}|\mathbb{F}_q}(\alpha^{-1}) = b$ for any pair of prescribed $a, b \in \mathbb{F}_q^*$.

In this article, we consider the existence of a primitive pair $(\alpha, \alpha^2 + \alpha + 1)$ in \mathbb{F}_{q^n} with $Tr_{\mathbb{F}_{q^n}|\mathbb{F}_q}(\alpha) = a$ for any prescribed $a \in \mathbb{F}_q^*$.

2. Preliminaries

We denote the number of prime divisors of m by $\omega(m)$, for any positive integer m > 1. For the basics on the character groups of the additive group and the multiplicative group of finite fields, the reader is referred to [10].

^{*} E-mail: meenukhatkar@gmail.com

Definition 2.1. An element $\alpha \in \mathbb{F}_q^*$ is called e-free, for any e|q-1, if $\alpha = \gamma^d$ for any d|e, and $\gamma \in \mathbb{F}_q$ implies d = 1. Hence an element $\alpha \in \mathbb{F}_q^*$ is primitive if and only if it is (q-1)-free.

Since $\widehat{\mathbb{F}_q^*}$ is cyclic, for any d|q-1, \mathbb{F}_q^* has $\phi(d)$ multiplicative characters χ_d of order d. Following Cohen and Huczynska [6, 7], it can be shown that for any m|q-1, an expression of the characteristic function for the subset of m-free elements of \mathbb{F}_q^* is given by

$$\rho_m : \alpha \mapsto \theta(m) \sum_{d \mid m} \frac{\mu(d)}{\phi(d)} \sum_{\chi_d} \chi_d(\alpha),$$

where $\theta(m) := \frac{\phi(m)}{m}$, μ is Möbius function and the internal sum runs over all multiplicative characters χ_d of order d. If ψ is a nontrivial additive character of a finite field \mathbb{F}_q then ψ lifts to an additive character $\hat{\psi}$ of \mathbb{F}_{q^n} , $n \ge 1$, by setting: $\hat{\psi}(\alpha) = \psi(Tr_{\mathbb{F}_{q^n} | \mathbb{F}_q}(\alpha))$ for every $\alpha \in \mathbb{F}_{q^n}$.

An expression of the characteristic function for the set of elements in \mathbb{F}_{q^n} with $Tr_{\mathbb{F}_{q^n}|\mathbb{F}_q}(\alpha) = a \in \mathbb{F}_q$ is given by,

$$T_a: \alpha \mapsto \frac{1}{q} \sum_{\psi \in \widehat{\mathbb{F}_q}} \psi(Tr_{\mathbb{F}_q n \mid \mathbb{F}_q}(\alpha) - a)$$

For every $\alpha \in \mathbb{F}_{q^n}$, we have that

$$T_a(\alpha) = \frac{1}{q} \sum_{\psi \in \widehat{\mathbb{F}_q}} \psi(Tr_{\mathbb{F}_q n \mid \mathbb{F}_q}(\alpha) - a)$$

Every additive character $\psi \in \widehat{\mathbb{F}}_q$ can be obtained by $\psi(\alpha) = \psi_g(u\alpha)$, where ψ_g is the canonical additive character of \mathbb{F}_q and u is any element of \mathbb{F}_q . Hence

$$T_{a}(\alpha) = \frac{1}{q} \sum_{u \in \mathbb{F}_{q}} \psi_{g}(Tr_{\mathbb{F}_{q^{n}}|\mathbb{F}_{q}}(u\alpha) - ua)$$
$$= \frac{1}{q} \sum_{u \in \mathbb{F}_{q}} \hat{\psi}_{g}(u\alpha)\psi_{g}(-ua).$$
(1)

Next, we give some Lemmas, which are useful for our main results.

Lemma 2.2 ([10, Theorem 5.4]). If χ is any non-trivial character of a finite abelian group G, and β is a non-trivial element of G then

$$\sum_{\beta \in G} \chi(\beta) = 0 \quad and \quad \sum_{\chi \in \widehat{G}} \chi(\beta) = 0.$$

Lemma 2.3 ([3]). Let χ be a non-trivial multiplicative character of order r and ψ be a non-trivial additive character of \mathbb{F}_{q^n} . Let f, g be rational functions in $\mathbb{F}_{q^n}(x)$ such that $f \neq yh^r$, for any $y \in \mathbb{F}_{q^n}$ and $h \in \mathbb{F}_{q^n}(x)$, and $g \neq h^p - h + y$ for any $y \in \mathbb{F}_{q^n}$ and $h \in \mathbb{F}_{q^n}(x)$. Then

$$\big|\sum_{x\in\mathbb{F}_{q^n}\setminus S}\chi(f(x))\psi(g(x))\big|\leq (\deg(g)_\infty+m+m'-m''-2)q^{n/2},$$

where S is the set of poles of f and g, $(g)_{\infty}$ is the pole divisor of g, m is the number of distinct zeros and finite poles of f in $\overline{\mathbb{F}}_q$ (algebraic closure of \mathbb{F}_q), m' is the number of distinct poles of g (including ∞) and m'' is the number of finite poles of f that are poles or zeros of g.

3. Main Result

Let $N_{q^n}(m_1, m_2, a)$ be the number of $\alpha \in \mathbb{F}_{q^n}$, such that α is m_1 free and $\alpha^2 + \alpha + 1$ is m_2 free and $Tr(\alpha) = a$ for any $a \in \mathbb{F}_q$. Hence we need to show that $N_{q^n}(m_1, m_2, a) > 0$ for every $a \in \mathbb{F}_q$.

Theorem 3.1. Let $q = p^k$ for some prime $p \neq 3$ and n be a positive integer and let $\omega = \omega(q^n - 1)$. If $q^{\frac{n}{2} - 1} > 3 \cdot 2^{2\omega}$, then $N_{q^n}(m_1, m_2, a) > 0$ for every $a \in \mathbb{F}_q$.

Proof. By definition

$$\begin{split} N_{q^{n}}(q^{n}-1,q^{n}-1,a) &= \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \rho_{q^{n}-1}(\alpha)\rho_{q^{n}-1}(\alpha^{2}+\alpha+1)T_{a}(\alpha) \\ &= \frac{\theta(q^{n}-1)^{2}}{q} \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \sum_{d_{1},d_{2}|q^{n}-1} \frac{\mu(d_{1})\mu(d_{2})}{\phi(d_{1})\phi(d_{2})} \sum_{\chi_{d_{1}},\chi_{d_{2}}} \chi_{d_{1}}(\alpha)\chi_{d_{2}}(\alpha^{2}+\alpha+1) \\ &\sum_{v \in \mathbb{F}_{q}} \hat{\psi}_{g}(v\alpha)\psi_{g}(-va). \end{split}$$

$$N_a(q^n - 1, q^n - 1, a) = \frac{\theta(q^n - 1)^2}{q} \sum_{d_1, d_2 \mid q^n - 1} \frac{\mu(d_1)}{\phi(d_1)} \frac{\mu(d_2)}{\phi(d_2)} \sum_{\chi_{d_1}, \chi_{d_2}} \chi_a(\chi_{d_1}, \chi_{d_2}),$$
(2)

where

$$\boldsymbol{\chi}_a(\chi_{d_1}, \chi_{d_2}) = \sum_{v \in \mathbb{F}_q} \psi_g(-av) \sum_{\alpha \in \mathbb{F}_{q^n}^*} \chi_{d_1}(\alpha) \chi_{d_2}(\alpha^2 + \alpha + 1) \hat{\psi}_g(v\alpha).$$

As $\chi_{d_i}(x) = \chi_{q^n-1}(x^{n_i})$ for i = 1, 2, and some $n_i \in \{0, 1, 2, \dots, q^n - 2\}$, we have

$$\boldsymbol{\chi}_{a}(\chi_{d_{1}},\chi_{d_{2}}) = \sum_{v \in \mathbb{F}_{q}} \psi_{g}(-av) \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \chi_{q^{n}-1}(\alpha^{n_{1}}(\alpha^{2}+\alpha+1)^{n_{2}})\hat{\psi}_{g}(v\alpha)$$
$$= \sum_{v \in \mathbb{F}_{q}} \psi_{g}(-av) \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \chi_{q^{n}-1}(F(\alpha))\hat{\psi}_{g}(v\alpha),$$

where $F(x) = x^{n_1}(x^2 + x + 1)^{n_2} \in \mathbb{F}_{q^n}[x]$ for some $0 \le n_1, n_2 < q^n - 1$. If $F(x) \ne yh^{q^n - 1}$ for any $y \in \mathbb{F}_{q^n}$ and $h \in \mathbb{F}_{q^n}[x]$ then using Lemma 2.3,

$$|\boldsymbol{\chi}_a| \leq 3q^{n/2+1}$$

If $F = yh^{q^n-1}$ for some $y \in \mathbb{F}_{q^n}$ and $h \in \mathbb{F}_{q^n}[x]$ then

$$x^{n_1}(x^2 + x + 1)^{n_2} = yh(x)^{q^n - 1}, (3)$$

for some $y \in \mathbb{F}_{q^n}$ and $h \in \mathbb{F}_{q^n}[x]$. Now (3) $\Rightarrow x^{n_1} | h^{q^n - 1}$. Hence $n_1 = 0$ or

$$(x^{2} + x + 1)^{n_{2}} = x^{q^{n} - 1 - n_{1}} y A^{(q^{n} - 1)},$$
(4)

267

where $A(x) = h(x)/x^{n_1} \in \mathbb{F}_{q^n}[x]$. Now if $n_1 = 0$ then we get $(x^2 + x + 1)^{n_2} = yh(x)^{q^n-1}$, which is possible only if $n_2 = 0$ and H is a constant. Now if $n_1 \neq 0$ then $x^{q^n-1-n_1}|(x^2 + x + 1)^{n_2}$, which is not possible. Hence $n_1 = n_2 = 0$. Thus in this case $(\chi_{d_1}, \chi_{d_2}) = (\chi_1, \chi_1)$. Additionally if, $v \neq 0$ then using Lemma 2.2, we get

$$|\boldsymbol{\chi}_{a}(\chi_{d_{1}},\chi_{d_{2}})| = q \leq 3q^{n/2+1}$$

Hence $|\chi_a(\chi_{d_1}, \chi_{d_2})| \leq 3q^{n/2+1}$, when $(\chi_{d_1}, \chi_{d_2}, v) \neq (\chi_1, \chi_1, 0)$. Thus, using (2) we get

$$N_{q^{n}}(q^{n}-1,q^{n}-1,a) \geq \frac{\theta(q^{n}-1)^{2}}{q}(q^{n}-1-3q^{n/2+1}(2^{2\omega(q^{n}-1)}-1)).$$
(5)

Hence $N_{q^n}(q^n - 1, q^n - 1, a) > 0$ if $q^{n/2} > q^{-n/2+1} + 3q(2^{2\omega(q^n - 1)} - 1)$, i.e., if $q^{n/2-1} > 3 \cdot 2^{2\omega(q^n - 1)}$.

Lemma 3.2 ([1, Lemma 3.1]). For any positive integer I, $2^{\omega(I)} < C(I)I^{1/5}$, where C(I) < 11.25.

Corollary 3.3. Let $q = p^k$ for some prime p and n be a positive integer. If $n \ge 96$ and $q \ge 2$, then $N_{q^n}(m_1, m_2, a) > 0$ for every $a \in \mathbb{F}_q$.

Proof. By Lemma 3.2, $N_{q^n}(m_1, m_2, a) > 0$ if $q^{n/10-1} > 380$, which holds for all $n \ge 96$ and $q \ge 2$. Hence the result follows.

References

- [1] Anju and R.K.Sharma, On primitive normal elements over finite fields, Asian-European Journal of Mathematics, 11(2)(2018).
- [2] X.Cao and P.Wang, Primitive elements with prescribed trace, Appl. Algebra Engrg. Comm. Comput., 25(5)(2017), 339-345.
- [3] F.N.Castro and C.J.Moreno, Mixed exponential sums over finite fields, Proc. Am. Math. Soc., 128(9)(2000), 2529-2537.
- [4] W.S.Chou and S.D.Cohen, Primitive elements with zero traces, Finite Fields Appl., 7(2001), 125141.
- [5] S.D.Cohen, Consecutive primitive roots in a finite field, Proc. Amer. Math. Soc., 93(2)(1985), 189197.
- [6] S.D.Cohen and S.Huczynska, The primitive normal basis theorem- without a computer, J. Lond. Math. Soc., 67(1)(2003), 41-56.
- [7] S.D.Cohen and S.Huczynska, The strong primitive normal basis theorem, Acta Arith., 143(4)(2010), 299-332.
- [8] L.B.He and W.B.Han, Research on primitive elements in the form $\alpha + \alpha^{-1}$ over \mathbb{F}_q , J. Inf. Eng. Univ., 4(2)(2003), 97-98.
- [9] Q.Liao, J.Li and K.Pu, On the existence for some special primitive elements in finite fields, Chin. Ann. Math., 37B(2016), 259266.
- [10] R.Lidl and H.Niederreiter, *Finite Fields*, 2nd edition, Cambridge University Press, Cambridge, (1997).
- [11] P.P.Wang, X.W.Cao and R.Q.Feng, On the existence of some specific elements in finite fields of characteristic 2, Finite Fields Appl., 18(4)(2012), 800813.