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Abstract: In this section we prove some elementary results on commutativity of non-associative rings. In an elementary commu-

tativity theorem for rings, Johnsen, Outcalt and Yaqub [1] showed that a non-associative ring R with unity satisfying

(xy)2 = x2y2 for all x, y in R is necessarily commutative. Boers [2] extended this to show that such a ring is also
associative provided it is 2 and 3-torsion free. Without using that the ring is 2 and 3-torsion free, we prove that any

assosymmetric ring in which (xy)2 = x2y2is commutative and associative. Further, if Z(R) denotes the center of the ring

R, we prove the commutativity of a 2-torsion free non-associative ring R satisfying any one of the following identities:
(1). (xy)2 ∈ Z (R)

(2). (xy)2 − xy ∈ Z (R)
(3). ((xy) z)2 − (xy) z ∈ Z (R)

(4).
[
(xy)2 − yx, x

]
= 0or

[
(xy)2 − yx, y

]
= 0

(5).
[
x2y2 − xy, x

]
= 0 or

[
x2y2 − xy, y

]
= 0

(6).
[
(xy)2 − x2y − xy2 + xy, x

]
= 0 or

[
(xy)2 − x2y − xy2 + xy, y

]
= 0 for all x, y, z in R.

At the end of this section we also give some example which show that the existence of the unity and 2-torsion free
are essential in some results. We know that an assosymmetric ring R is a non-associtative ring in which (x, y, z) =

(P (x), P (y), P (z)), where P is any permutation of x, y, z in R.

Keywords: Center, periodic ring, direct sum, left and right ideals.
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1. Introduction

During the last seven or eight decades abstract algebra has been developing very rapidly. In algebra the theory of rings serves

as the building blocks for all branches of mathematics. In ring theory, the study of both associative and non-associative

rings has evoked great interest and assumed importees. The results on non-associative rings in which one does assume a type

of partial associative have been scattered though out the literature. Many mathematicians of recent years studies a certain

special properties. Their general non-associative rings. Among those mathematicians Max Zorn, A.A. Albert, N.Jocobson,

R.D.Schafer, Erwin Kleinfeld, R.L.Sansoucie, A.H.Boers and Armin They are the ones whose contributions to this filed are

out standing.

2. Preliminaries

Definition 2.1 (Associative Ring). An associative ring R, sometimes called a ring in short, is an algebraic system with two

binary operations addition ‘+’ and multiplication ‘.’ Such that
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(1). The elements of R form an abelian group under addition and a semi group under multiplication,

(2). Multiplication is distributive on the right as well as on the left over addition i,e., (x+ y)z = xz+ yz, z(x+ y) = zx+ zy

for all x, y, z in R.

Definition 2.2 (Non-associative Ring). A non-associative ring R is an additive abelian group in which multiplication is

defined, which is distributive over addition on the left as well as on the right, i.e., (x+y)z = xz+yz, z(x+y) = zx+zy, for

all x, y, z in R. A non-associative ring differs from an associative ring in that the full associative law of multiplication is no

longer assumed to be associative, i.e., it is not necessarily associative. Strictly speaking the associative law of multiplication

has not been done away with, it has merely weakened.

The well known examples of non-associative rings are alternative rings, Lie rings and Jordan rings. In 1930 Artin and Max

Zorn defined alternative rings.

Definition 2.3 (Alternative Ring). An alternative ring R is a ring in which (xx)y = x(xy), y(xx) = (yx)x for all x, y in

R. These equations are known as the left and right alternative laws respectively.

Definition 2.4 (Lie Ring ). A Lie ring R is a ring in which the multiplication is anti-commutative, i.e., x2 = 0 (implying

xy = −yx) and the Jacobi identity (xy)z + (yz)x+ (yz)x+ (zx)y = 0 for all x,y,z in R is satisfied.

Definition 2.5 (Jordan Ring). A Jordan Ring R is a ring in which products are commutative, i.e., xy = yx and satisfy the

Jordan identify (xy)x2 = x
(
yx2

)
for all x, y in R.

Definition 2.6 (Associator). The associator (x, y, z) is defined by (x, y, z) = (xy)z − x(yz) for all x, y, z in a ring.

This plays a key role in the study of non-associative rings. It can be viewed as a measure of the non-associativity of a

ring. This definition is due to Maxzorn wherein he proved that a finite alternative division ring is associative. In terms of

associators, a ring R is called left alternative if (x, x, y) = 0, right alternative if (y, x, x) = 0 for all x, y in R and alternative

if both the conditions hold.

Definition 2.7 (Commutator). The commutator [x, y] is defined by [x, y] = xy − yx for all x, y in a ring.

Definition 2.8 (Commutative Ring). If the multiplication in a ring R is such that xy = yx for all x, y in R then we call

R a commutative ring.

A non-commutative ring differs from commutative ring in that the multiplication is not assumed to be commutative. i.e.,

we do not assume xy = yx for all x, y in R as an axiom. However, it does not mean that there always exist elements x, y

in R such that xy 6= yx. The ring of 2× 2 matrices over rationales and the ring of real quaternion due to Hamilton are the

examples of non-commutative rings.

Definition 2.9 (Assosymmetric Ring). An Assosymmetric ring R is one in which (x, y, z) = (P (x), P (y)P (z)), where P is

any permutation of x, y, z in R.

Definition 2.10 (Standard Ring). A ring R is defined to be standard if it satisfies the following two identities:

(1). (wx, y, z) + (xz, y, w) + (wz, y, x) = 0

(2). (x, y, z) + (z, x, y)− (x, z, y) = 0, for all w, x, y and z in R.

Definition 2.11 (Accessible Ring). A ring R is called accessible in case it satisfies the identities:
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(1). (x, y, z) + (z, x, y)− (x, z, y) = 0

(2). ((w, x), y, z) = 0, for all w, x, y and z in R.

Definition 2.12 (Periodic Ring). A ring R is called a periodic ring if for every x in R, there exists distinct positive integers

m = m(x), n = n(x) such that xm = xn. Due to Chacron R is periodic if and only if for each x ∈ R, there exists a positive

integers k = k(x) and a polynomial f (λ) = fx (λ) with integer co-efficient such that xk = xk+1f (x).

Definition 2.13 (s-Unital Ring). A ring R is called a left (respectively right) s-unital ring if x ∈ Rx (respectively x ∈ xR)

for each x ∈ R. Further R is called s-unital if it is both left as well as right s-unital, i.e., if x ∈ xR ∩Rx, for each x ∈ R.

Definition 2.14 (Weakly Periodic Ring). A ring R is called a weakly periodic ring if every element of R is expressible as

a sum of a nilpotent element and a potent element of R, R = N + P , where N is the set of nilpotent elements of R and P is

the set of potent elements of R. It is well-known that if R is periodic, then it is weakly periodic.

Definition 2.15 (Prime Ring). A ring R is called a primo ring if whenever A and B are ideals of R such that AB = 0,

then either A = 0 or B = 0.

Definition 2.16 (Semi Prime Ring). A ring R is semi prime if for any ideal A of R, A2 = 0 implies A = 0. These rings

are also referred to as rings free from trivial ideals.

Definition 2.17 (Flexible Ring). If in a ring R, the identity (x, y, x) = 0 i.e., (xy)x = x(yx) for all x, y in R holds then R

is called flexible.

Alternative, commutative, anti-commutative and there by Jordan and Lie rings are flexible.

Definition 2.18 (Nilpotent Ring). A ring is called nilpotent if there is a fixed positive integer t such that every product

involving t elements is zero.

Definition 2.19 (Torsion-free Ring). A ring R is said to be m-torsion free if mx = 0 implies x = 0 for all x in R.

Definition 2.20 (Reduced Ring). A ring R is called reduced if N = {0}, where N is the set of nilpotent elements of R.

Definition 2.21 (Center). In a ring R, the center denoted by Z(R) is the set of all elements x ∈ R such that xy = yx for

all y ∈ R.

Definition 2.22 (Derivation). A derivation of a ring R is an additive group homomorphism d : R→ R satisfying d (r1, r2) =

(dr1) r2 + r1dr2.

It is important to note that this definition does not depend on the associative of multiplication and in fact, we shall have

occasion to deal with derivations of non-associative algebras.

3. Main Results

Theorem 3.1. Let R be a non-associative assosymmetric ring with unity such that (xy)2 = x2y2 for all x, y in R is

commutative and associative.

Proof. Suppose x, y in R. Then (xy)2 = x2y2. Moreover

[x (1 + y)]2 = x2 (1 + y)2 = x2 + 2x2y + x2y2.
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But also [x (1 + y)]2 = (x+ xy)2 = x2 + x (xy) + (xy)x+ (xy)2. Hence,

x(xy) + (xy)x = 2x2y (1)

Now replacing x by 1 + x in (1) we obtain.

(1 + x)[(1 + x)y] + [(1 + x)y](1 + x) = 2 (1 + x)2 y

(1 + x)(y + xy) + (y + xy)(1 + x) = 2(1 + 2x+ x2y)

y + xy + xy + x(xy) + y + yx+ xy + (xy)x = 2y + 4xy + 2x2y.

This reduces to, x(xy) + yx + (xy)x = xy + 2x2y. Using (1) in this, we get, yx = xy. Thus R is commutative. In an

asssymmetric ring the following identity holds: (xy, z) = x(y, z, ) + (x, z)y + (x, y, z). Now this identity together with

commutativity imply that, (x, y, z) = 0. Hence R is associative. Quadric and Ashraf [5] have proved that a semi prime ring

R satisfying the identity [(xy)n , z] = 0 is commutative. We prove the partial generalization of this result by choosing n = 2

in a non-associative ring.

Theorem 3.2. Let R be 2-torsion free non-associative ring in which (xy)2 ∈ Z (R) for all x, y in R. Then R is commutative.

Proof. By hypothesis

(xy)2 ∈ Z (R) (2)

Replacing x by (x+ 1) in (2) and using it, we obtain

(xy) y + y (xy) + y2 ∈ Z (R) (3)

Replacing x by x+ 1 in (3) and using it and applying 2-torsion free condition, we get

y2 ∈ Z (R) (4)

Replacing y by y + 1 in (4) and applying 2-torsion free condition, we get y ∈ Z (R). Hence R is commutative.
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