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Abstract: An analytical solution is obtained for the problem of three dimensional heat conduction in sphere with multiple layers

in the radial direction, spatially non-uniform but time independent volumetric heat sources are assumed in each layers,

separation of variables method is used to obtain transient temperature distribution. The solution obtained is valid for any
combination of homogeneous first and second kind boundary conditions in the angular and axial direction of the sphere

and for the non-homogeneous third kind boundary condition in the radial direction. Proposed solution is also applicable

to multiple layer with zero inner radius. An illustrative example problem for the three layer quarter-spherical region is
solved.

Keywords: Three dimensional heat conduction, non-uniform but time independent volumetric heat sources, multilayer sphere.

c© JS Publication.

1. Introduction

Composite materials are defined as materials consisting of two or more components with different properties and distinct

boundaries between them, Thermal analysis of multilayer composite media is of great importance since it has been widely

used in real physical and engineering systems. Multilayer material has benefit of combining various mechanical, physical and

thermal properties of different substances. Multilayer materials are used in semicircular fibre insulated heaters, Multilayer

insulation materials and nuclear fuel rods. Multilayer transient heat conduction finds applications in thermodynamics, fuel

cells and electrochemical reactors. The layered sphere is utilized to investigate the thermal properties of composite media

by assuming embedded spherical particles in the composite materials. Many researchers have solved the transient heat

conduction problem in a composite medium. For instance, Salt [1] solved the transient heat conduction problem in a two

dimensional composite slab using an orthogonal eigenfunction expansion technique de Monte [2, 3] applied the eigenfunction

expansion method to obtain the transient temperature distribution for the heat conduction in a two-dimensional two-layer

isotropic slab with homogenous boundary conditions. Lu et al. [4] and Lu and Viljanen [5] combined separation of variables

and Laplace transforms to solve the transient conduction in the two-dimensional cylindrical and spherical media. Dalir and

Nourazar [10] used the eigenfunction expansion method to solve the problem of three-dimensional transient heat conduction

in a multilayer cylinder. Singh et al. [6, 7] and Jain et al. [8, 9] have studied 2D multilayer transient conduction problems in

spherical and cylindrical coordinates. They have obtained analytical solutions for 2D multilayer transient heat conduction
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in spherical coordinates, in polar coordinates with multiple layers in the radial direction, and in a multilayer annulus. They

have used the method of partial solutions to obtain the temperature distributions. In the method of partial solutions, the

non homogeneous transient problem is split into two sub problems: a non homogeneous steady-state sub problem and a

homogeneous transient sub problem. Then, the eigenfunction expansion method is used to solve the non homogeneous

steady-state sub problem and the method of separation of variables is used to solve the homogeneous transient sub problem

Thus, in the present paper, the non homogeneous transient problem is split into two sub problems: a non homogeneous

steady-state sub problem and a homogeneous transient sub problem. Then, the eigenfunction expansion method is used

to solve the non homogeneous steady-state sub problem and the method of separation of variables is used to solve the

homogeneous transient sub problem in the 3D spherical coordinates for radial multilayer domain with spatially non uniform

and time independent internal heat sources is obtained. Homogenous boundary conditions of the first or second kind can

be applied on surfaces of θ = constant and φ = constant. However, boundary conditions of the third kind (convection) are

used in the r-direction.

2. Mathematical Formulation

Consider an n-layer composite spherical slab with coordinates r0 = r = rn, 0 = θ = ψ and 0 = φ = χ. It is assume that all

the layers are thermally isotropic and make a perfect thermal contact. At t = 0, the ith layer has a temperature fi(r, θ, ∅).

At t > 0, homogeneous boundary conditions of the first or second kind are set on the angular surfaces θ = 0, θ = ψ and

on φ = 0, φ = χ. All these boundary conditions can be used for the inner (i = 0, r = r0) and outer (i = n, r = rn) radial

surfaces. The time-independent heat sources gi(r, θ, ∅) are actuated in each layer. The governing differential equation for

the 3-D transient heat conduction in a multilayer sphere along with the boundary and initial conditions are as follows.

∂2Ti
∂r2

+
2

r

∂Ti
∂r

+
1

r2

∂2Ti
∂θ2

+
cot θ

r2

∂Ti
∂θ

+
1

r2 sin2 θ

∂2Ti
∂φ2

+
gi(r, θ, φ)

ki
=

1

αi

∂Ti
∂t

(1)

Ti = Ti(r, θ, φ, t)r0 ≤ r ≤ rnri−1 ≤ r ≤ ri1 ≤ i ≤ n0 ≤ θ ≤ ψ0 ≤ φ ≤ χt ≥ 0

Boundary conditions

• Inner surface of first layer (i = 1)

Ain
∂T1(r0, θ, φ, t)

∂r
+BinT1(r0, θ, φ, t) = 0 (2)

• Outer surface of nth layer (i = n)

Aout
∂Tn(rn, θ, φ, t)

∂r
+BoutTn(rn, θ, φ, t) = 0 (3)

• θ = 0 surface (i = 1, 2, . . . , n)

Ti(r, θ = 0, φ, t) = 0 or
∂Ti(r, θ = 0, φ, t)

∂θ
= 0 (4)

• θ = ψ surface (i = 1, 2, . . . , n)

Ti(r, θ = ψ, φ, t) = 0 or
∂Ti(r, θ = ψ, φ, t)

∂θ
= 0 (5)

• φ = 0 surface (i = 1, 2, . . . , n)

Ti(r, θ, φ = 0, t) = 0 or
∂Ti(r, θ, φ = 0, t)

∂φ
= 0 (6)
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• φ = χ surface (i = 1, 2, . . . , n)

Ti(r, θ, φ = χ, t) = 0 or
∂Ti(r, θ, φ = χ, t)

∂φ
= 0 (7)

• Inner interface of the ith layer (i = 2, 3, . . . , n)

Ti(ri−1, θ, φ, t) = Ti−1(ri−1, θ, φ, t) (8)

ki
∂Ti(ri−1, θ, φ, t)

∂r
= ki−1

∂Ti−1(ri−1, θ, φ, t)

∂r
(9)

• Outer interface of the ith layer (i = 1, 2, . . . , n− 1)

Ti(ri, θ, φ, t) = Ti+1(ri, θ, φ, t) (10)

ki
∂Ti(ri, θ, φ, t)

∂r
= ki+1

∂Ti+1(ri, θ, φ, t)

∂r
(11)

• Initial condition:

Ti(r, θ, φ, t = 0) = fi(r, θ, φ) (12)

2.1. Solution methodology

In order to apply the separation of variable method , which is applicable to homogeneous problem has to be split into: (1)

Homogeneous transient problem (2) Non-homogeneous steady state problem. This is accomplished by rewriting Ti(r, θ, φ, t)

as T̄i(r, θ, φ, t) + Tss,i(r, θ, φ), where T̄i(r, θ, φ, t) is the “complementary transient” part and Tss,i(r, θ, φ) is the steady state

part of the solution.

2.2. Homogeneous transient problem

1

αi

∂T̄i
∂t

=
∂2T̄i
∂r2

+
2

r

∂T̄i
∂r

+
1

r2

∂2T̄i
∂θ2

+
cot θ

r2

∂T̄i
∂θ

+
1

r2 sin2 θ

∂2T̄i
∂φ2

(13)

Where T̄i = T̄i(r, θ, φ, t) , ri−1 ≤ r ≤ ri, 1 ≤ i ≤ n.

2.3. Boundary conditions

• Inner surface of the first layer (i = 0)

Ain
∂T̄1(r0, θ, φ, t)

∂r
+BinT̄1(r0, θ, φ, t) = 0 (14)

• outer surface of the nth layer (i = n)

Aout
∂T̄n(rn, θ, φ, t)

∂r
+BoutT̄n(rn, θ, φ, t) = 0 (15)

• θ = 0 Surface at i = 1, 2, . . . , n

T̄i(r, θ = 0, φ, t) = 0 or
∂T̄i(r, θ = 0, φ, t)

∂θ
= 0 (16)
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• θ = ψ surface at i = 1, 2, . . . , n

T̄i(r, θ = ψ, φ, t) = 0 or
∂T̄i(r, θ = ψ, φ, t)

∂θ
= 0 (17)

• φ = 0 surface at i = 1, 2, . . . , n

T̄i(r, θ, φ = 0, t) = 0 or
∂T̄i(r, θ, φ = 0, t)

∂φ
= 0 (18)

• φ = χ surface at i = 1, 2, . . . , n

T̄i(r, θ, φ = χ, t) = 0 or
∂T̄i(r, θ, φ = χ, t)

∂φ
= 0 (19)

• Inner interface of the ith layer (i = 2, 3, . . . , n)

T̄i(ri−1, θ, φ, t) = T̄i−1(ri−1, θ, φ, t) (20)

ki
∂T̄i(ri−1, θ, φ, t)

∂r
= ki−1

∂T̄i−1(ri−1, θ, φ, t)

∂r
(21)

• Outer interface of the ith layer (i = 1, 2, 3, . . . , n− 1)

T̄i(r, θ, φ, t) = T̄i+1(ri, θ, φ, t) (22)

ki
∂T̄i(ri, θ, φ, t)

∂r
= ki+1

∂T̄i+1(ri, θ, φ, t)

∂r
(23)

• Initial condition:

T̄i(r, θ, φ, t = 0) = fi(r, θ, φ)− Tss,i(r, θ, φ) (24)

2.4. Non-homogeneous steady state problem

∂2Tss,i(r, θ, φ)

∂r2
+

2

r

∂Tss,i(r, θ, φ)

∂r
+

1

r2

∂2Tss,i(r, θ, φ)

∂θ2
+

cot θ

r2

∂Tss,i(r, θ, φ)

∂θ
+

1

r2 sin2 θ

∂2Tss,i(r, θ, φ)

∂φ2
+
gi(r, θ, φ)

ki
= 0 (25)

• Inner surface of first layer (i = 1)

Ain
∂Tss,1(r0, θ, φ)

∂r
+BinTss,1(r0, θ, φ) = 0 (26)

• Outer surface of ith layer (i = n)

Aout
∂Tss,n(rn, θ, φ)

∂r
+BoutTss,n(rn, θ, φ) = 0 (27)

• θ = 0 Surface at i = 1, 2, . . . , n

Tss,i(r, θ = 0, φ) = 0 or
∂Tss,i(r, θ = 0, φ)

∂θ
= 0 (28)
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• θ = ψ surface at i = 1, 2, . . . , n

Tss,i(r, θ = ψ, φ) = 0 or
∂Tss,i(r, θ = ψ, φ)

∂θ
= 0 (29)

• φ = 0 surface at i = 1, 2, . . . , n

Tss,i(r, θ, φ = 0) = 0 or
∂Tss,i(r, θ, φ = 0)

∂φ
= 0 (30)

• φ = χ surface at i = 1, 2, . . . , n

Tss,i(r, θ, φ = χ) = 0 or
∂Tss,i(r, θ, φ = χ)

∂φ
= 0 (31)

• Inner interface of ith layer (i = 2, 3, . . . , n)

Tss,i(ri−1, θ, φ) = Tss,i−1(ri−1, θ, φ) (32)

ki
∂Tss,i(ri−1, θ, φ)

∂r
= ki−1

∂Tss,i−1(ri−1, θ, φ)

∂r
(33)

• Outer interface of nth layer (i = 1, 2, . . . , n− 1)

Tss,i(ri, θ, φ) = Tss,i+1(ri, θ, φ) (34)

ki
∂Tss,i(ri, θ, φ)

∂r
= ki+1

∂Tss,i+1(ri, θ, φ)

∂r
(35)

3. Solution to the Homogeneous Transient Problem

Using the Separation of variable method :

T̄i(r, θ, φ, t) = Ri(r)θi(θ)φi(φ)Ti(t) (36)

1

αi

Γ
′
i

Γi
=
R
′′
i

Ri
+

2

r

R
′
i

Ri
+

1

r2

θ
′′
i

θi
+

cot θ

r2

θ
′
i

θi
+

1

r2 sin2 θ

φ
′′
i

φi
= −λ2

i

Γ
′
i + αiλ

2
iΓi = 0

Γi = c1e
−αiλ2

i t (37)

R
′′
i

Ri
+

2

r

R
′
i

Ri
+

1

r2

θ
′′
i

θi
+

cot θ

r2

θ
′
i

θi
= − 1

r2 sin2 θ

φ
′′
i

φi
− λ2

i

sin2 θ

[
r2R

′′
i

Ri
+ 2r

R
′
i

Ri
+
θ
′′
i

θi
+ cot θ

θ
′
i

θi
+ λ2

i r
2

]
= −φ

′′
i

φi
= ν2

φ
′′
i + ν2

ipφi = 0

φip = c2 sin νipφ+ c3 cos νipφ (38)
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By using the boundary condition on φ, we obtain as

φip(φ) = sin νipφ (39)

r2R
′′
i

Ri
+ 2r

R
′
i

Ri
+ λ2

i r
2 = −θ

′′
i

θi
− cot θ

θ
′
i

θi
+

ν2

sin2 θ
= β2 (40)

r2R
′′
i + 2rR

′
i + (λ2

imlr
2 − β2

m)Ri = 0

Substituting Ri(r) = r
1
2 Vi, β

2
m = m(m+ 1)

Riml(r) =
1√
r

[cimlJm+0.5(λimlr) + dimlYm+0.5(λimlr)] (41)

Application of the interface conditions (20)-(23) and boundary conditions (14)-(15) to the transverse eigenfunction

Riml(λimlr) , The matrix (2n x 2n) are as follows:



a1in a2in 0 0 ... 0 0 0 0 ... 0 0 0 0

x11 x12 x13 x14 ... 0 0 0 0 ... 0 0 0 0

y11 y12 y13 y14 ... 0 0 0 0 ... 0 0 0 0

... ... ... ... ... ... ... ... ... ... ... ... ... ...

0 0 0 0 ... xi1 xi2 xi3 xi4 ... 0 0 0 0

0 0 0 0 ... yi1 yi2 yi3 yi4 ... 0 0 0 0

... ... ... ... ... ... ... ... ... ... ... ... ... ...

0 0 0 0 ... 0 0 0 0 ... xi−1,1 xi−1,2 xi−1,3 xi−1,4

0 0 0 0 ... 0 0 0 0 ... yi−1,1 yi−1,2 yi−1,3 yi−1,4

0 0 0 0 ... 0 0 0 0 ... 0 0 a1out a2out





c1ml

d1ml

...

...

ciml

diml

...

...

cnml

dnml



=



0

0

...

...

0

0

...

...

0

0



(42)

a1in =
1√
r0

[
AinJ

′
m+0.5(λ1mlr0)− Ain

2r0
Jm+0.5(λ1mlr0) +BinJm+0.5(λ1mlr0)

]

a2in =
1√
r0

[
AinY

′
m+0.5(λ1mlr0)− Ain

2r0
Ym+0.5(λ1mlr0) +BinYm+0.5(λ1mlr0)

]

xi1 =
1√
r1
Jm+0.5(λ1mlr1) yi1 =

1√
r1

[
k1J

′
m+0.5(λ1mlr1)− k1

2r1
Jm+0.5(λ1mlr1)

]

xi2 =
1√
r1
Ym+0.5(λ1mlr1) yi2 =

1√
r1

[
k1Y

′
m+0.5(λ1mlr1)− k1

2r1
Ym+0.5(λ1mlr1)

]

xi3 = − 1√
r1
Jm+0.5(λ2mlr1) yi3 =

1√
r1

[
−k2J

′
m+0.5(λ2mlr1) +

k2

2r1
Jm+0.5(λ2mlr1)

]

xi4 = − 1√
r1
Ym+0.5(λ2mlr1) yi4 =

1√
r1

[
−k2Y

′
m+0.5(λ2mlr1) +

k2

2r1
Ym+0.5(λ2mlr1)

]

a1out =
1√
rn

[
AoutJ

′
m+0.5(λnmlrn)− Aout

2rn
Jm+0.5(λnmlrn) +BoutJm+0.5(λnmlrn)

]

a2out =
1√
rn

[
AoutY

′
m+0.5(λnmlrn)− Aout

2rn
Ym+0.5(λnmlrn) +BoutYm+0.5(λnmlrn)

]
For heat flux to be continuous at the layer interfaces for all values of t, αiλ

2
iml = α1λ

2
1ml, i = 1, 2, . . . , n. In the above

matrix equation, λiml (i 6= 1) may be written in terms of λ1ml using the above equation. Subsequently, transverse Eigen
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condition can be obtained by setting the determinant of the (n×n) coefficient matrix equal to zero. And after that eigenvalue

determined the constants ciml and diml by solving (42). From equation (40)

θ
′′
i + (cot θ)θ

′
+

(
β2 − ν2

sin2 θ

)
θi = 0

Put µ = cos θ, 1− µ2 = sin2 θ.

sin2 θ
d2θi
dµ2

− cos θ
dθi
dµ
− cos θ

dθi
dµ

+

(
β2 − ν2

sin2 θ

)
θi = 0

(1− µ2)
d2θi
dµ2

− 2µ
dθi
dµ

+

(
β2 − ν2

sin2 θ

)
θi = 0

If β2
m = m(m+ 1) is the associated Legendre equation, its solution is written as follows

θil(µ) = c6P
νip
il (µ) + c7Q

νip
il (µ) (43)

But µ = cos θ

θil(θ) = c6P
νip
il (cos θ) + c7Q

νip
il (cos θ) (44)

If θ = 0 then θil(θ) = 0. Therefore, Q
νip
il (cos 0) = Q

νip
il (1) =∞⇒ c7 = 0. Hence c6 6= 0. Therefore

θil(θ) = P
νip
il (cos θ) (45)

Orthogonality condition for the r-direction eigenfunctions as

n∑
i=1

ki
αi

∫ ri

ri−1

r2
iRiml(λimlr)Rinl(λinlr)dr = 0 if m 6= n (46)

n∑
i=1

ki
αi

∫ ri

ri−1

r2
iRiml(λimlr)Rinl(λinlr)dr = Nrml if m = n (47)

Orthogonal condition for the θ-direction

∫ ψ

0

θil(θ)θis(θ) = 0 if l 6= s (48)∫ ψ

0

θil(θ)θis(θ) = Nθl if n = s (49)

Orthogonal condition for the φ-direction

∫ χ

0

φip(νipφ)φiq(νiqφ) = 0 if p 6= q (50)∫ χ

0

φip(νipφ)φiq(νiqφ) = Nφp if p = q (51)

A general solution for the homogeneous transient problem may be considered as:

T̄ (r, θ, φ, t) =

∞∑
p=1

∞∑
m=1

∞∑
l=1

Dimlpe
−αiλ2

imlptRiml(λimlr)P
νp
il (cos θ) sin νipφ (52)
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3.1. Determination of coefficient Dlmn

Coefficient of Dimlp in equation (52) may be obtained by applying the initial condition and then making use of the orthog-

onality conditions in the r, θ, φ directions as follows

Dipmn =
1

NθlNrmlNφp

n∑
i=1

ki
αi

∫ χ

0

∫ ψ

0

∫ ri

ri−1

r2Riml(λimlr)θil(θ)φip(νipφ)T̄i(r, θ, φ, t = 0)drdθdφ (53)

3.2. Solution of inhomogeneous steady state problem

The inhomogeneous steady state problem is solved using eigenfunction expansion method.

Tss,i(r, θ, φ) =

∞∑
m=1

∞∑
p=1

∞∑
l=1

T̂iml(r)θil(θ)φip(φ) (54)

gi(r, θ, φ) =

∞∑
m=1

∞∑
l=1

∞∑
p=1

giml(r)θil(θ)φip(φ) (55)

Substituting Equation (54) and Equation (55) in Equation (25)

T̂
′′
iml(r)

T̂iml(r)
+

2

r

T̂
′
iml(r)

T̂iml(r)
+

1

r2

θ
′′
il(θ)

θil(θ)
+

cot θ

r2

θ
′
il(θ)

θil(θ)
+

1

r2 sin2 θ

φ
′′
ip(φ)

φip(φ)
+

1

ki

giml(r)

T̂iml(r)
= 0

T̂
′′
iml(r) +

2

r
T̂
′
iml(r) +

1

r2
(−β2

im)T̂iml(r) +
1

ki
giml(r) = 0

[
r2D2 + 2rD − β2

im

]
T̂iml(r) = −r

2

ki
giml(r) (56)

Where D = d
dr

. Above equation is a Cauchy’s homogeneous linear equation and its solution is “Complimentary function

(C.F.) + particular integral (P.I.)”.

C.F. = ass,ir
−1 +

√
1 + 4β2

im
/
2 + bss,ir

−1−
√

1 + 4β2
im
/
2 (57)

And is particular integral that can be obtained by application of method of variation of parameters

P.I. =
r
−1+
√

1+4β2
im

2

ki
√

1 + 4β2
im

∫
r

5−
√

1+4β2
im

2 giml(r)dr +
r
−1−
√

1+4β2
im

2

ki
√

1 + 4β2
im

∫
r

5+
√

1+4β2
im

2 giml(r)dr

P.I. =
1

ki
√

1 + 4β2
im

[
r
−1+
√

1+4β2
im

2

∫
r

5−
√

1+4β2
im

2 giml(r)dr + r
−1−
√

1+4β2
im

2

∫
r

5+
√

1+4β2
im

2 giml(r)dr

]
(58)

T̂iml(r) = ass,ir
−1+
√

1+4β2
im

2 + bss,ir
−1−
√

1+4β2
im

2

+
1

ki
√

1 + 4β2
im

[
r
−1+
√

1+4β2
im

2

∫
r

5−
√

1+4β2
im

2 giml(r)dr + r
−1−
√

1+4β2
im

2

∫
r

5+
√

1+4β2
im

2 giml(r)dr

]
(59)

by using the boundary and interface conditions determined the constants ass,i and bss,i. Where

giml(r) =
1

NθlNφp

∫ ψ

0

∫ χ

0

giml(r, θ, φ)θil(θ)φip(φ)dθ.dφ. (60)
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Figure 1. 3D hollow quarter sphere

3.3. Case Study Problem

We consider a three layer quarter sphere with co-ordinates 0 ≤ r ≤ r3, 0 ≤ θ ≤ π
2

and 0 ≤ φ ≤ π. At the initial instant of

time (t = 0) the sphere has a uniform temperature distribution. At t > 0 the temperature of the surfaces θ = 0, θ = π
2

, φ = 0

and φ = π are uniform and equal to zero temperatures. Thermal convection occurs from the outer radial surface (r = r3) at

zero temperature. These boundary conditions are defined by the relation Ain = 1, Bin = 0, Aout = k3, Bout = h3. A heat

source gi(r, θ, φ) for i=1,2,3 is activated in each layer at t = 0.

The governing differential equation for the three dimension transient heat conduction in the indicated three layer quarter-

spherical region is as follows:

∂2Ti
∂r2

+
2

r

∂Ti
∂r

+
1

r2

∂2Ti
∂θ2

+
cot θ

r2

∂Ti
∂θ

+
1

r2 sin2 θ

∂2Ti
∂2φ2

+
gi(r, θ, φ)

ki
=

1

αi

∂Ti
∂t

Ti = Ti(r, θ, φ, t), ri−1 ≤ r ≤ ri, 1 ≤ i ≤ 3, r0 ≤ r ≤ r3, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

Boundary condition for inner surface

∂T1(r0, θ, φ, t)

∂r
= 0 (61)

Boundary condition for outer surface

k3
∂T3(r3, θ, φ, t)

∂r
+ h3T3(r3, θ, φ, t) = 0 (62)

Boundary condition for θ and φ direction i=1,2,3.

Ti(r, 0, φ, t) = 0 (63)

Ti(r,
π

2
, φ, t) = 0 (64)

Ti(r, θ, 0, t) = 0 (65)

Ti(r, θ, π, t) = 0 (66)
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For inner interface surface of the ith layer (i = 2,3)

Ti(ri−1, θ, φ, t) = Ti−1(ri−1, θ, φ, t)

ki
∂Ti(ri−1, θ, φ, t)

∂r
= ki−1

∂Ti−1(ri−1, θ, φ, t)

∂r
(67)

For outer interface surface of the ith layer (i = 1,2)

Ti(ri, θ, φ, t) = Ti+1(ri, θ, φ, t)

ki
∂Ti(ri, θ, φ, t)

∂r
= ki+1

∂Ti+1(ri, θ, φ, t)

∂r
(68)

The initial condition has the form

Ti(r, θ, φ, 0) = 1 i = 1, 2, 3. (69)

Solution Method by rewriting Ti(r, θ, φ, t) as T̄i(r, θ, φ, t) +Tss,i(r, θ, φ), where T̄i(r, θ, z, t) is the “complementary transient”

part and Tss,i(r, θ, z) is the steady state part of the solution.

4. Solution to the Homogeneous Transient Problem

With the use of the separation of variable method the associated eigenvalue problem is solved in the r, θ & φ- directions of

equation (39), (43) and (44) are as follows respectively:

φip = c2 sin νipφ+ c3 cos νipφ

Riml(r) =
1√
r

[cimlJm+0.5(λimlr) + dimlYm+0.5(λimlr)]

θil(θ) = c6P
νip
il (cos θ) + c7Q

νip
il (cos θ)

The Eigen functions Riml(r), θil(θ) and φip(φ) in the r, θ, φ-directions are determined with the use of relevant boundary

conditions in each direction. In this case for the φ-direction with the use of boundary condition in equation (65) and (66),

we obtain

φip(0) = 0⇒ c3 = 0

φip(π) = 0⇒ c2 sin νipπ = 0 here c2 6= 0

sin νipπ = 0 = sin pπ, νip = p

φip(φ) = sin pφ (70)

With the use of boundary condition in equations (63) and (64) in the θ-direction we obtain. If θ = 0 then θil(θ) = 0.

Therefore, Q
νip
il (cos 0) = Q

νip
il (1) =∞⇒ c7 = 0. Hence c6 6= 0. Therefore

θil(θ) = P
νip
il (cos θ)

Using the boundary condition equation (64)

P pil [cos (π/2)] = 0⇒ P pil(0) = 0
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Where P pil(0) = 0 is only satisfied when “ l” are odd integers; that is l = 1, 3, 5, . . .. Thus the θ- direction eigenvalues and

eigenfunction are as follows

... θil(θ) = P pil(cos θ), νip = p (71)

By using the boundary conditions and interface conditions in the r-direction



a1in a2in 0 0 0 0

x11 x12 x13 x14 0 0

y11 y12 y13 y14 0 0

0 0 x21 x22 x23 x24

0 0 y21 y22 y23 y24

0 0 0 0 a1out a2out





c1ml

d1ml

c2ml

d2ml

c3ml

d3ml


=



0

0

0

0

0

0


(72)

a1in =
1√
r0

[
J
′
m+0.5(λ1mlr0)− 1

2r0
Jm+0.5(λ1mlr0)

]

a2in =
1√
r0

[
Y
′
m+0.5(λ1mlr0)− 1

2r0
Ym+0.5(λ1mlr0)

]

x11 =
Jm+0.5(λ1mlr1)√

r1
, x12 =

Ym+0.5(λ1mlr1)√
r1

, x13 = −Jm+0.5(λ2mlr1)√
r1

, x14 = −Ym+0.5(λ2mlr1)√
r1

x21 =
Jm+0.5(λ2mlr2)√

r2
, x22 =

Ym+0.5(λ2mlr2)√
r2

, x23 = −Jm+0.5(λ3mlr2)√
r2

, x24 = −Ym+0.5(λ3mlr2)√
r2

y11 =
1√
r1

[
k1J

′
m+0.5(λ1mlr)−

k1

2r1
Jm+0.5(λ1mlr1)

]
, y12 =

1√
r1

[
k1Y

′
m+0.5(λ1mlr)−

k1

2r1
Ym+0.5(λ1mlr1)

]

y13 =
1√
r1

[
k2J

′
m+0.5(λ2mlr)−

k2

2r1
Jm+0.5(λ2mlr1)

]
, y14 =

1√
r1

[
k2Y

′
m+0.5(λ2mlr)−

k2

2r1
Ym+0.5(λ2mlr1)

]

a1out =
1√
r3

[
k3J

′
m+0.5(λ3mlr3)− k3

2r3
Jm+0.5(λ3mlr3) + h3Jm+0.5(λ3mlr3)

]

a2out =
1√
r3

[
k3Y

′
m+0.5(λ3mlr3)− k3

2r3
Ym+0.5(λ3mlr3) + h3Ym+0.5(λ3mlr3)

]
The heat flux continuity conditions at the interfaces imply the following:

λiml = λ1ml

√
α1

αi

In the above matrix equation, λiml (i 6= 1) may be written in terms of λ1ml using the above equation. Subsequently,

transverse eigencondition can be obtained by setting the determinant of the (6 × 6) coefficient matrix equal to zero. And

after that eigenvalue determined the constants ciml and diml by solving Equation (72). We solved in the form of the

triple-series expansion.

T̄i(r, θ, z, t) =

∞∑
p=1

∞∑
m=1

∞∑
l=1

Dimlpe
−αiλ2

imlptRiml(λimlr)P
p
il(cos θ) sin pφ (73)

Coefficient of Dimlp may be obtained by applying the initial condition equation (69) and then making use of the orthogonality

conditions in the r, θ, φ directions as follows:

Dimlp =

3∑
i=1

ki
αi

∫ ri
ri−1

∫ π
2

0

∫ π
0
r2Riml(λimlr)P

p
il(cos θ) sin pφ.drdθdφ

3∑
i=1

ki
αi

(∫ ri
ri−1

r2Riml(λimlr)dr
)(∫ π

2
0

(P pil(cos θ))2 dθ
) (∫ π

0
sin2(pφ)dφ

)
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Dimlp =

(∫ ri
ri−1

r2Riml(λimlr)dr
)(∫ π

2
0

(P pil(cos θ)) dθ
) (∫ π

0
sin(pφ)dφ

)(∫ ri
ri−1

r2R2
iml(λimlr)dr

)(∫ π
2

0
(P pil(cos θ))2 dθ

) (∫ π
0

sin2(pφ)dφ
)

Dimlp =

(∫ ri
ri−1

r2Riml(λimlr)dr
)( √

π.

∣∣∣∣2l+1
2

2l+1.(|l+1 )2

)(
1
p

(1− (−1)p)
)

(∫ ri
ri−1

r2R2
iml(λimlr)dr

)( |2l+1
√
π.

∣∣∣∣2l+1
2

22l+1(|l+1 )3

)
π
2

Dimlp =

(∫ ri
ri−1

r2Riml(λimlr)dr
)(

2lΓ(l+1)
Γ(2l+1)

)(
1
p

(1− (−1)p)
)

(∫ ri
ri−1

r2R2
iml(λimlr)dr

)
π
2

(74)

5. Solution of Inhomogeneous Steady State Problem

And in steady state solution for this particular problem can easily be obtained as,

Tss,i(r, θ, φ) =

∞∑
m=1

∞∑
l=1

∞∑
p=1

T̂iml(r)P
p
il(cos θ) sin pφ

And gi(r, θ, φ) =
∞∑
m=1

∞∑
l=1

∞∑
p=1

giml(r)P
p
il(cos θ) sin pφ

giml(r) =
gi(r, θ, φ)

(∫ π
2

0
(P pil(cos θ)) dθ

) (∫ π
0

sin(pφ)dφ
)(∫ π

2
0

(P pil(cos θ))2 dθ
) (∫ π

0
sin2(pφ)dφ

)
giml(r) =

gi(r, θ, φ)
(

2lΓ(l+1)
Γ(2l+1)

)(
1
p

(1− (−1)p)
)

π
2

(75)

giml(r) = bilgi(r, θ, φ) (76)

Where

bil =

(
2lΓ(l+1)
Γ(2l+1)

)(
1
p

(1− (−1)p)
)

π
2

T̂iml(r) = ass,ir
−1+
√

1+4β2
in

2 + bss,ir
−1−
√

1+4β2
in

2

+
1

ki
√

1 + 4β2
in

[
r
−1+
√

1+4β2
in

2

∫
r

5−
√

1+4β2
in

2 giml(r)dr + r
−1−
√

1+4β2
in

2

∫
r

5+
√

1+4β2
in

2 giml(r)dr

]
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