International Journal of Mathematics And its Applications

Subdivisions of Contra Harmonic Mean Graphs

Research Article

S.S.Sandhya ${ }^{1}$, S.Somasundaram ${ }^{2}$ and J.Rajeshni Golda ${ }^{3 *}$
1 Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai, Tamilnadu, India.
2 Department of Mathematics, M.S.University, Tirunelveli, Tamilnadu, India.
3 Department of Mathematics, Women's Christian College, Nagercoil, Tamilnadu, India.

Abstract

A graph $G(V, E)$ is called a Contra Harmonic mean graph with p vertices and q edges, if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from $0,1, \ldots, q$ in such a way that when each edge $e=u v$ is labeled with $f(e=u v)=\left\lceil\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rceil$ or $\left\lfloor\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rfloor$ with distinct edge labels. The mapping f is called Contra Harmonic mean labeling of G.

Keywords: Graph, Contra Harmonic mean graph, Path, Comb, Cycle, Triangular Snake, Quadrilateral snake. (c) JS Publication.

1. Introduction

All graphs in this paper are simple, finite, undirected. Let $G(V, E)$ be a graph with p vertices and q edges. For a detail survey of graph labeling we refer to [1]. A general reference for graph-theoretic ideas is [2]. The concept of mean labeling was introduced by S. Somasundaram and R. Ponraj [3] in 2004. S. Somasundram and S.S. Sandhya introduced Harmonic mean labeling [4] in 2012. In this paper we investigate the Subdivision of Contra Harmonic mean labeling for some graphs. The following definition are useful for our present study.

Definition 1.1. A graph $G(V, E)$ is called a Contra Harmonic mean graph with p vertices and q edges, if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from $0,1, \ldots, q$ in such a way that when each edge $e=u v$ is labeled with $f(e=u v)=\left\lceil\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rceil$ or $\left\lfloor\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rfloor$ with distinct edge labels. The mapping f is called Contra Harmonic mean labeling of G.

Definition 1.2. A Triangular snake T_{n} is obtained from a path $u_{1} \ldots u_{n}$ by joining u_{i} and to a vertex v_{i} for $1 \leq i \leq n-1$.

Definition 1.3. A Quadrilateral snake Q_{n} is obtained from a path $u_{1} \ldots u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i}, w_{i}, $1 \leq i \leq n-1$.

Definition 1.4. The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=G_{1} \cup G_{2}$ with vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$.

Definition 1.5. The corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.

[^0]Definition 1.6. If $e=u v$ is an edge of G and w is not a vertex of G then e is said to be subdivided when it is replaced by the edges uw and wv. The graph obtained by subdividing each of a graph G is called the subdivision of G and is denoted by $S(G)$.

2. Main Results

Theorem 2.1. $S\left(P_{n} \odot K_{1}\right)$ is a Contra Harmonic mean graph.
Proof. Let $u_{1} u_{2} \ldots u_{n}$ be a path P_{n} of length n . Let v_{i} be the vertex which is joined to the vertex $u_{i}, 1 \leq i \leq n$ of the path P_{n}. The resulting graph is a comb $P_{n} \odot K_{1}$. Let G be graph obtained by subdividing the edges. Here we consider the following cases.

Case (i): G is obtained by subdividing each edge of the path. Let $t_{1} t_{2} \ldots t_{n-1}$ be the vertices which subdivide the edges of $u_{i} u_{i+1}$. Define a function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ by

$$
\begin{aligned}
f\left(u_{i}\right)=3 i-3, & 1 \leq i \leq n \\
f\left(v_{i}\right)=3 i-2, & 1 \leq i \leq n \\
f\left(t_{i}\right)=3 i-1, & 1 \leq i \leq n-1
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{i} v_{i}\right) & =3 i-2, \quad 1 \leq i \leq n \\
f\left(u_{i} t_{i}\right) & =3 i-1, \quad 1 \leq i \leq n-1 \\
f\left(t_{i} u_{i+1}\right) & =3 i, \quad 1 \leq i \leq n-1
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The Contra Harmonic mean labeling pattern of $S\left(P_{7} \odot K_{1}\right)$ is

Figure 1.

Case (ii): G is obtained by subdividing the edges $u_{i} v_{i}$. Let w_{i} be the vertices which subdivide the edges $u_{i} v_{i}, 1 \leq i \leq n$. Define a function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{1}\right)=0, f\left(u_{2}\right)=3, f\left(u_{i}\right)=3 i-2,3 \leq i \leq n \\
& f\left(v_{1}\right)=2, f\left(v_{2}\right)=5, f\left(v_{i}\right)=3 i, 3 \leq i \leq n \\
& f\left(w_{1}\right)=1, f\left(w_{2}\right)=4, f\left(w_{3}\right)=8, f\left(w_{4}\right)=11, f\left(w_{i}\right)=3 i-1,5 \leq i \leq n
\end{aligned}
$$

Then the distinct edges labels are

$$
\begin{aligned}
f\left(u_{i} u_{i+1}\right) & =3 i, \quad 1 \leq i \leq n-1 \\
f\left(u_{i} w_{i}\right) & =3 i-2, \quad 1 \leq i \leq n \\
f\left(w_{i} v_{i}\right) & =3 i-1, \quad 1 \leq i \leq n
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(P_{5} \odot K_{1}\right)$ is shown below.

Figure 2.

Case (iii): G is obtained by subdividing all the edges of $P_{n} \odot K_{1}$. Let t_{i} and w_{i} be the vertices which subdivide the edges $u_{i} u_{i+1}$ and $u_{i} v_{i}$ respectively. Define a function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{1}\right)=0, f\left(u_{2}\right)=4, f\left(u_{i}\right)=4 i-3,3 \leq i \leq n \\
& f\left(v_{1}\right)=2, f\left(v_{2}\right)=6, f\left(v_{i}\right)=4 i-1,3 \leq i \leq n \\
& f\left(t_{1}\right)=3, f\left(t_{i}\right)=4 i, 2 \leq i \leq n-1 \\
& f\left(w_{1}\right)=1, f\left(w_{2}\right)=5, f\left(w_{i}\right)=4 i-2,3 \leq i \leq n
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{i} t_{i}\right) & =4 i-1, \quad 1 \leq i \leq n-1 \\
f\left(t_{i} u_{i+1}\right) & =4 i, \quad 1 \leq i \leq n-1 \\
f\left(u_{i} w_{i}\right) & =4 i-3, \quad 1 \leq i \leq n \\
f\left(w_{i} v_{i}\right) & =4 i-2, \quad 1 \leq i \leq n
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(P_{5} \odot K_{1}\right)$ is shown below.

Figure 3.

From case (i) and (ii), it is clear that $S\left(P_{n} \odot K_{1}\right)$ is a Contra Harmonic mean graph.

Theorem 2.2. $S\left(C_{n} \odot K_{1}\right)$ is a Contra Harmonic mean graph.

Proof. Let $u_{1} u_{2} \ldots u_{n}$ be a cycle C_{n} of length n and let v_{i} be the pendant vertices adjacent to $u_{i}, 1 \leq i \leq n$. The resulting graph is $C_{n} \odot K_{1}$. Let $G=S\left(C_{n} \odot K_{1}\right)$ be the graph obtained by subdividing the edges. Here we consider the following cases.

Case (i): Let G be a graph obtained by subdividing each edge of the cycle $u_{1} u_{2} \ldots u_{n}$. Let $w_{i}, 1 \leq i \leq n$ be the vertices which subdivide the edges of the cycle $u_{1} u_{2} \ldots u_{n}$. Define a function $f: V(G) \rightarrow\{0,1,2 \ldots, q\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=3 i-3, & 1 \leq i \leq n \\
f\left(v_{i}\right)=3 i-2, & 1 \leq i \leq n \\
f\left(w_{i}\right)=3 i-1, & 1 \leq i \leq n-1 \quad \text { and } f\left(w_{n}\right)=3 n
\end{array}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{i} v_{i}\right) & =3 i-2, \quad 1 \leq i \leq n \\
f\left(u_{i} w_{i}\right) & =3 i-1, \quad 1 \leq i \leq n \\
f\left(w_{i} u_{i+1}\right) & =3 i, \quad 1 \leq i \leq n
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G . The labeling pattern of $S\left(C_{5} \odot K_{1}\right)$ is shown below.

Figure 4.

Case (ii): Let G be a graph obtained by subdividing the edge $u_{i} v_{i}$ of $C_{n} \odot K_{1}$. Let $t_{i}, 1 \leq i \leq n$ be the vertices which subdivide u_{i} and v_{i}. Define a function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{1}\right)=0, f\left(u_{2}\right)=3 \text { and } f\left(u_{i}\right)=3 i-2, \quad 3 \leq i \leq n \\
& f\left(v_{1}\right)=2, f\left(v_{i}\right)=3 i, \quad 2 \leq i \leq n \\
& f\left(t_{1}\right)=1, f\left(t_{i}\right)=3 i-1,2 \leq i \leq n
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{i} u_{i+1}\right) & =3 i, 1 \leq i \leq n-1, f\left(u_{n} u_{1}\right)=3 n-1, \\
f\left(t_{i} v_{i}\right) & =3 i-1,1 \leq i \leq n-1, f\left(t_{n} v_{n}\right)=3 n
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G . The labeling pattern of $S\left(C_{5} \odot K_{1}\right)$ is shown below.

Figure 5.

Case (iii): Let G be a graph obtained by subdividing all the edges of $C_{n} \odot K_{1}$. Let t_{i}, w_{i} be the vertices which subdivide the edges of the cycle $u_{1} u_{2} \ldots u_{n}$ and the edges u_{i} and v_{i} for $1 \leq i \leq n$ respectively. Define a function $f: V(G) \rightarrow\{1,2, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{1}\right)=0, f\left(u_{i}\right)=4 i-3,2 \leq i \leq n \\
& f\left(v_{1}\right)=2, f\left(v_{i}\right)=4 i-1,2 \leq i \leq n \\
& f\left(w_{1}\right)=1, f\left(w_{i}\right)=4 i-2,2 \leq i \leq n \\
& f\left(t_{1}\right)=3, f\left(t_{i}\right)=4 i, 2 \leq i \leq n
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{i} w_{i}\right) & =4 i-3, \quad 1 \leq i \leq n \\
f\left(w_{i} v_{i}\right) & =4 i-2, \quad 1 \leq i \leq n \\
f\left(u_{i} t_{i}\right) & =4 i-1, \quad 1 \leq i \leq n \\
f\left(t_{i} u_{i+1}\right) & =4 i, \quad 1 \leq i \leq n
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(C_{5} \odot K_{1}\right)$ is shown below. From the above cases we

Figure 6.
conclude that $S\left(C_{n} \odot K_{1}\right)$ is a Contra Harmonic mean graph.

Theorem 2.3. $S\left(T_{n}\right)$ is a Contra Harmonic mean graph.

Proof. Let $u_{1} u_{2} \ldots u_{n}$ be a path of length n. Let T_{n} be a triangular snake obtained by joining u_{i} and u_{i+1} to a new vertex $v_{i}, 1 \leq i \leq n-1$. Let us subdivide the edges of T_{n}. We consider the following cases.

Case (i): G is obtained by subdividing each edge of the path. Let $t_{1}, t_{2}, \ldots, t_{n-1}$ be the vertices which subdivide the edge $u_{i} u_{i+1}$. Define a function $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=4 i-4, & 1 \leq i \leq n \\
f\left(v_{i}\right)=4 i-3, & 1 \leq i \leq n-1 \\
f\left(t_{i}\right)=4 i-2, & 1 \leq i \leq n-1
\end{array}
$$

Then the distinct edge labels are

$$
\begin{aligned}
& f\left(u_{i} t_{i}\right)=4 i-2, \quad 1 \leq i \leq n-1 \\
& f\left(t_{1} u_{2}\right)=3, \quad f\left(t i u_{i+1}\right)=4 i, \quad 2 \leq i \leq n-1 \\
& f\left(u_{i} v_{i}\right)=4 i-3, \quad 1 \leq i \leq n-1 \\
& f\left(v_{1} u_{2}\right)=4, \quad f\left(v_{i} u_{i+1}\right)=4 i-1, \quad 2 \leq i \leq n-1
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(T_{6}\right)$ is

Figure 7.

Case (ii): G is obtained by subdividing the edges $u_{i} v_{i}$ and $u_{i+1} v_{i}$. Let t_{i} and s_{i} be the two vertices which subdivide the edges $u_{i} v_{i}$ and $u_{i+1} v_{i}, 1 \leq i \leq n-1$ respectively. Define a function $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=5 i-5, \quad 1 \leq i \leq n \\
& f\left(v_{1}\right)=2, \quad f\left(v_{i}\right)=5 i-2, \quad 2 \leq i \leq n-1 \\
& f\left(t_{1}\right)=1, \quad f\left(t_{i}\right)=5 i-3, \quad 2 \leq i \leq n-1 \\
& f\left(s_{1}\right)=3, \quad f\left(s_{i}\right)=5 i-1, \quad 2 \leq i \leq n-1
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{1} u_{2}\right) & =5, f\left(u_{i} u_{i+1}\right)=5 i-2, \quad 2 \leq i \leq n-1 \\
f\left(u_{i} t_{i}\right) & =5 i-4, \quad 1 \leq i \leq n-1 \\
f\left(t_{i} v_{i}\right) & =5 i-3, \quad 1 \leq i \leq n-1 \\
f\left(v_{1} s_{1}\right) & =3, f\left(v_{i} s_{i}\right)=5 i-1, \quad 2 \leq i \leq n-1 \\
f\left(s_{1} u_{2}\right) & =4, f\left(s_{i} u_{i+1}\right)=5 i, \quad 2 \leq i \leq n-1
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(T_{5}\right)$ is shown below.

Figure 8.

Case (iii): G is obtained by subdividing all the edges of T_{n}. Let x_{i}, y_{i} and t_{i} be the vertices which subdivide the edges $u_{i} v_{i}, v_{i} u_{i+1}$ and $u_{i} u_{i+1}$ respectively. Define a function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=6 i-6, \quad 1 \leq i \leq n \\
& f\left(v_{1}\right)=2, \quad f\left(v_{i}\right)=6 i-3, \quad 2 \leq i \leq n-1 \\
& f\left(t_{1}\right)=3, f\left(t_{i}\right)=6 i-2, \quad 2 \leq i \leq n-1 \\
& f\left(x_{1}\right)=1, f\left(x_{i}\right)=6 i-4, \quad 2 \leq i \leq n-1 \\
& f\left(y_{1}\right)=4, f\left(y_{i}\right)=6 i-1, \quad 2 \leq i \leq n-1
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{i} t_{i}\right) & =6 i-3, \quad 1 \leq i \leq n-1 \\
f\left(t_{i} u_{i+1}\right) & =6 i-1, \quad 1 \leq i \leq n-1 \\
f\left(u_{i} x_{i}\right) & =6 i-5, \quad 1 \leq i \leq n-1 \\
f\left(x_{i} v_{i}\right) & =6 i-4, \quad 1 \leq i \leq n-1 \\
f\left(v_{i} y_{i}\right) & =6 i-2, \quad 1 \leq i \leq n-1 \\
f\left(y_{i} u_{i+1}\right) & =6 i, \quad 1 \leq i \leq n-1
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(T_{5}\right)$ is shown below.

Figure 9.

From Case (i), Case (ii), Case (iii) it can be seen that $S\left(T_{n}\right)$ is a Contra Harmonic mean graph.
Theorem 2.4. $S\left(Q_{n}\right)$ is a Contra Harmonic mean graph.

Proof. Let $u_{1} u_{2} \ldots u_{n}$ be a path of length n . Join u_{i} and u_{i+1} to new vertices v_{i} and $w_{i}, 1 \leq i \leq n-1$ respectively and then join v_{i} and w_{i}. The resulting graph is a Quadrilateral snake Q_{n}. Let G be the graph obtained by subdividing the edges of Q_{n}. Here we consider the following cases.

Case (i): G is obtained by subdividing the edges of the path. Let $t_{1} t_{2} \ldots t_{n-1}$ be the vertices which subdivide the edge $u_{i} u_{i+1}, 1 \leq i \leq n-1$. Define a function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=5 i-5, \quad 1 \leq i \leq n \\
& f\left(v_{1}\right)=1, \quad f\left(v_{i}\right)=5 i-3, \quad 2 \leq i \leq n-1 \\
& f\left(t_{1}\right)=3, \quad f\left(t_{i}\right)=5 i-1, \quad 2 \leq i \leq n-1 \\
& f\left(w_{1}\right)=2, \quad f\left(w_{i}\right)=5 i-2, \quad 2 \leq i \leq n-1
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{i} t_{i}\right) & =5 i-2, \quad 1 \leq i \leq n-1 \\
f\left(t_{i} u_{i+1}\right) & =5 i, \quad 1 \leq i \leq n-1 \\
f\left(u_{i} v_{i}\right) & =5 i-4, \quad 1 \leq i \leq n-1 \\
f\left(w_{i} u_{i+1}\right) & =5 i-1, \quad 1 \leq i \leq n-1 \\
f\left(v_{i} w_{i}\right) & =5 i-3, \quad 1 \leq i \leq n-1
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(Q_{5}\right)$ is shown below.

Figure 10.

Case (ii): G is obtained by subdividing all the edges of Q_{n}. Let $t_{i}, x_{i}, y_{i}, z_{i}$ be the vertices which subdivide the edges $u_{i} u_{i+1}, u_{i} v_{i}, v_{i} w_{i}$ and $w_{i} u_{i+1}$ respectively. Define a function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=8 i-8, \quad 1 \leq i \leq n \\
& f\left(v_{1}\right)=2, f\left(v_{i}\right)=8 i-5, \quad 2 \leq i \leq n-1 \\
& f\left(w_{1}\right)=4, f\left(w_{i}\right)=8 i-3, \quad 2 \leq i \leq n-1 \\
& f\left(t_{1}\right)=5, f\left(t_{i}\right)=8 i-2, \quad 2 \leq i \leq n-1 \\
& f\left(x_{1}\right)=1, f\left(x_{i}\right)=8 i-6, \quad 2 \leq i \leq n-1 \\
& f\left(y_{1}\right)=3, f\left(y_{i}\right)=8 i-4, \quad 2 \leq i \leq n-1 \\
& f\left(z_{1}\right)=6, f\left(z_{i}\right)=8 i-1, \quad 2 \leq i \leq n-1
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{1} t_{1}\right) & =5, \quad f\left(u_{i} t_{i}\right)=8 i-4, \quad 2 \leq i \leq n-1 \\
f\left(t_{i} u_{i+1}\right) & =8 i-1, \quad 1 \leq i \leq n-1 \\
f\left(u_{i} x_{i}\right) & =8 i-7, \quad 1 \leq i \leq n-1
\end{aligned}
$$

$$
\begin{aligned}
f\left(x_{i} v_{i}\right) & =8 i-6, \quad 1 \leq i \leq n-1 \\
f\left(v_{i} y_{i}\right) & =8 i-5, \quad 1 \leq i \leq n-1 \\
f\left(y_{1} w_{1}\right) & =4, \quad f\left(y_{i} w_{i}\right)=8 i-3, \quad 2 \leq i \leq n-1 \\
f\left(w_{i} z_{i}\right) & =8 i-2, \quad 1 \leq i \leq n-1 \\
f\left(u_{i+1} z_{i}\right) & =8 i, \quad 1 \leq i \leq n-1
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(Q_{5}\right)$ is shown below.

Figure 11.

From case (i) and case (ii), it is clear that $\mathrm{S}\left(\mathrm{Q}_{n}\right)$ is a Contra Harmonic mean graph.

Theorem 2.5. $S\left(P_{n} \odot K_{3}\right)$ is a Contra Harmonic mean graph.

Proof. Let $u_{1} u_{2} \ldots u_{n}$ be the path of length n. Let v_{i}, w_{i} be the vertices of K_{2} which are joined to the vertex u_{i} of the path $P_{n}, 1 \leq i \leq n$. The resultant graph is $P_{n} \odot K_{3}$. Let G be a graph obtained by subdividing all the edges of $P_{n} \odot K_{3}$. Here we consider the following cases.

Case (i): Let G be a graph obtained by subdividing each edge of the path. Let $t_{1} t_{2} \ldots t_{n-1}$ be the vertices which subdivide the edge $u_{i} u_{i+1}$. Define a function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{1}\right)=0, \quad f\left(u_{i}\right)=5 i-4, \quad 2 \leq i \leq n \\
& f\left(v_{1}\right)=1, \quad f\left(v_{i}\right)=5 i-3, \quad 2 \leq i \leq n \\
& f\left(w_{1}\right)=3, f\left(w_{i}\right)=5 i-1, \quad 2 \leq i \leq n \\
& f\left(t_{1}\right)=4, \quad f\left(t_{i}\right)=5 i, \quad 2 \leq i \leq n-1
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{i} t_{i}\right) & =5 i-1, \quad 1 \leq i \leq n-1 \\
f\left(t_{i} t_{i+1}\right) & =5 i, \quad 1 \leq i \leq n-1 \\
f\left(u_{i} v_{i}\right) & =5 i-4, \quad 1 \leq i \leq n \\
f\left(u_{1} w_{1}\right) & =3, \quad f\left(u_{i} w_{i}\right)=5 i-3, \quad 2 \leq i \leq n \\
f\left(v_{1} w_{1}\right) & =2, \quad f\left(v_{i} w_{i}\right)=5 i-2, \quad 2 \leq i \leq n
\end{aligned}
$$

Then f is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(P_{4} \odot K_{3}\right)$ is

Figure 12.

Case (ii): Let G be a graph obtained by subdividing all the edges of $\left(P_{n} \odot K_{3}\right)$. Let $t_{i}, x_{i}, y_{i}, s_{i}$ be the vertices which subdivide the edges $u_{i} u_{i+1}, u_{i} v_{i}, u_{i} w_{i}$ and $v_{i} w_{i}$ respectively. Define a function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ by

$$
\begin{aligned}
& f\left(u_{1}\right)=2, \quad f\left(u_{i}\right)=8 i-5, \quad 2 \leq i \leq n \\
& f\left(v_{1}\right)=0, \quad f\left(v_{i}\right)=8 i-9, \quad 2 \leq i \leq n \\
& f\left(s_{1}\right)=3, \quad f\left(s_{i}\right)=8 i-6, \quad 2 \leq i \leq n \\
& f\left(w_{i}\right)=8 i-4, \quad 1 \leq i \leq n \\
& f\left(t_{i}\right)=8 i+1, \quad 1 \leq i \leq n-1 \\
& f\left(x_{1}\right)=1, \quad f\left(x_{i}\right)=8 i-8, \quad 2 \leq i \leq n \\
& f\left(y_{i}\right)=8 i-2, \quad 1 \leq i \leq n
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
f\left(u_{i} t_{i}\right) & =8 i-1, \quad 1 \leq i \leq n-1 \\
f\left(t_{i} u_{i+1}\right) & =8 i+3, \quad 1 \leq i \leq n-1 \\
f\left(u_{i} x_{i}\right) & =8 i-6, \quad 1 \leq i \leq n \\
f\left(u_{i} y_{i}\right) & =8 i-3, \quad 1 \leq i \leq n \\
f\left(x_{1} v_{1}\right) & =1, \quad f\left(x_{i} v_{i}\right)=8 i-8, \quad 2 \leq i \leq n \\
f\left(y_{i} w_{i}\right) & =8 i-2, \quad 1 \leq i \leq n \\
f\left(v_{1} s_{1}\right) & =3, \quad f\left(v_{i} s_{i}\right)=8 i-7, \quad 2 \leq i \leq n \\
f\left(s_{i} w_{i}\right) & =8 i-4, \quad 1 \leq i \leq n
\end{aligned}
$$

$\therefore \mathrm{f}$ is a Contra Harmonic mean labeling of G. The labeling pattern of $S\left(P_{4} \odot K_{3}\right)$ is shown below.

Figure 13.

From case (i), case (ii) it can be seen that $S\left(P_{n} \odot K_{3}\right)$ is a Contra Harmonic mean graph.

References

[1] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorial, 17(2012), \#DS6.
[2] F.Harary, Graph theory, Narosa Publication House reading, New Delhi, (1988).
[3] S.Somasundram and R.Ponraj, Mean Labeling Graphs, National Academy of Science Letter, 26, 210-213.
[4] S.Somasundram and S.S.Sandhya, Harmonic Mean Labeling of Graphs, Journal of Combinatorial Mathematics and Combinatorial computing.
[5] S.Somasundram, S.S.Sandhya and J.Rajeshni Golda, Contra Harmonic Mean Labeling of Graphs, Communicated to Journal of Mathematics Research.
[6] S.S.Sandhya, S.Somasundaram and J.Rajeshni Golda, Contra Harmonic mean labeling of Some More graphs communicated to International Journal of Contemporary Mathematical Science.

[^0]: * E-mail: rajeshnigolda3@gmail.com

