International Journal of Mathematics And its Applications

On Special Primitive Elements over Finite Fields

Anju ${ }^{1}$ and Meenu Khatkar ${ }^{1 *}$
1 Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.

```
Abstract: Let }\mp@subsup{\mathbb{F}}{\mp@subsup{q}{}{n}}{}\mathrm{ be an extension of the field }\mp@subsup{\mathbb{F}}{q}{}\mathrm{ of degree }n\mathrm{ , where q}=\mp@subsup{p}{}{k}\mathrm{ for some prime p and positive integer k. In this article, we establish a sufficient condition for the existence of a primitive element \(\alpha \in \mathbb{F}_{q^{n}}\) such that \(\alpha^{2}+\alpha+1\) is also primitive and \(\operatorname{Tr}_{\mathbb{F}_{q^{n} \mid \mathbb{F}_{q}}}(\alpha)=a\) for any \(a \in \mathbb{F}_{q}\).
MSC: 12E20, 11T23.
```

Keywords: Finite Fields, Primitive Element, Characters.
(C) JS Publication.

1. Introduction

Let \mathbb{F}_{q} denotes a finite field of order $q=p^{k}$ for some prime p and some positive integer k, and $\mathbb{F}_{q^{n}}$ denotes an extension of \mathbb{F}_{q} of degree n. The multiplicative group \mathbb{F}_{q}^{*} of \mathbb{F}_{q} is cyclic and its generators are called primitive elements of \mathbb{F}_{q}. Any field \mathbb{F}_{q} has $\phi(q-1)$ primitive elements, where ϕ is the Euler's phi-function. For $\alpha \in \mathbb{F}_{q^{n}}$, the $\operatorname{trace}^{\operatorname{Tr}} \operatorname{Tr}_{\mathbb{F}^{n}} \mid \mathbb{F}_{q}(\alpha)$ of α is defined by $\operatorname{Tr}_{\mathbb{F}_{q} n \mid \mathbb{F}_{q}}(\alpha)=\alpha+\alpha^{q}+\ldots+\alpha^{q^{n}-1}$.

In 1985 , Cohen [5] considered the problem of existence of two consecutive primitive elements in \mathbb{F}_{q}. Chou and Cohen [4] completely resolved the question of the existence of a primitive element α such that α and α^{-1} both have trace zero over \mathbb{F}_{q}. He and Han [8] studied primitive elements of the form $\alpha+\alpha^{-1}$ over finite fields. In 2012, Wang et al. [11] established a sufficient condition for the existence of α such that α and $\alpha+\alpha^{-1}$ are both primitive for the case 2|q. Liao et al. [9] generalized their results to the case when q is any prime power. In 2014, Cao and Wang [2] proved that for all q and $n \geq 29$, $\mathbb{F}_{q^{n}}$ contains an element α such that $\alpha+\alpha^{-1}$ ia also primitive, and $\operatorname{Tr}_{\mathbb{F}_{q^{n} \mid \mathbb{F}_{q}}}(\alpha)=a, \operatorname{Tr}_{\mathbb{F}_{q^{n} \mid \mathbb{F}_{q}}}\left(\alpha^{-1}\right)=b$ for any pair of prescribed $a, b \in \mathbb{F}_{q}^{*}$.

In this article, we consider the existence of a primitive pair $\left(\alpha, \alpha^{2}+\alpha+1\right)$ in $\mathbb{F}_{q^{n}}$ with $\operatorname{Tr}_{\mathbb{F}_{q^{n} \mid \mathbb{F}_{q}}}(\alpha)=a$ for any prescribed $a \in \mathbb{F}_{q}^{*}$.

2. Preliminaries

We denote the number of prime divisors of m by $\omega(m)$, for any positive integer $m>1$. For the basics on the character groups of the additive group and the multiplicative group of finite fields, the reader is referred to [10].

[^0]Definition 2.1. An element $\alpha \in \mathbb{F}_{q}^{*}$ is called e-free, for any e $\mid q-1$, if $\alpha=\gamma^{d}$ for any $d \mid e$, and $\gamma \in \mathbb{F}_{q}$ implies $d=1$. Hence an element $\alpha \in \mathbb{F}_{q}^{*}$ is primitive if and only if it is $(q-1)$-free.

Since $\widehat{\mathbb{F}_{q}^{*}}$ is cyclic, for any $d \mid q-1, \mathbb{F}_{q}^{*}$ has $\phi(d)$ multiplicative characters χ_{d} of order d. Following Cohen and Huczynska $[6,7]$, it can be shown that for any $m \mid q-1$, an expression of the characteristic function for the subset of m-free elements of \mathbb{F}_{q}^{*} is given by

$$
\rho_{m}: \alpha \mapsto \theta(m) \sum_{d \mid m} \frac{\mu(d)}{\phi(d)} \sum_{\chi_{d}} \chi_{d}(\alpha),
$$

where $\theta(m):=\frac{\phi(m)}{m}, \mu$ is Möbius function and the internal sum runs over all multiplicative characters χ_{d} of order d. If ψ is a nontrivial additive character of a finite field \mathbb{F}_{q} then ψ lifts to an additive character $\hat{\psi}$ of $\mathbb{F}_{q^{n}}, n \geq 1$, by setting: $\hat{\psi}(\alpha)=\psi\left(\operatorname{Tr}_{\mathbb{F}_{q^{n}} \mid \mathbb{F}_{q}}(\alpha)\right)$ for every $\alpha \in \mathbb{F}_{q^{n}}$.
An expression of the characteristic function for the set of elements in $\mathbb{F}_{q^{n}}$ with $\operatorname{Tr}_{\mathbb{F}_{q^{n}} \mid \mathbb{F}_{q}}(\alpha)=a \in \mathbb{F}_{q}$ is given by,

$$
T_{a}: \alpha \mapsto \frac{1}{q} \sum_{\psi \in \widehat{\mathbb{P}_{q}}} \psi\left(\operatorname{Tr}_{\mathbb{F}_{q^{n}} \mid \mathbb{F}_{q}}(\alpha)-a\right) .
$$

For every $\alpha \in \mathbb{F}_{q^{n}}$, we have that

$$
T_{a}(\alpha)=\frac{1}{q} \sum_{\psi \in \widehat{\mathbb{F}_{q}}} \psi\left(T r_{\mathbb{F}_{q^{n}} \mid \mathbb{F}_{q}}(\alpha)-a\right) .
$$

Every additive character $\psi \in \widehat{\mathbb{F}_{q}}$ can be obtained by $\psi(\alpha)=\psi_{g}(u \alpha)$, where ψ_{g} is the canonical additive character of \mathbb{F}_{q} and u is any element of \mathbb{F}_{q}. Hence

$$
\begin{align*}
T_{a}(\alpha) & =\frac{1}{q} \sum_{u \in \mathbb{F}_{q}} \psi_{g}\left(T r_{\mathbb{F}_{q^{n}} \mid \mathbb{F}_{q}}(u \alpha)-u a\right) \\
& =\frac{1}{q} \sum_{u \in \mathbb{F}_{q}} \hat{\psi}_{g}(u \alpha) \psi_{g}(-u a) . \tag{1}
\end{align*}
$$

Next, we give some Lemmas, which are useful for our main results.

Lemma 2.2 ([10, Theorem 5.4]). If χ is any non trivial character of a finite abelian group G, and β is a non trivial element of G then

$$
\sum_{\beta \in G} \chi(\beta)=0 \quad \text { and } \quad \sum_{\chi \in \widehat{G}} \chi(\beta)=0 .
$$

Lemma 2.3 ([3]). Let χ be a non-trivial multiplicative character of order r and ψ be a non-trivial additive character of $\mathbb{F}_{q^{n}}$. Let f, g be rational functions in $\mathbb{F}_{q^{n}}(x)$ such that $f \neq y h^{r}$, for any $y \in \mathbb{F}_{q^{n}}$ and $h \in \mathbb{F}_{q^{n}}(x)$, and $g \neq h^{p}-h+y$ for any $y \in \mathbb{F}_{q^{n}}$ and $h \in \mathbb{F}_{q^{n}}(x)$. Then

$$
\left|\sum_{x \in \mathbb{F}_{q^{n}} \backslash S} \chi(f(x)) \psi(g(x))\right| \leq\left(\operatorname{deg}(g)_{\infty}+m+m^{\prime}-m^{\prime \prime}-2\right) q^{n / 2},
$$

where S is the set of poles of f and $g,(g)_{\infty}$ is the pole divisor of g, m is the number of distinct zeros and finite poles of f in $\overline{\mathbb{F}}_{q}$ (algebraic closure of \mathbb{F}_{q}), m^{\prime} is the number of distinct poles of g (including ∞) and $m^{\prime \prime}$ is the number of finite poles of f that are poles or zeros of g.

3. Main Result

Let $N_{q^{n}}\left(m_{1}, m_{2}, a\right)$ be the number of $\alpha \in \mathbb{F}_{q^{n}}$, such that α is m_{1} free and $\alpha^{2}+\alpha+1$ is m_{2} free and $\operatorname{Tr}(\alpha)=a$ for any $a \in \mathbb{F}_{q}$. Hence we need to show that $N_{q^{n}}\left(m_{1}, m_{2}, a\right)>0$ for every $a \in \mathbb{F}_{q}$.

Theorem 3.1. Let $q=p^{k}$ for some prime $p \neq 3$ and n be a positive integer and let $\omega=\omega\left(q^{n}-1\right)$. If $q^{\frac{n}{2}-1}>3 \cdot 2^{2 \omega}$, then $N_{q^{n}}\left(m_{1}, m_{2}, a\right)>0$ for every $a \in \mathbb{F}_{q}$.

Proof. By definition

$$
\begin{align*}
& N_{q^{n}}\left(q^{n}-1, q^{n}-1, a\right)= \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \rho_{q^{n}-1}(\alpha) \rho_{q^{n}-1}\left(\alpha^{2}+\alpha+1\right) T_{a}(\alpha) \\
&=\frac{\theta\left(q^{n}-1\right)^{2}}{q} \sum_{\alpha \in \mathbb{F}_{q}^{*}} \sum_{d_{1}, d_{2} \mid q^{n}-1} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right)}{\phi\left(d_{1}\right) \phi\left(d_{2}\right)} \sum_{\chi_{d_{1}}, \chi_{d_{2}}} \chi_{d_{1}}(\alpha) \chi_{d_{2}}\left(\alpha^{2}+\alpha+1\right) \\
& \sum_{v \in \mathbb{F}_{q}} \hat{\psi}_{g}(v \alpha) \psi_{g}(-v a) . \\
& \quad N_{a}\left(q^{n}-1, q^{n}-1, a\right)=\frac{\theta\left(q^{n}-1\right)^{2}}{q} \sum_{d_{1}, d_{2} \mid q^{n}-1} \frac{\mu\left(d_{1}\right)}{\phi\left(d_{1}\right)} \frac{\mu\left(d_{2}\right)}{\phi\left(d_{2}\right)} \sum_{\chi_{d_{1}}, \chi_{d_{2}}} \chi_{a}\left(\chi_{d_{1}}, \chi_{d_{2}}\right), \tag{2}
\end{align*}
$$

where

$$
\boldsymbol{\chi}_{a}\left(\chi_{d_{1}}, \chi_{d_{2}}\right)=\sum_{v \in \mathbb{F}_{q}} \psi_{g}(-a v) \sum_{\alpha \in \mathbb{F}_{q^{*}}^{*}} \chi_{d_{1}}(\alpha) \chi_{d_{2}}\left(\alpha^{2}+\alpha+1\right) \hat{\psi}_{g}(v \alpha) .
$$

As $\chi_{d_{i}}(x)=\chi_{q^{n}-1}\left(x^{n_{i}}\right)$ for $i=1,2$, and some $n_{i} \in\left\{0,1,2, \cdots, q^{n}-2\right\}$, we have

$$
\begin{aligned}
\chi_{a}\left(\chi_{d_{1}}, \chi_{d_{2}}\right) & =\sum_{v \in \mathbb{F}_{q}} \psi_{g}(-a v) \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \chi_{q^{n}-1}\left(\alpha^{n_{1}}\left(\alpha^{2}+\alpha+1\right)^{n_{2}}\right) \hat{\psi}_{g}(v \alpha) \\
& =\sum_{v \in \mathbb{F}_{q}} \psi_{g}(-a v) \sum_{\alpha \in \mathbb{F}_{q^{n}}^{*}} \chi_{q^{n}-1}(F(\alpha)) \hat{\psi}_{g}(v \alpha),
\end{aligned}
$$

where $F(x)=x^{n_{1}}\left(x^{2}+x+1\right)^{n_{2}} \in \mathbb{F}_{q^{n}}[x]$ for some $0 \leq n_{1}, n_{2}<q^{n}-1$.
If $F(x) \neq y h^{q^{n}-1}$ for any $y \in \mathbb{F}_{q^{n}}$ and $h \in \mathbb{F}_{q^{n}}[x]$ then using Lemma 2.3,

$$
\left|\boldsymbol{\chi}_{a}\right| \leq 3 q^{n / 2+1}
$$

If $F=y h^{q^{n}-1}$ for some $y \in \mathbb{F}_{q^{n}}$ and $h \in \mathbb{F}_{q^{n}}[x]$ then

$$
\begin{equation*}
x^{n_{1}}\left(x^{2}+x+1\right)^{n_{2}}=y h(x)^{q^{n}-1}, \tag{3}
\end{equation*}
$$

for some $y \in \mathbb{F}_{q^{n}}$ and $h \in \mathbb{F}_{q^{n}}[x]$. Now (3) $\Rightarrow x^{n_{1}} \mid h^{q^{n}-1}$. Hence $n_{1}=0$ or

$$
\begin{equation*}
\left(x^{2}+x+1\right)^{n_{2}}=x^{q^{n}-1-n_{1}} y A^{\left(q^{n}-1\right)}, \tag{4}
\end{equation*}
$$

where $A(x)=h(x) / x^{n_{1}} \in \mathbb{F}_{q^{n}}[x]$. Now if $n_{1}=0$ then we get $\left(x^{2}+x+1\right)^{n_{2}}=y h(x)^{q^{n}-1}$, which is possible only if $n_{2}=0$ and H is a constant. Now if $n_{1} \neq 0$ then $x^{q^{n}-1-n_{1}} \mid\left(x^{2}+x+1\right)^{n_{2}}$, which is not possible. Hence $n_{1}=n_{2}=0$.
Thus in this case $\left(\chi_{d_{1}}, \chi_{d_{2}}\right)=\left(\chi_{1}, \chi_{1}\right)$. Additionally if, $v \neq 0$ then using Lemma 2.2, we get

$$
\left|\chi_{a}\left(\chi_{d_{1}}, \chi_{d_{2}}\right)\right|=q \leq 3 q^{n / 2+1}
$$

Hence $\left|\chi_{a}\left(\chi_{d_{1}}, \chi_{d_{2}}\right)\right| \leq 3 q^{n / 2+1}$, when $\left(\chi_{d_{1}}, \chi_{d_{2}}, v\right) \neq\left(\chi_{1}, \chi_{1}, 0\right)$. Thus, using (2) we get

$$
\begin{equation*}
N_{q^{n}}\left(q^{n}-1, q^{n}-1, a\right) \geq \frac{\theta\left(q^{n}-1\right)^{2}}{q}\left(q^{n}-1-3 q^{n / 2+1}\left(2^{2 \omega\left(q^{n}-1\right)}-1\right)\right) . \tag{5}
\end{equation*}
$$

Hence $N_{q^{n}}\left(q^{n}-1, q^{n}-1, a\right)>0$ if $q^{n / 2}>q^{-n / 2+1}+3 q\left(2^{2 \omega\left(q^{n}-1\right)}-1\right)$, i.e., if $q^{n / 2-1}>3 \cdot 2^{2 \omega\left(q^{n}-1\right)}$.
Lemma 3.2 ([1, Lemma 3.1]). For any positive integer $I, 2^{\omega(I)}<C(I) I^{1 / 5}$, where $C(I)<11.25$.
Corollary 3.3. Let $q=p^{k}$ for some prime p and n be a positive integer. If $n \geq 96$ and $q \geq 2$, then $N_{q^{n}}\left(m_{1}, m_{2}, a\right)>0$ for every $a \in \mathbb{F}_{q}$.

Proof. By Lemma 3.2, $N_{q^{n}}\left(m_{1}, m_{2}, a\right)>0$ if $q^{n / 10-1}>380$, which holds for all $n \geq 96$ and $q \geq 2$. Hence the result follows.

References

[1] Anju and R.K.Sharma, On primitive normal elements over finite fields, Asian-European Journal of Mathematics, 11(2)(2018).
[2] X.Cao and P.Wang, Primitive elements with prescribed trace, Appl. Algebra Engrg. Comm. Comput., 25(5)(2017), 339-345.
[3] F.N.Castro and C.J.Moreno, Mixed exponential sums over finite fields, Proc. Am. Math. Soc., 128(9)(2000), 2529-2537.
[4] W.S.Chou and S.D.Cohen, Primitive elements with zero traces, Finite Fields Appl., 7(2001), 125141.
[5] S.D.Cohen, Consecutive primitive roots in a finite field, Proc. Amer. Math. Soc., 93(2)(1985), 189197.
[6] S.D.Cohen and S.Huczynska, The primitive normal basis theorem- without a computer, J. Lond. Math. Soc., 67(1)(2003), 41-56.
[7] S.D.Cohen and S.Huczynska, The strong primitive normal basis theorem, Acta Arith., 143(4)(2010), 299-332.
[8] L.B.He and W.B.Han, Research on primitive elements in the form $\alpha+\alpha^{-1}$ over \mathbb{F}_{q}, J. Inf. Eng. Univ., 4(2)(2003), 97-98.
[9] Q.Liao, J.Li and K.Pu, On the existence for some special primitive elements in finite fields, Chin. Ann. Math., 37B(2016), 259266.
[10] R.Lidl and H.Niederreiter, Finite Fields, 2nd edition, Cambridge University Press, Cambridge, (1997).
[11] P.P.Wang, X.W.Cao and R.Q.Feng, On the existence of some specific elements in finite fields of characteristic 2, Finite Fields Appl., 18(4)(2012), 800813.

[^0]: * E-mail: meenukhatkar@gmail.com

