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Abstract: An analytical solution is obtained for the problem of three dimensional heat conduction in sphere with multiple layers
in the radial direction, spatially non-uniform but time independent volumetric heat sources are assumed in each layers,
separation of variables method is used to obtain transient temperature distribution. The solution obtained is valid for any
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1. Introduction

Composite materials are defined as materials consisting of two or more components with different properties and distinct
boundaries between them, Thermal analysis of multilayer composite media is of great importance since it has been widely
used in real physical and engineering systems. Multilayer material has benefit of combining various mechanical, physical and
thermal properties of different substances. Multilayer materials are used in semicircular fibre insulated heaters, Multilayer
insulation materials and nuclear fuel rods. Multilayer transient heat conduction finds applications in thermodynamics, fuel
cells and electrochemical reactors. The layered sphere is utilized to investigate the thermal properties of composite media
by assuming embedded spherical particles in the composite materials. Many researchers have solved the transient heat
conduction problem in a composite medium. For instance, Salt [1] solved the transient heat conduction problem in a two
dimensional composite slab using an orthogonal eigenfunction expansion technique de Monte [2, 3] applied the eigenfunction
expansion method to obtain the transient temperature distribution for the heat conduction in a two-dimensional two-layer
isotropic slab with homogenous boundary conditions. Lu et al. [4] and Lu and Viljanen [5] combined separation of variables
and Laplace transforms to solve the transient conduction in the two-dimensional cylindrical and spherical media. Dalir and
Nourazar [10] used the eigenfunction expansion method to solve the problem of three-dimensional transient heat conduction
in a multilayer cylinder. Singh et al. [6, 7] and Jain et al. [8, 9] have studied 2D multilayer transient conduction problems in

spherical and cylindrical coordinates. They have obtained analytical solutions for 2D multilayer transient heat conduction
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in spherical coordinates, in polar coordinates with multiple layers in the radial direction, and in a multilayer annulus. They
have used the method of partial solutions to obtain the temperature distributions. In the method of partial solutions, the
non homogeneous transient problem is split into two sub problems: a non homogeneous steady-state sub problem and a
homogeneous transient sub problem. Then, the eigenfunction expansion method is used to solve the non homogeneous
steady-state sub problem and the method of separation of variables is used to solve the homogeneous transient sub problem
Thus, in the present paper, the non homogeneous transient problem is split into two sub problems: a non homogeneous
steady-state sub problem and a homogeneous transient sub problem. Then, the eigenfunction expansion method is used
to solve the non homogeneous steady-state sub problem and the method of separation of variables is used to solve the
homogeneous transient sub problem in the 3D spherical coordinates for radial multilayer domain with spatially non uniform
and time independent internal heat sources is obtained. Homogenous boundary conditions of the first or second kind can
be applied on surfaces of § = constant and ¢ = constant. However, boundary conditions of the third kind (convection) are

used in the r-direction.

2. Mathematical Formulation

Consider an n-layer composite spherical slab with coordinates ro =7 =1r,, 0 =60 =1 and 0 = ¢ = x. It is assume that all
the layers are thermally isotropic and make a perfect thermal contact. At ¢t = 0, the ith layer has a temperature f;(r,6,0).
At t > 0, homogeneous boundary conditions of the first or second kind are set on the angular surfaces § = 0, § = ¢ and
on ¢ =0, ¢ = x. All these boundary conditions can be used for the inner (i = 0, r = ro) and outer (i = n, r = ry) radial
surfaces. The time-independent heat sources g;(r,0,0) are actuated in each layer. The governing differential equation for
the 3-D transient heat conduction in a multilayer sphere along with the boundary and initial conditions are as follows.

BQTZ' n g oT; I i 82Ti i cot 0 0T; I 1 82T¢ n gi(r, 0, (Z)) - i oT; (1)
or? r Or r2 002 r2 00 r2sin® @ O0¢2 ki Ty Ot

Ti=Ti(r,0,0,t)ro <7 <rpri-1 <r<ril <i<n0 <O <YP0<p<xt >0
Boundary conditions
e Inner surface of first layer (i = 1)

oTy (T07 07 (;bv t)

Ain
ar

+ BinTi(ro,0,0,t) =0 (2)

e Outer surface of n®" layer (i = n)

0T (n, 0, ¢, 1)

Aout 87‘

+ BoutTn(Tn7 0, (Z77 t) =0 (3)

e 0 =0 surface (1 =1,2,...,n)
aTi(T,Q = 0,¢,t) .

Ti(r,0 =0,¢,t) =0 or e 0 (4)
e 0 =1 surface (1 =1,2,...,n)

Tir0 = w6, =0 or ZHLIZ00D (5)
e ¢ =0 surface (1 =1,2,...,n)

Tir0.6=0t)=0 or J00=010_, (6)

o¢p
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e ¢ = x surface (1 =1,2,...,n)

Ti(r,0,¢ = x,t) =0 or 99 =0 (7)
e Inner interface of the i'" layer (i = 2,3,...,n)
Ti(ri-1,0,¢,t) = Tic1(ri-1,0,¢,1) (8)
_8Ti(ri_1,9,q5, t) . 8Ti—l(ri—1767¢7 t)
b or = i or ©)
e Outer interface of the i*" layer (i =1,2,...,n — 1)
Ti(ri707¢7 t) = Ti+1(ri797¢7 t) (10)
aTi(Ti, 9, ¢, t) 8Ti+1 (Ti» 67 ¢7 t)
e TRpeaniu b s 1
K or ki+1 or (11)
e Initial condition:

2.1. Solution methodology

In order to apply the separation of variable method , which is applicable to homogeneous problem has to be split into: (1)
Homogeneous transient problem (2) Non-homogeneous steady state problem. This is accomplished by rewriting T5(r, 0, ¢, t)
as Ti(r,0,¢,t) + Tss,i(r, 0, ¢), where T;(r,0, ¢,t) is the “complementary transient” part and Tss ;(r, 0, ¢) is the steady state

part of the solution.

2.2. Homogeneous transient problem

10T, _ 9T | 20T | 1 9°T;,  cotfdT; 1 9T, (13)
a; Ot Or? r Or r2 002 r2 00 r2sin? @ O¢?
Where T; = T(r,0,6,t) , ric1 <r <1, 1 <i < m.
2.3. Boundary conditions
e Inner surface of the first layer (: = 0)
45, BOCOD 4 o (r0,0,6,1) = 0 (14)
e outer surface of the n'" layer (i = n)
e =0 Surface at i =1,2,...,n
Ti(r,H:0,¢,t):O or wzo (16)

00
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e ) =1 surfaceat i =1,2,...,n
Tir0=,0.0)=0 or ZHIZ0:00 (17)
e p =0surfaceati=1,2,...,n
Ti(r,0,6=0,6) =0 or wzo (18)
09
e ¢ =xsurface at i =1,2,...,n
Ti(r,0,6 =x,t) =0 or MZO (19)
o
e Inner interface of the i*" layer (i = 2,3,...,n)
Ti(ri1,0,6,t) = Ti—1(ri-1,0, ,1) (20)
aﬂ(m_l,e,qb,t) 8T¢_1(T¢_1,9,¢, t)
o ZA LG Y g 21
ar kiz1 or (21)
e Outer interface of the i*" layer (i =1,2,3,...,n —1)
Ti(r,0,¢,t) = Ti1(ri,0, 6, t) (22)
ITi(ri, 0, ¢,t) OTi1(ri,0,0,t)
PRI LY A N A A AL L) 2
or ! or (23)
e Initial condition:
Ti(ﬁ 97 ¢7t = 0) = fi(r791¢) _TSSY’L'(T>97¢) (24)
2.4. Non-homogeneous steady state problem
0?Tesi(r,0,0) | 20Tesi(r,0,¢) | 1 0°Tesi(r,0,8) | cot OTssi(r,0,¢) 1 9Tei(r,0,0) | gi(r,0,9)
E) - i . 3y i 3 K K b — 2
or? * r or + r2 002 * r2 00 * r2sin? 0 0?2 + ki 0 (25)
e Inner surface of first layer (i = 1)
Amw + BinTss,1(r0,0,0) =0 (26)
e Outer surface of i layer (i = n)
AoutW + Bouths,n(rn7 07 Qb) =0 (27)
e ) =0 Surface at i =1,2,...,n
Teei(r,0 =0,6) =0 or OTss,i(r,0 = 0,9) -0 (28)

00
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e =1 surfaceat i =1,2,...

,n
Tssi , U =1,
Toei(r,0 =1,6) =0 or OTss,i(r, 0 = ¢, ¢) _ 0
00
e p =0surfaceati=1,2,...,n
Tss,i(r, 0,0 =
Tss,i(r,0,9=0)=0 or 9Ts5,i(r,0,¢ = 0) (Taz $=0 _ 0
e ¢ =xsurface at i =1,2,...,n
Tss,i(r, 0,0 =
Tss,i(r,0,6=x)=0 or %W =0
e Inner interface of i*" layer (i = 2,3,...,n)
Tos,i(riz1,0,0) = Tss,i—1(ri=1,0, )
OTss,i(ri-1,0,0) OTss,i-1(ri-1,0,9)
ki ————""—= =k
ar or
e Outer interface of n*" layer (i =1,2,...,n—1)

Tss,i(13,0, ¢) = Tss,it1(r4,0, ¢)

aTss,i(riy 67 ¢) aTSS,i+1 (riz 97 ¢)
ki——————"—= =kjy————7"~
or or

3.

Using the Separation of variable method :

Ti(r, 0, ¢,t) = Ri(r)0:(0)¢i(p)Ti(t)

Solution to the Homogeneous Transient Problem

1T, R 2R, | 16, cotfo; L ¢ _ o
a; Ty R; rR;, 1r%20; r2 6;  r2sin?6 ¢ ¢
T = cre” N
R, 2R, 16, cotfo, 1 ¢
iy 48 1 Yi _ _ Pi
RTrR 0, T 20, r2smioe "
o, | 2R R 6 0; | \22 ¢ _ 2
sin“ g |r +2r—= 4+ +4cotd >+ \Njr"| =—"=v

¢;/ + V7l2p¢i =0

Pip = C2SINVipd + €3 COS Vip

(29)

(30)

(31)

(36)

(37)

(38)

W
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By using the boundary condition on ¢, we obtain as

bip(¢) = sinvipg (39)
2R U R aa 0 0, v 2
2ty N2 = T ot L = 4
r i + TR1'+ ir 0 co 0¢+sin29 B (40)

PR} +2rR; + (Ao’ — B)Ri = 0
Substituting R;(r) = ’I"%V;', B2 =m(m+1)

1
Rimi(1) = —= [CimiTm+0.5(XimiT) + dimiYm+0.5(XimiT)] (41)

4

Application of the interface conditions (20)-(23) and boundary conditions (14)-(15) to the transverse eigenfunction

Rimi(MNimur) , The matrix (2n x 2n) are as follows:

A1in A2%n 0 0 0 0 0 0 0 0 0 0 Clml 0
11 12 X13 T14 ... 0 0 O O 0 O 0 0 dlml O
Y11 Yi2 Y13 Yia ... 0 0 0 0 0 0 0 0
0 0 0 0 o Ti1 Ti2 Ti3 Tia ... 0 0 0 0 Ciml 0
= (42)
0 0 0 0 .. Yi1 Yi2 Yi3 Yia ... 0 0 0 0 dimi 0
0 0 0 0 .. 0 0 0 0 .. 11 Ti-1,2 Ti-1,3 Ti—1,4
0 0 0 0 .. 0 0 0 0 .. Yi—1,1 Yi—1,2 Yi—1,3 Yi—1,4 Cnml 0
0 0 o o0 ... 0 0 0 0 .. 0 0 Alout Q2out dnmi 0
a1im = —— [ Aun T 05 \amiro) — Sin (Amir0) + BinJm10.5(Amiro)
lin — \/% indm40.5 1mlTo 27”0 m+0.5 1mlIT0 indm+0.5 1miTo
asim = —— | AV, (A r)f@ (Ami70) 4 BinYm40.5(A1miro)
2in — \/7"70 intm40.5 1miTo 27“0 m+0.5 1mlTo indm+40.5 1mlIT0
i = ——JrsosArmir1) S S A Otm) — T2 70500 r)}
il \/7’71 m—+0.5 1miT1 Yi1 \/ﬁ i 19 m+0.5\A\1mlT'1 27”1 m+0.5\A1miT1
o = ——Vimro5 (A1) I T P Otmtrt) — V05 (A r)]
12 \/ﬁ m+0.5 1miT1 Yi2 \/T—l I 1Xm+40.5 1miT1 27’1 m+0.5 1miT1
25 = ——— Jor0.5Oamir) 5= ko cos Oamirt) + 22 JoosOamir )}
13 \/ﬁ m—+0.5 2mliT'1 Yi3 \/ﬁ I 2Jm-40.5 2miT1 27‘1 m—+0.5 2mliT1
P4 = — Vi 05(amirt) t = Yo Qo) + 22 Vi o5 Cuamtr )]
14 \/E m—+0.5 2mliT1 Yia \/7"71 I 28m+40.5 2mliT1 27”1 m—+0.5 2mliT1
a L a0 s Omirn) — 0t 7 Ovemat?) + Bout s 0.5 oomin)
lout — \/ﬁ outJIm-+40.5 nmlln 27'n m—+40.5 nmlln outJm+0.5 nmlln
Gaont = — AotV 05 CvmmtTn) — 25y Ovmmttn) + BoutYon 0.5 (onrmirn)
2o0ut — \/ﬁ out X m+0.5 nmlln 2Tn m+0.5 nmlln outdf m+0.5 nmlln
For heat flux to be continuous at the layer interfaces for all values of t, aiA2,,; = a1\2,,;, 4 = 1,2,...,n. In the above

matrix equation, Ajmi (1 # 1) may be written in terms of A1,,; using the above equation. Subsequently, transverse Eigen
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condition can be obtained by setting the determinant of the (n xn) coefficient matrix equal to zero. And after that eigenvalue

determined the constants ¢;m; and d;m; by solving (42). From equation (40)

1" ! 2
0; + (cot 0)0 + <5 - >9- =0

sin?

Put = cosf, 1 — u? =sin’ 4.

d0; ; do; 2 v?
e co an —cos@du —l—(ﬁ —Sin29>91—0

d?0; do; V2
1— 2 7 _9 [ 2 92 =0
(1—p )d,u2 Mdu + (/B sin20)

If g2, = m(m + 1) is the associated Legendre equation, its solution is written as follows

Oi(p) = ce Py (1) + erQy" ()

But p = cos 0

0,1(0) = c6 P}, (cos 0) + c7 Q" (cos 0)

If = 0 then 0;;(0) = 0. Therefore, Q;,”(cos0) = Q;;* (1) = 0o = ¢7 = 0. Hence cg # 0. Therefore

0:1(0) = P, (cos 0)
Orthogonality condition for the r-direction eigenfunctions as

Z o / rz iml ()\'Lmlr)Rznl ()\'Lnlr)d'r =0 if m # n

i=1

=1

Orthogonal condition for the #-direction

/w 0 (0)0:s(0) = 0 if 1 # s
0
P

/ 0:1(0)0:s(0) = No, if n=s

0

Orthogonal condition for the ¢-direction

/OX ¢iP(Vip¢)¢iq(Viq¢) =0if p#q

X
/0 Gin(Vip®)bia(via®) = Ny, if p =g

A general solution for the homogeneous transient problem may be considered as:

oo oo 00O

I(r,0,9,t) Z Z Z Dimipe” ™ Nyt Rimt(Nimir) Py)” (cos 0) sin vip

p=1m=11=1

Z o / Mnl 1mlr)Rinl()\inlr)dr - Nrml if m=n

(48)

(49)

(50)

(51)

)
=)
S|
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3.1. Determination of coefficient D,,,,

Coefficient of D;mip in equation (52) may be obtained by applying the initial condition and then making use of the orthog-

onality conditions in the r, 8, ¢ directions as follows

1
D = oo o / / / Rt it 7)0:0(0) 0 (vi )T (1, 0, 6, t = 0)drdbdp (53)

3.2. Solution of inhomogeneous steady state problem

The inhomogeneous steady state problem is solved using eigenfunction expansion method.

SMTM:ZZ L1 (1)0:1(8) b1 (9) (54)

(r0,0) = > > > gimi(r)0ua(0) bin(9) (55)

m=1[=1 p=1

Substituting Equation (54) and Equation (55) in Equation (25)

Tia(r) | 2 Tm(r) 1 04(0)  cot00u(0) 1 6(0) 1 gimlr) _
it (7 T T (r) 72 0u(0) 2 0a(0)  r2sin®0 ¢ip(P) ki Ty (r)
AT 2 ~ 1 A 1
Tina(r) 4 Lo () 5 (=B5) Tt () + - gima(r) = 0
2
[*D? 42D = B2,] Taa(r) = = - g (r) (56)

Where D = d%. Above equation is a Cauchy’s homogeneous linear equation and its solution is “Complimentary function

(C.F.) + particular integral (P.I.)”.

L+ VIHAB ), | ~VI+4B,,

CF = Qss,;iT ss,iT (57)
And is particular integral that can be obtained by application of method of variation of parameters
P o =S T
Pl =—oo—— [ 7r 2 gimi(r)dr+ ———= [ r 2 gimi(T)dr
kin/1+ 4032 kin/1+487,
1 —14 1+4ﬁi2m 5— 1+4Bfm —1— 1+41312m 5+\/1+45;+’m
N S WY+ /r T Gt (r)dr 58
V(T / e i () (58)

~ R 1+4B?m Y 1+4BL277L

Timl(r) = Qss,iT 2 + bss,iT
1 —14+4/14+482 5—4/14+482, ( ) —1—y/1+482 5+4/1+482 ( ) ( )
+ e |r 2 r 2 gimi(r)dr + 7 2 /r 2 gimi(r)dr 59
kin/1+ 452, /

by using the boundary and interface conditions determined the constants ass,; and bss;. Where

P X
Gom(r) = /0 /0 Gimi (1,0, 6)0:1 (0) i (). (60)

NoiNgp
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= &, A0 s 040 <0

Figure 1. 3D hollow quarter sphere

3.3. Case Study Problem

We consider a three layer quarter sphere with co-ordinates 0 <r <r3, 0 <6 < § and 0 < ¢ < 7. At the initial instant of

time (¢ = 0) the sphere has a uniform temperature distribution. At ¢ > 0 the temperature of the surfaces § = 0,0 = 5, ¢ =0

and ¢ = 7 are uniform and equal to zero temperatures. Thermal convection occurs from the outer radial surface (r = r3) at

zero temperature. These boundary conditions are defined by the relation A;, = 1, Bin = 0, Aout = k3, Bout = hs. A heat

source g;(r, 6, ¢) for i=1,2,3 is activated in each layer at ¢t = 0.

The governing differential equation for the three dimension transient heat conduction in the indicated three layer quarter-

spherical region is as follows:

T, | 20T, ia%y+mwan+r 1 8ﬁk+mwﬁ@)_gﬁﬂ
Oor? r Or  r2 002 r2 00  r2sin?0 02¢? ks oo Ot

T, =Ti(r,0,¢,t), ric1 <r <r;, 1<i<3, r0<r<rs 0<0< 0<op<m

B

Boundary condition for inner surface
aTl (T’o, 67 ¢7 t)

or =0

Boundary condition for outer surface
8T3 (T37 07 ¢7 t)
3

K or

+ h3T3(713a 95 ¢a t) =0

Boundary condition for # and ¢ direction i=1,2,3.
E(T7 07 ¢7t) = 0

Ti(r, =, ¢,) = 0
2
Ti(r,0,0,t) =0

Ti(r,0,m,t) =0
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For inner interface surface of the it" layer (i = 2,3)

Ti(ri—1,0,¢,t) = Ti—1(ri-1,0, ¢, t)

OTi(ri—1,0,¢,t) OT;—1(ri—1,0, ¢,t)

k; = ki 67
or ! or (67)

For outer interface surface of the i'" layer (i = 1,2)

T; (Tiv 0,9, t) = E+1(7'i, 0, ¢, t)
aTi(Ti707¢7 t) 8Ti+1(ri797¢7 t)
ki——F——" =kip—— 68
or 1 or (68)
The initial condition has the form

Ti(r,0,0,0) =1 i=1,2,3. (69)

Solution Method by rewriting T;(r, 0, ¢, t) as T;(r, 0, ¢, t) + Tss,i (1,0, ), where T;(r, 0, z,t) is the “complementary transient”

part and T (7, 0, ) is the steady state part of the solution.

4. Solution to the Homogeneous Transient Problem

With the use of the separation of variable method the associated eigenvalue problem is solved in the r, 8 & ¢- directions of

equation (39), (43) and (44) are as follows respectively:

Gip = c2sinv;pd + c3 cosVip

1
Rimi(r) = W [CimiTm+0.5(NimiT) + dimiYm+0.5(Nimi7)]

0:1(0) = c6 P}, (cos 0) + 7 Q.7 (cos 0)

The Eigen functions Rimi(r), 0:(0) and ¢ip(¢) in the r, 6, ¢-directions are determined with the use of relevant boundary
conditions in each direction. In this case for the ¢-direction with the use of boundary condition in equation (65) and (66),
we obtain
$ip(0) =0=c3=0
¢ip(m) = 0= casinvpm = 0 here ca # 0
sinv;pm =0 =sinpm, v =p

Pip(¢) = sinp¢ (70)
With the use of boundary condition in equations (63) and (64) in the #-direction we obtain. If § = 0 then 6;(8) = 0.

Therefore, Q;;” (cos0) = Q" (1) = 0o = ¢7 = 0. Hence cg # 0. Therefore
0,1(0) = P, (cos 0)
Using the boundary condition equation (64)

P2 feos (Tfy)] = 0 = P4(0) = 0
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Where P}j(0) = 0 is only satisfied when “1” are odd integers; that is | = 1,3,5,.... Thus the 6- direction eigenvalues and

eigenfunction are as follows

- 0.(0) = Pf(cos®), vip=p (71)

By using the boundary conditions and interface conditions in the r-direction

a1in a2in 0 0 0 0 Clmi 0

z11 T12 T13 T4 O 0 dimi 0

Y11 Y12 Y13 Y4 0 0 Caml _ 0 (72)
0 0 21 T22 w23 T24 dami 0
0 0 w21 w22 Y23 Yo C3ml 0
0 0 0 0 aiout a20ut d3mi 0

Alin =

/ 1
|:Jm+0.5()\lmlT0) - 2*me+0‘5(>\1sz0)}

3|~
S

, 1
Q2in = T { m+0.5(A1miTo) — Tmym+0.5()\lmlr0):|
_ Imto.s(Armur) _ Yoos(Aimuri) _ Jmyos(Aepurt) — Yogos(A2mir)
_ Imto.5(A2nur2) _ Yoo0s5(A2nura) _ Jmyo.s(Azmura) _ Yoros5(Azmure)
Tro1 = ——— —= e T2 = —————/— ) T3 = ——————/— ) Tog4 = _—TQ

1

1 ’ k ’ k
Y11 = ﬁ |:li'”1+0‘5()‘111#7’) - ﬁJmm&()\lmﬂ‘l)} y Y12 = ﬁ {klym-s-os()\lmlr) - ﬁymwﬁ()\lmlrl)}

1 ’ k; 1 ’ k;
Y13 = \/771 |:k2f]m+0.5()\2ml7') — ﬁ(}mwﬁ()\zmlh)} , Y14 = \/TT |:k2Ym+O.5()\2mlT) — ﬁ m+0,5()\2mlrl):|

1 ’ ks

Glout = T |:k3Jm+OA5(A3ml7ﬂ3) - %Jmﬁ—()ﬁ(/\smlm) + h3Jm+0.5()\3mlr3):|
1 ’ ks

Q20ut = \/7173 k3Y,10.5(AsmiTs) — %Ym+o.5()\3mlr3) + h3Ym+o0.5(A3miTs)

The heat flux continuity conditions at the interfaces imply the following:

«

)\iml = )\lml 1
In the above matrix equation, Aimi (¢ # 1) may be written in terms of A1, using the above equation. Subsequently,
transverse eigencondition can be obtained by setting the determinant of the (6 x 6) coefficient matrix equal to zero. And

after that eigenvalue determined the constants cim; and dim; by solving Equation (72). We solved in the form of the

triple-series expansion.
(r,0,z,1) Z Z Z Dipipe Mmip lel(AimlT)Pﬁ(cos 0) sin pé (73)

p=1m=11=1
Coefficient of D;pmi, may be obtained by applying the initial condition equation (69) and then making use of the orthogonality
conditions in the r, 6, ¢ directions as follows:
Z o fm ) fog Jo 7% Rimi(Ximir) PY) (cos 0) sin pe.drdfde

‘z%(

i=1

Dimlp =

fT:iJ T2Riml()\iml7')dr) (f()% (P?(cosh))? d@) (fy sin®(pg)do)



Analytical Solution for Three-Dimensional Transient Heat Conduction in a Multilayer Sphere

(S7 P2 Rt Oimar)dr) (f,F (Ph(cos 0)) o) (J; sin(pg)d)
i, PR Ouar)ar ) (JF (Ph(cos0))* db) (J7 sin? (po)do)

Dimlp - (

(52 PR Omarir) (553 ) (0= 1)

Dimlp -
(fm, r2R7 (A zmﬂ')dr) (M“’r; 2
i L
P (fTH TQRiﬂLl()\imzr)dr) (QF(FQ(llrll))) (% (1- (—1)10)) o
’ (47, P2 B imir)ar) 5
5. Solution of Inhomogeneous Steady State Problem
And in steady state solution for this particular problem can easily be obtained as,
Tss,i(r,0,0) = Z Z Tim PP (cos 0) sin p¢
m=1 [=1 p=1
And gi(r,0,0) = 30 32 32 gimi(r)Pjj(cos ) sin p
m=11[1=1p=1
) = (r,0,9) (fo 7 (cos8)) 0) (f(;r sin(p¢)d¢)
Gimi\T") =
( i (P(cos 6 )2 de) (f sin2(pg)do)
gi(r707 ¢) 270+ 1 (1 - (_1)19)
Gimi (1) = (F(WH)W) (p ) (75)
2
Jiml (T) = bllgl (T7 07 ¢) (76)

‘Where

by = (2;{2(;:119) (%(1 - (—1)”)>

[ME]

R —lHy/ 14482, el VAT

Timu (7") = Qss,iT 2 + bss il

2 5 2 2 5 2
— 144/ 14457 / 5—4/1+482, —1—4/1+482 / o+\/12+4[37:n
T T

2 2 gimt(r)dr +r 2 gimt(T)dr

1
+ T
km/l—‘rﬁlﬂ?n |:
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