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Abstract: An exact analytical solution of the problem on the three-dimensional transient heat conduction in a Rectangular with

multiple layers, in which time-dependent, spatially non-uniform internal volume heat sources are installed, is presented.
The transient temperature distribution in this rectangle was determined with the use of the eigenfunction expansion

method. The solution obtained is valid for any combination of homogenous first- and second-kind boundary conditions in

the Y and Z directions of the rectangle and for the nonhomogeneous third-kind boundary conditions in the X direction.
As a partial case, the problem on the heat conduction in a three-layer rectangle region was solved.
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1. Introduction

Multilayer transient heat conduction is characteristic of composite materials consisting of several layers. The interest

shown in these materials is explained by the fact that they combine physical, mechanical, and thermal properties of different

substances. The indicated materials are used in the aerospace, automobile, chemical, power, and civil engineering, biomedical

industry, thermodynamic and solidification processes, and high-density microelectronics as well as for production of fiber-

insulated heaters, multilayer insulators, nuclear fuel rods, fuel cells, electrochemical reactors, building structures, and also

widely used in investigating the thermal properties of composite materials. The analytical methods are the method of

separation of variables, the Laplace-transform method, the method of finite integral transforms, and the eigenfunction-

expansion and Green’s function methods.

H.Salt [1] used the orthogonal expansion method in investigating the unsteady 2-D heat conduction in a Cartesian slab.

N.Dalir and S.S.Nourazar[3] use separation of variable method for solving 3-D transient heat conduction in a multilayer

cylinder. A. Haji-Sheikh and J. Beck [4] used the Green’s function approach to determine the 3-D temperature distribution

in a two-layer orthotropic slab. X. Lu and his collaborators [5-8] used, in combination, the Laplace-transform method

and the method of separation of variables to investigate the 2-D temperature distribution in rectangular, cylindrical, and

spherical bodies. F. de Monte [9, 10] used the eigenfunction expansion method to solve the problem on the 2-D unsteady

heat conduction in a two-layer isotropic slab at homogenous boundary conditions. P. Jain and his collaborators [11-13]
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used, in combination, the method of separation of variables and the eigenfunction expansion method in investigating the

2-D unsteady multilayer heat conduction in a sphere. S. Singh and his collaborators [14] used the finite integral transform

method to determine the asymmetric heat conduction in a multilayer annulus.

The methods of investigating the 2-D transient heat conduction in multilayer bodies were developed on the basis of the

works of P. Jain, S. Singh, and R. Uddin [11-14], in which exact analytical solutions of the problems of 1) the transient

heat conduction in polar bodies with multiple radial layers [11], 2) the transient asymmetric heat conduction in a multilayer

annulus [12], and 3) the 2-D heat conduction in a multilayer sphere [13] were obtained. The authors of the indicated works

solved the indicated problems by the method of partial solutions that involves the division of a nonhomogeneous Transient

problem into a homogeneous transient problem and a nonhomogeneous steady-state problem. The homogeneous transient

problem is solved using the method of separation of variables, and the nonhomogeneous steady-state problem is solved by

the eigenfunction expansion method

The above-presented brief survey of the literature data shows that there is no an exact analytical method for solving the

problem of the 3-D transient temperature distribution in a rectangle region with multiple layers. In this connection, the

aim of the present work is to obtain an exact analytical triple-series solution of the problem on the 3-D transient heat

conduction in a rectangle with multiple layers, in which time-dependent, spatially nonuniform volume heat sources are

installed. The boundary-value problem of the 3-D transient heat conduction in the X ,Y ,Z multilayer region having a

rectangle or a partially rectangular geometry with time-dependent, spatially nonuniform volume heat sources was solved. The

nonhomogeneous boundary conditions of the first, second, or third kind were set on the inner and outer x layer boundaries

of the computational region, and the homogeneous boundary conditions of the first or second kind were set on the surfaces

y = constant and z = constant.

2. Mathematical Formulation of the Problem

We will consider a n-layer composite rectangular slab with coordinates x0 ≤ x ≤ xn, 0 ≤ y ≤ b, and 0 ≤ z ≤ c. It is assumed

that all the layers are thermally isotropic and make a perfect thermal contact. At t = 0, the ith layer has a temperature

fi(x, y, z). At t > 0, homogenous boundary conditions of the first or second kind are set on the surfaces y = 0 and y = b

and on the surfaces z = 0 and z = c. All these boundary conditions can be used for the inner (i = 1, x = x0) and outer

(i = n, x = xn) surfaces. The time-dependent heat sources gi(x, y, z, t) are actuated in each layer at t = 0. The governing

differential equation for the 3-D transient heat conduction in a multilayer rectangular has the form

∂2Ti

∂x2
+
∂2Ti

∂y2
+
∂2Ti

∂z2
+

1

ki
gi (x, y, z, t) =

1

∝i
∂T i
∂t

(1)

Ti = Ti(x, y, z, t); x0 ≤ x ≤ xn; xi−1 ≤ x ≤ xi; 1 ≤ i ≤ n; 0 ≤ y ≤ b; 0 ≤ z ≤ c, t = 0. This equation is used with the

following boundary conditions for the inner surface of the 1st layer (i = 1):

Ain
∂T 1(x, y, z, t)

∂x
+BinT1 (x, y, z, t) = Cin (2)

The outer surface of the nth layer (i = n)

Aout
∂Tn(x, y, z, t)

∂x
+BoutTn (x, y, z, t) = Cout (3)

Surface y = 0 (i = 1, 2, . . ., n)

Ti (x, y = 0, z, t) = 0 or
∂T i(x, y = 0, z, t)

∂y
= 0 (4)
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Surface y = b (i = 1, 2, . . ., n)

Ti (x, y = b, z, t) = 0 or
∂T i(x, y = b, z, t)

∂y
= 0 (5)

Surface z = 0 (i = 1, 2, . . ., n)

Ti (x, y, z = 0, t) = 0 or
∂T i(x, y, z = 0, t)

∂z
= 0 (6)

Surface z = c (i = 1, 2, . . ., n)

Ti (x, y, z = c, t) = 0 or
∂T i(x, y, z = c, t)

∂z
= 0 (7)

Inner interface of the ith layer (i = 2, 3, . . ., n)

Ti(xi−1, y, z, t) = Ti−1(xi−1, y, z, t), (8)

ki
∂Ti(xi−1, y, z, t)

∂z
= ki−1

∂T i−1(xi−1, y, z, t)

∂z
(9)

Outer interface of the ith layer (i = 1, 2, 3. . ., n− 1)

Ti(xi, y, z, t) = Ti+1(xi, y, z, t), (10)

ki
∂Ti(xi, y, z, t)

∂z
= ki+1

∂Ti+1(xi, y, z, t)

∂z
(11)

Where Ain, Aout, Bin, Bout, Cin, and Cout are coefficients. The initial condition is as follows:

Ti (x, y, z, t = 0) = fi(x, y, z) (12)

It should be noted that the boundary conditions of the first, second, and third kind (2) and (3) with appropriate coefficients

can be used in the cases where x = x0 and x = xn and that a multilayer rectangle with a zero inner surface (x0 = 0) can be

simulated by assigning zero values to Bin and Cin in the boundary condition (2).

3. Method of Solving the Problem

The problem posed is solved using the eigenfunction expansion method. First, the eigenfunctions are obtained for all the

spatial directions of the rectangle being considered with the use of the associated (or equivalent) eigenvalue problem that is

solved using the method of separation of variables. Then a dependent variable or a problem solution (e.g., the temperature

in the heat-conduction problem) is written as a series expansion of all the obtained eigenfunctions. The nonhomogeneity in

the governing differential equation of the heat-conduction problem (e.g., an internal volume heat source) is also written as a

series expansion of the eigenfunctions. These two series expansions are then substituted into the differential equation of the

problem. Finally, with the use of some simplification, an ordinary differential equation (ODE) of the first or second order

can be obtained for an independent time variable. The solution of this ODE completes the solution of the problem, and the

indicated ODE is a first-order equation in the transient heat conduction problem and a second-order equation in the wave

problem.

It should be noted that the method of partial solutions, by which the 2-D transient heat conduction problem was solved

in [2], cannot be used for solving the transient heat conduction problem being considered, because, in [2], the heat source

independent of time was considered. In the method of partial solutions, the nonhomogeneous transient heat conduction

problem is divided into two subproblems: a homogeneous transient problem and a nonhomogeneous steady-state problem.
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Since the heat source in the problem being considered depends on the time, a heat-source term cannot be involved in the

partial solution of the steady-state subproblem and, consequently, the method of partial solutions cannot be used in this

case. Thus, the eigenfunction expansion method can be considered as the most efficient analytical method of the methods

known to the authors of this work, which can be used for solving the transient conduction problem. An associated eigenvalue

problem is defined by the relation

∇2∅ = −λ2∅

∂2∅i
∂x2

+
∂2∅i
∂y2

+
∂2∅i
∂z2

= λ2∅i (13)

∅i (x, y, z) = Xi (x)Yi (y)Zi(z) (14)

X
′′
i YiZi

XiYiZi
+
XiY

′′
i Zi

XiYiZi
+
XiYiZ

′′
i

XiYiZi
= −λ2XiYiZi

XiYiZi
(15)

X
′′
i

Xi
+
Y
′′
i

Yi
+
Z
′′
i

Zi
= −λ2 (16)

X
′′
i

Xi
+
Y
′′
i

Yi
= −Z

′′
i

Zi
− λ2 = −µ2 (17)

Z
′′
i +

(
λ2 − µ2)Zi = 0 (18)

Where λ2 − µ2 = γ2

Zil (z) = c1 sin γilz + c2 cos γilz (19)

X
′′
i

Xi
+
Y
′′
i

Yi
= −µ2 (20)

X
′′
i

Xi
= −Y

′′
i

Yi
− µ2 = −β2 (21)

Y
′′
i +

(
µ2 − β2)Yi = 0 (22)

Yim (y) = c3 sin ηimy + c4 cos ηimy (23)

where ηim = µ2 − β2

Xin (x) = c5 sinβinx+ c6 cosβinx (24)

the continuity of the heat flows at the interfaces of the layers implies the fulfillment of the conditions.

β2
inαi = β2

1nα1

The eigenfunctions obtained are represented in the form of a triple-series expansion

Ti (x, y, z, t) =

∞∑
l=0

∞∑
m=0

∞∑
n=0

Tilmn (t)Xin (x)Yim (y)Zil(z) (25)

where Tilmn is a coefficient determined by the initial conditions. The heat-source term is represented in the analogous form:

gi (x, y, z, t) =

∞∑
l=0

∞∑
m=0

∞∑
n=0

gilmn (t)Xin (x)Yim (y)Zil(z) (26)

where gilmn is a coefficient. Using the orthogonality property of the indicated eigenfunctions, we obtain

gilmn (t) =

∫ c
0

∫ b
0

∫ xi
xi−1

gi (x, y, z, t)Xin (x)Yim (y)Zil(z) dxdydz∫ c
0

∫ b
0

∫ xi
xi−1

X2
in(x)Y 2

im(y)Z2
il(z)dxdydz

(27)
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Substitution of the triple-series expansions (25) and (26) for Ti and gi into the differential equation of the problem (1) gives

Tilmn (t)X
′′
in (x)Yim (y)Zil (z) + Tilmn (t)Xin (x)Y

′′
im (y)Zil (z) + Tilmn (t)Xin (x)Yim (y)Z

′′
il (z)

+
1

ki
gilmn (t)Xin (x)Yim (y)Zil (z) =

1

∝i
T ′ilmnXin (x)Yim (y)Zil (z) (28)

X
′′
in (x)

Xin (x)
+
Y
′′
im (y)

Yim (y)
+
Z
′′
il (z)

Zil (z)
+

1

ki

gilmn (t)

Tilmn (t)
=

1

∝i
T ′ilmn

Tilmn (t)
(29)

dT ilmn(t)

dt
+ (−∝i)

(
X
′′
in (x)

Xin (x)
+
Y
′′
im (y)

Yim (y)
+
Z
′′
il (z)

Zil (z)

)
Tilmn (t) =

∝i
ki
gilmn (t) (30)

where Wilmn = (−∝i)
(
X
′′
in(x)

Xin(x)
+

Y
′′
im(y)

Yim(y)
+

Z
′′
il(z)

Zil(z)

)

eWilmntTilmn (t) =

∫ τ=t

τ=0

∝i
ki
gilmn (τ) eWilmnτdτ + ci1 (31)

Tilmn (t) =
∝i
ki
e−W ilmnt

∫ τ=t

τ=0

gilmn (τ) eWilmnτdτ + ci1e
−W ilmnt (32)

Using initial condition

Ti (x, y, z, t = 0) = fi (x, y, z) =

∞∑
l=0

∞∑
m=0

∞∑
n=0

Tilmn (0)Xin(x)Y im (y)Zil(z) (33)

Applying the orthogonality property to the eigenfunctions obtained, we write the coefficient ci1 from Equation (33) in the

following form

Ci1 = Tilmn (0) =

∫ c
0

∫ b
0

∫ xi
xi−1

fi (x, y, z)Xin(x)Y im (y)Zil (z) dxdydz∫ c
0

∫ b
0

∫ xi
xi−1

X2
in (x)Y 2

im (y)Z2
il (z) dxdydz

(34)

Tilmn (t) =
∝i
ki
e−W ilmnt

∫ τ=t

τ=0

gilmn (τ) eWilmnτdτ +

∫ c
0

∫ b
0

∫ xi
xi−1

fi (x, y, z)Xin(x)Y im (y)Zil (z) dxdydz∫ c
0

∫ b
0

∫ xi
xi−1

X2
in (x)Y 2

im (y)Z2
il (z) dxdydz

e−W ilmnt (35)

Now the solution of the problem is completed.

4. Partial Case of the Problem Being Investigated

A three-layer rectangular region with coordinates 0 ≤ x ≤ x3, 0 ≤ y ≤ b, and 0 ≤ z ≤ c is considered. At the initial instant

of time (t = 0), the rectangle has a uniform temperature distribution. At t > 0, the temperature of the surfaces y = 0, y = b,

z = 0, and z = c is equal to zero; however, heat is transferred from the outer surface (x = x3) at zero ambient temperature.

These boundary conditions are defined by the relations Ain = k1, Bin = h, Cin = 0, Aout = k3, Bout = h, and Cout = 0. A

uniform internal heat source gi (i = 1, . . ., 3) is activated at t = 0 in each layer. The governing differential equation for the

3-D transient heat conduction in the indicated three-layer rectangle has the form

∂2Ti

∂x2
+
∂2Ti

∂y2
+
∂2Ti

∂z2
+

1

ki
gi (x, y, z, t) =

1

∝i
∂T i
∂t

(36)

Ti = Ti(x, y, z, t)

x1 ≤ x ≤ x3, xi−1 ≤ x ≤ xi, 1 ≤ i ≤ 3, 0 ≤ y ≤ b, 0 ≤ z ≤ c. This equation is used with the boundary conditions: Inner

surface at 1st layer (i = 1)

k1
∂T 1(x1, y, z, t)

∂x
+ h1T1 (x1, y, z, t) = 0 (37)
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Outer surface at 3rd layer (i = 3)

k3
∂T 3(x3, y, z, t)

∂x
+ h3T3 (x3, y, z, t) = 0 (38)

At the layer i = 1, 2, 3

Ti (x, y = 0, z, t) = 0, Ti (x, y = b, z, t) = 0, Ti (x, y, z = 0, t) = 0, Ti (x, y, z = c, t) = 0 (39)

The inner interface surface of the ith layer (i = 2, 3):

Ti(xi−1, y, z, t) = Ti−1(xi−1, y, z, t), (40)

ki
∂Ti(xi−1, y, z, t)

∂x
= ki−1

∂Ti−1(xi−1, y, z, t)

∂x
(41)

The outer interface surface of the ith layer (i = 1, 2):

Ti(xi, y, z, t) = Ti+1(xi, y, z, t), (42)

ki
∂Ti(xi, y, z, t)

∂x
= ki+1

∂Ti+1(xi, y, z, t)

∂x
(43)

And the initial condition has the form

Ti (x, y, z, t = 0) = 1; 1 ≤ i ≤ 3 (44)

With the use of the eigenfunction expansion method, the associated eigenvalue problem is solved in the z , y and x directions

Zil (z) = c1 cos γilz + c2 sin γilz

Yim (y) = c3 cos ηimy + c4 sin ηimy (45)

Xin (x) = c5 cosβinx+ c6 sinβinx

the use of relevant boundary conditions in each direction. In this case, for the z direction, we obtain the eigenvalues and

eigenfunction in the z direction are as follows

Zil (z) = sin γilz

Zil (z) = sin
lπ

c
z (46)

The eigenvalues and eigenfunction in the y direction are as follows

Yim (y) = sin
mπ

b
y (47)

The eigenvalues and eigenfunction in the x direction are as follows

Xin (x) = βin cosβinx+H1 sinβinx (48)
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The coefficients gilmn(t) and Wilmn are determined as

gilmn (t) =

∫ c
0

∫ b
0

∫ xi
xi−1

(
gi(x, y, z, t)(βin cosβinx+H1 sinβinx) sin mπ

b
y sin lπ

c
z
)
dxdydz∫ c

0

∫ b
0

∫ xi
xi−1

(
(βin cosβinx+H1 sinβinx)(sin mπ

b
y) sin lπ

c
z
)2
dxdydz

(49)

Wilmn = (− ∝i)

(
X
′′
in (x)

Xin (x)
+
Y
′′
im (y)

Yim (y)
+
Z
′′
il (z)

Zil (z)

)
(50)

Wilmn = (− ∝i)
(
−β2

in +
m2π2

b2
+
l2π2

c2

)
(51)

Ti (x, y, z, t) =

∞∑
l=1

∞∑
m=1

∞∑
n=1

Tilmn(t) (βinm cosβinmx+H1 sinβinmx) sin
mπ

b
y sin

lπ

c
z (52)

Tilmn (t) =
∝i
ki
e−W ilmntgilmn

1

Wilmn

(
eWilmnt − 1

)
+ ci1e

−W ilmnt (53)

Tilmn (t) = gilmn

[
∝i

kiWilmn
+

(
1

gi

∝i
kiWilmn

)
e−W ilmnt

]
(54)

5. Conclusions

The temperature distribution in a multilayer Rectangle was determined on the basis of the exact analytical solution of the

problem of the 3-D transient heat conduction in this rectangle by the eigenfunction expansion method with account for the

action of the time-dependent, nonuniform volume heat sources in the x layers of the rectangle with the use of the homogenous

boundary conditions of the first and second kind in the y and z directions and the nonhomogeneous boundary conditions of

the third kind in the x direction. The partial problem on the heat conduction in a three-layer rectangle was solved, and the

temperature distribution in this rectangle was determined.
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