International Journal of Mathematics And its Applications

Oscillation Criteria of Second Order Difference Equation With Negative Nonlinear Neutral Term

Research Article

B.Kamaraj ${ }^{1 *}$ and R.Vasuki ${ }^{1}$

1 Department of Mathematics, SIVET College, Chennai, Tamil Nadu, India.

[^0]Keywords: Oscillation, negative nonlinear neutral term, second order difference equation.
(c) JS Publication.

1. Introduction

In this paper, we are concerned with the following second order nonlinear neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(a_{n} \Delta\left(x_{n}-p_{n} x_{n-k}^{\alpha}\right)\right)+q_{n} x_{n-l}^{\beta}=0, n \geq n_{0} \tag{1}
\end{equation*}
$$

where n_{0} is a nonnegative integer, subject to the following conditions:
$\left(H_{1}\right)\left\{a_{n}\right\},\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are real positive sequences;
$\left(H_{2}\right) 0<\alpha \leq 1$ and β are ratios of odd positive integers;
$\left(H_{3}\right) l$ and k are positive integers;
$\left(H_{4}\right) \quad 0 \leq p_{n} \leq p<1$ for all $n \geq n_{0}$.

Let $\theta=\max \{k, l\}$. By a solution of equation (1), we mean a real sequence $\left\{x_{n}\right\}$ which is defined for all $n \geq n_{0}-\theta$, and satisfies equation (1) for all $n \geq n_{0}$. A solution of equation (1) is said to be oscillatory if it is neither eventually positive nor eventually negative, and nonoscillatory otherwise.

Recently, there has been a great interest in investigating the oscillatory behavior of difference equations, see [1, 2] and the references cited therein. There are number of results concerning oscillatory and asymptotic behavior of solutions of neutral

[^1]difference equations of the form (1) with linear neutral term, and very few results are available for the neutral difference equations with nonlinear neutral term in the literature, see for example [4, 5, 7-12], and the references cited therein. In [9], the authors investigated the oscillation of all solutions of equation (1) with $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}}=\infty$. In order to solve the problem completely, we examine the other case where $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}}<\infty$, which appears to be more difficult than the former. To accomplish this is the main purpose of this paper. After establishing necessary preliminary results in Section 2, we obtain sufficient conditions for the oscillation of all solutions of equation (1) in Section 3. Finally in Section 4, we provide some examples to illustrate the main results. Thus, the results presented in this paper are new and complement to the existing results reported in [5, 8-12].

2. Preliminary Lemmas

In this section, we present some lemmas which are useful to prove our main results. Define

$$
\begin{aligned}
z_{n} & =x_{n}-p_{n} x_{n-k}^{\alpha} \\
R_{n} & =\sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}}, \text { and } A_{n}=\sum_{s=n}^{\infty} \frac{1}{a_{s}} .
\end{aligned}
$$

Note that from the assumptions and the form of the equation (1), it is enough to state and prove the results for the case of eventually positive solutions only since the proof for the eventually negative is similar. We begin with the following lemma.

Lemma 2.1. Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (1). Then one of the following three cases holds for all sufficiently large n :

$$
\begin{array}{r}
\text { (I) } z_{n}>0, a_{n} \Delta z_{n}>0, \Delta\left(a_{n} \Delta z_{n}\right) \leq 0 \\
\text { (II) } z_{n}>0, a_{n} \Delta z_{n}<0, \Delta\left(a_{n} \Delta z_{n}\right) \leq 0 \\
\text { (III) } z_{n}<0, a_{n} \Delta z_{n}>0, \Delta\left(a_{n} \Delta z_{n}\right) \leq 0
\end{array}
$$

Proof. Assume that $x_{n}>0, x_{n-k}>0$, and $x_{n-l}>0$ for all $n \geq n_{1}$ for some $n_{1} \geq n_{0}$. From equation (1), we have

$$
\Delta\left(a_{n} \Delta z_{n}\right)=-q_{n} x_{n-l}^{\beta} \leq 0
$$

for all $n \geq n_{1}$. Hence $\left\{z_{n}\right\}$ and $\left\{a_{n} \Delta z_{n}\right\}$ are eventually of one sign for all $n \geq n_{1}$. Then $\left\{z_{n}\right\}$ satisfying one of the following four cases for all $n \geq n_{1}$:

$$
\begin{array}{r}
\text { (I) } z_{n}>0, a_{n} \Delta z_{n}>0, \Delta\left(a_{n} \Delta z_{n}\right) \leq 0 \\
\text { (II) } z_{n}>0, a_{n} \Delta z_{n}<0, \Delta\left(a_{n} \Delta z_{n}\right) \leq 0 \\
(I I I) z_{n}<0, a_{n} \Delta z_{n}>0, \Delta\left(a_{n} \Delta z_{n}\right) \leq 0 \\
(I V) z_{n}<0, a_{n} \Delta z_{n}<0, \Delta\left(a_{n} \Delta z_{n}\right) \leq 0 .
\end{array}
$$

Now, we shall prove that case (IV) cannot happen. If so, then we have $\lim _{n \rightarrow \infty} z_{n}=-\infty$. From the definition of z_{n}, we obtain $x_{n}>\left(-\frac{z_{n+k}}{p}\right)^{1 / \alpha}$, and therefore $\lim _{n \rightarrow \infty} \sup x_{n}=\infty$. Thus, there exists a subsequence $\left\{n_{j}\right\}$ of positive integers such that $\lim _{j \rightarrow \infty} n_{j}=\infty$ and $x_{n_{j}}=\max _{n_{0} \leq n \leq n_{j}} x_{n} \rightarrow \infty$ as $j \rightarrow \infty$. Then

$$
z_{n_{j}}=x_{n_{j}}-p_{n_{j}} x_{n_{j}-k}^{\alpha} \geq x_{n_{j}}-p x_{n_{j}}^{\alpha}=\left(1-p x_{n_{j}}^{\alpha-1}\right) x_{n_{j}} \rightarrow \infty
$$

as $j \rightarrow \infty$ since $0<\alpha \leq 1$. This contradiction completes the proof.

Lemma 2.2. Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (1) such that Case (I) of Lemma 2.1 holds. Then

$$
\begin{equation*}
x_{n} \geq z_{n} \geq R_{n} a_{n} \Delta z_{n}, n \geq n_{1} \geq n_{0} \tag{2}
\end{equation*}
$$

and $\left\{\frac{z_{n}}{R_{n}}\right\}$ is eventually decreasing.
Proof. The proof is similar to that of Lemma 2 in [10], and hence the details are omitted.
Lemma 2.3. Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (1) such that Case (II) of Lemma 2.1 holds. Then

$$
\begin{equation*}
x_{n} \geq z_{n} \geq-A_{n} a_{n} \Delta z_{n}, n \geq n_{1} \geq n_{0} \tag{3}
\end{equation*}
$$

and $\left\{\frac{z_{n}}{A_{n}}\right\}$ is eventually increasing.
Proof. The proof is similar to that of Lemma 2.3 in [5], and hence the details are omitted.

3. Oscillation Results

In this section, we present some sufficient conditions for the oscillation of all solutions of equation (1).
Theorem 3.1. Assume that $\beta \leq \alpha<1$. If $l>k$,

$$
\begin{gather*}
\sum_{n=n_{1}}^{\infty} q_{n}\left(M^{1-\alpha}+p_{n-l}\right)^{\beta} R_{n-k-l}^{\alpha \beta}=\infty \tag{4}\\
\lim _{n \rightarrow \infty} \sup \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} q_{t}>0 \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{1}}^{n-1}\left[M_{1} A_{s+1} q_{s}-\frac{1}{4 a_{s} A_{s+1}}\right]=\infty \tag{6}
\end{equation*}
$$

for any constants M and $M_{1}>0$, then every solution of equation (1) is oscillatory.
Proof. Assume that there is a nonoscillatory solution $\left\{x_{n}\right\}$ of equation (1), say, $x_{n}>0, x_{n-k}>0$, and $x_{n-l}>0$ for all $n \geq n_{1} \geq n_{0}$, where n_{1} is chosen so that all three cases of Lemma 2.1 are hold for all $n \geq n_{1}$.
Case(I): From the definition of z_{n}, we have

$$
\begin{align*}
x_{n} & \geq z_{n}+p_{n} z_{n-k}^{\alpha} \geq\left(z_{n-k}^{1-\alpha}+p_{n}\right) z_{n-k}^{\alpha} \\
& \geq\left(M^{1-\alpha}+p_{n}\right) z_{n-k}^{\alpha} \tag{7}
\end{align*}
$$

where we have used $\left\{z_{n}\right\}$ is increasing and $z_{n} \geq M>0$ for all $n \geq n_{1}$. Using (7) in equation (1), we obtain

$$
\begin{equation*}
\Delta\left(a_{n} \Delta z_{n}\right)+q_{n}\left(M^{1-\alpha}+p_{n-l}\right)^{\beta} z_{n-k-l}^{\alpha \beta} \leq 0, n \geq n_{1} . \tag{8}
\end{equation*}
$$

Combining (2) with (8), we have

$$
\Delta\left(a_{n} \Delta z_{n}\right)+q_{n}\left(M^{1-\alpha}+p_{n-l}\right)^{\beta} R_{n-k-l}^{\alpha \beta}\left(a_{n-k-l} \Delta z_{n-k-l}\right)^{\alpha \beta} \leq 0 .
$$

Let $w_{n}=a_{n} \Delta z_{n}$. Then $w_{n}>0$ and $\left\{w_{n}\right\}$ is an eventually positive solution of the inequality

$$
\begin{equation*}
\Delta w_{n}+q_{n}\left(M^{1-\alpha}+p_{n-l}\right)^{\beta} R_{n-k-l}^{\alpha \beta} w_{n-k-l}^{\alpha \beta} \leq 0 . \tag{9}
\end{equation*}
$$

But by Theorem 1 of [6] and (4), the inequality (9) has no eventually positive solution, a contradiction. Case(II): Define

$$
\begin{equation*}
w_{n}=\frac{a_{n} \Delta z_{n}}{z_{n}}, n \geq n_{1} . \tag{10}
\end{equation*}
$$

Then $w_{n}<0$ for all $n \geq N$. From (3) and (10), we have

$$
\begin{equation*}
-1 \leq A_{n} w_{n} \leq 0, n \geq n_{1} \tag{11}
\end{equation*}
$$

From the equation (1) and $x_{n} \geq z_{n}$, we have

$$
\begin{equation*}
\Delta\left(a_{n} \Delta z_{n}\right)+q_{n} z_{n-l}^{\beta} \leq 0, n \geq n_{1} \tag{12}
\end{equation*}
$$

From (10) and (12), we obtain

$$
\begin{align*}
\Delta w_{n} & \leq-q_{n} \frac{z_{n-l}^{\beta}}{z_{n+1}}-\frac{a_{n}\left(\Delta z_{n}\right)^{2}}{z_{n} z_{n+1}} \\
& \leq-M_{1}^{\beta-1} q_{n}-\frac{w_{n}^{2}}{a_{n}}, n \geq n_{1} \tag{13}
\end{align*}
$$

where we have used $\left\{z_{n}\right\}$ is positive decreasing, $\beta<1$ and $M_{1}=z_{n_{1}-l}^{\beta-1}$. Multiplying (13) by A_{n+1} and then summing it from n_{1} to $n-1$, we have

$$
\begin{equation*}
\sum_{s=n_{1}}^{n-1} A_{s+1} \Delta w_{s}+\sum_{s=n_{1}}^{n-1} M_{1}^{\beta-1} A_{s+1} q_{s}+\sum_{s=n_{1}}^{n-1} A_{s+1} \frac{w_{s}^{2}}{a_{s}} \leq 0 \tag{14}
\end{equation*}
$$

Using summation by parts formula in the first term of (14) and then rearranging, we obtain

$$
A_{n} w_{n}-A_{n_{1}} w_{n_{1}}+\sum_{s=n_{1}}^{n-1} M_{1}^{\beta-1} A_{s+1} q_{s}+\sum_{s=n_{1}}^{n-1}\left(\frac{w_{s}}{a_{s}}+\frac{w_{s}^{2}}{a_{s}}\right) \leq 0
$$

which on using completing the square yields

$$
\sum_{s=n_{1}}^{n-1}\left[M_{1}^{\beta-1} A_{s+1} q_{s}-\frac{1}{4 a_{s} A_{s+1}}\right] \leq 1+A_{n_{1}} w_{n_{1}}
$$

when using (11). This contradicts with (6) as $n \rightarrow \infty$.
Case(III): From the definition of z_{n}, we have

$$
\begin{equation*}
x_{n-k}>\left(-\frac{z_{n}}{p}\right)^{\frac{1}{\alpha}} \tag{15}
\end{equation*}
$$

Using (15) in equation (1), we obtain

$$
\begin{equation*}
\Delta\left(a_{n} \Delta z_{n}\right)-\frac{1}{p^{\frac{\beta}{\alpha}}} q_{n} z_{n+k-l}^{\frac{\beta}{\alpha}} \leq 0, n \geq n_{1} . \tag{16}
\end{equation*}
$$

Summing (16) from s to $n-1$ for $n>s+1$, we have

$$
\begin{equation*}
a_{n} \Delta z_{n}-a_{s} \Delta z_{s}-\frac{1}{p^{\frac{\beta}{\alpha}}} \sum_{t=s}^{n-1} q_{t} z_{t+k-l}^{\frac{\beta}{\alpha}} \leq 0 . \tag{17}
\end{equation*}
$$

Since z_{n} is negative and increasing, we obtain $\lim _{n \rightarrow \infty} z_{n}=c \leq 0$. Let $c=0$. Summing (17) from $n-l+k$ to $n-1$ for s, we have

$$
z_{n-l+k}-z_{n} \leq \frac{1}{p^{\frac{\beta}{\alpha}}} z_{n-l+k}^{\frac{\beta}{\alpha}} \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} q_{t}
$$

or

$$
\begin{equation*}
\frac{z_{n-l+k}}{z_{n-l+k}^{\frac{\beta}{\alpha}}} \geq \frac{1}{p^{\frac{\beta}{\alpha}}} \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} q_{t} \tag{18}
\end{equation*}
$$

Since $\frac{z_{n-l+k}}{z_{n-l+k}^{\frac{\beta}{\alpha}}}=\left|z_{n-l+k}\right|^{1-\beta / \alpha}$ and $1-\frac{\beta}{\alpha}>0$, we have

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} q_{t} \leq 0
$$

which contradicts (5). Next assume that $c>0$. From (5), we claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} q_{t}=\infty \tag{19}
\end{equation*}
$$

In fact, from (5), there is a subsequence $\left\{n_{i}\right\}$ and $n_{i+1}-n_{i} \geq l-k$ such that

$$
\sum_{s=n_{i}-l+k}^{n_{i}-1} \frac{1}{a_{s}} \sum_{t=s}^{n_{i}-1} q_{t} \geq b>0
$$

where b is a constant. Hence

$$
\lim _{n \rightarrow \infty} \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} q_{t} \geq \lim _{j \rightarrow \infty} \sum_{i=1}^{j} \sum_{s=n_{i}-l+k}^{n_{i}-1} \frac{1}{a_{s}} \sum_{t=s}^{n_{i}-1} q_{t}=\infty
$$

where $n_{j}=\max \left\{n_{i}: n_{i} \leq n\right\}$. From (17), we have

$$
\Delta z_{s}+\frac{1}{p^{\frac{\beta}{\alpha}}} \frac{z_{n}^{\beta / \alpha}}{a_{s}} \sum_{t=s}^{n-1} q_{t} \geq 0
$$

Summing the last inequality from n_{1} to $n-1$, we obtain

$$
z_{n_{1}}-z_{n} \leq \frac{z_{n}^{\beta / \alpha}}{p^{\frac{\beta}{\alpha}}} \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} q_{t}
$$

or

$$
\frac{p^{\frac{\beta}{\alpha}} z_{n_{1}}}{z_{n}^{\beta / \alpha}} \geq \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} q_{t}
$$

In view of $c<0, \frac{p^{\frac{\beta}{\alpha}} z_{n_{1}}}{z_{n}^{\beta / \alpha}}$ has an upper bound, so

$$
\lim _{n \rightarrow \infty} \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} q_{t}<\infty
$$

which contradicts (19). This completes the proof of the theorem.

Theorem 3.2. Assume that $\beta=1$. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \sum_{s=n-l}^{n-1} q_{s}\left(R_{s-l}+K^{\alpha-1} p_{s-l} R_{s-l-k}^{\alpha}\right)=\left(\frac{l}{l+1}\right)^{l+1} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{1}}^{n-1}\left[q_{s} A_{s+1}-\frac{1}{4 a_{s} A_{s+1}}\right]=\infty \tag{21}
\end{equation*}
$$

for any constant $K>0$, then every solution of equation (1) is either oscillatory or tends to zero as $n \rightarrow \infty$.

Proof. Assume that there exists a nonoscillatory solution $\left\{x_{n}\right\}$ of equation (1), say, $x_{n}>0, x_{n-k}>0$, and $x_{n-l}>0$ for all $n \geq n_{1} \geq n_{0}$, where n_{1} is chosen so that all three cases of Lemma 2.1 are hold for all $n \geq n_{1}$.
Case(I): From the definition of z_{n} and $\frac{z_{n}}{R_{n}}$ is decreasing, we have

$$
\begin{equation*}
x_{n} \geq z_{n}+p_{n} z_{n-k}^{\alpha} \geq\left(1+K^{\alpha-1} p_{n} \frac{R_{n-k}^{\alpha}}{R_{n}}\right) z_{n} \tag{22}
\end{equation*}
$$

where we have used $\frac{z_{n}}{R_{n}} \leq K$ for some $K>0$. Using (22) in equation (1), we obtain

$$
\begin{equation*}
\Delta\left(a_{n} \Delta z_{n}\right)+q_{n}\left(1+K^{\alpha-1} p_{n-l} \frac{R_{n-k-l}^{\alpha}}{R_{n-l}}\right) z_{n-l} \leq 0, n \geq n_{1} . \tag{23}
\end{equation*}
$$

From (2) in (23), we have

$$
\Delta\left(a_{n} \Delta z_{n}\right)+q_{n}\left(1+K^{\alpha-1} p_{n-l} \frac{R_{n-k-l}^{\alpha}}{R_{n-l}}\right) R_{n-l} a_{n-l} \Delta z_{n-l} \leq 0 .
$$

Let $w_{n}=a_{n} \Delta z_{n}$. Then $w_{n}>0$ and $\left\{w_{n}\right\}$ is an eventually positive solution of the inequality

$$
\begin{equation*}
\Delta w_{n}+q_{n}\left(R_{n-l}+K^{\alpha-1} p_{n-l} R_{n-k-l}^{\alpha}\right) w_{n-l} \leq 0 . \tag{24}
\end{equation*}
$$

But by Theorem 7.6.1 of [3] and (20), the inequality (24) has no eventually positive solution, a contradiction.
Case(II): Define

$$
w_{n}=\frac{a_{n} \Delta z_{n}}{z_{n}}, n \geq n_{1} .
$$

Proceeding as in Case (II) of Theorem 3.1, we obtain (11) and

$$
\Delta w_{n} \leq-q_{n}-\frac{w_{n}^{2}}{a_{n}}
$$

where we have used $\left\{z_{n}\right\}$ is positive decreasing, and l is a positive integer. The remaining part of the proof is similar to that of Case (II) of Theorem 3.1 and hence the details are omitted.
Case(III): In this case $z_{n}<0$ and $\Delta z_{n}>0$ for all $n \geq n_{1}$ for some sufficiently large n_{1}. Hence $\lim _{n \rightarrow \infty} z_{n}$ exists, and $z_{n} \leq c \leq 0$ for all n sufficiently large. Then

$$
\begin{equation*}
x_{n}=p_{n} x_{n-k}^{\alpha}+z_{n}<p x_{n-k}^{\alpha}+c . \tag{25}
\end{equation*}
$$

Next, we show that $\left\{x_{n}\right\}$ is bounded. If this is not the case, there is a sequence $\left\{n_{k}\right\}$ with $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$ such that

$$
x_{n_{k}}=\sup _{n_{1} \leq j \leq n_{k}} x_{j} \text { and } \lim _{k \rightarrow \infty} x_{n_{k}}=\infty
$$

From (25) with k sufficiently large, we obtain

$$
x_{n_{k}} \leq p x_{k}^{\alpha}+c
$$

or

$$
\left(1-p x_{k}^{\alpha-1}\right) x_{n_{k}} \leq c
$$

which, as $k \rightarrow \infty$, leads to a contradiction. Thus, $\left\{x_{n}\right\}$ is bounded. Let $\lim _{n \rightarrow \infty} \sup x_{n}=M_{2}>0$. Then there is a sequence $\left\{n_{j}\right\}$ such that $x_{n_{j}} \rightarrow M_{2}$ as $j \rightarrow \infty$. Now

$$
z_{n_{j}} \geq x_{n_{j}}-p x_{n_{j}-k}^{\alpha}
$$

and so

$$
x_{n_{j}-k} \geq \frac{1}{p^{1 / \alpha}}\left(x_{n_{j}}-z_{n_{j}}\right)^{\frac{1}{\alpha}}
$$

Letting $j \rightarrow \infty$, we obtain

$$
M_{2} \geq \lim _{j \rightarrow \infty} x_{n_{j}-k} \geq\left(\frac{M_{2}}{p}\right)^{\frac{1}{\alpha}}
$$

Since $p \in(0,1)$, it follows that $M_{2}=0$, that is $\lim _{n \rightarrow \infty} x_{n}=0$. This completes the proof.
Theorem 3.3. Assume that $\beta>1$. If

$$
\begin{equation*}
\sum_{n=n_{1}}^{\infty} q_{n}\left(1+K^{\alpha-1} p_{n-l} \frac{R_{n-k-l}^{\alpha}}{R_{s-l}}\right)^{\beta}=\infty \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=n_{1}}^{\infty} \frac{1}{a_{s}} \sum_{s=n_{1}}^{n-1} q_{s} A_{s-l}^{\beta}=\infty \tag{27}
\end{equation*}
$$

then every solution of equation (1) is either oscillatory or tends to zero as $n \rightarrow \infty$.

Proof. Proceeding as in the proof of Theorem 3.2, we see that Lemma 2.1 holds for all $n \geq n_{1}$.
Case(I): Proceeding as in the proof of Theorem 3.2(Case(I)), we have

$$
\Delta\left(a_{n} \Delta z_{n}\right)+q_{n}\left(1+K^{\alpha-1} p_{n-l} \frac{R_{n-k-l}^{\alpha}}{R_{n-l}}\right)^{\beta} z_{n-l}^{\beta} \leq 0, n \geq n_{1}
$$

Define

$$
w_{n}=\frac{a_{n} \Delta z_{n}}{z_{n-l}^{\beta}}, n \geq n_{1}
$$

then $w_{n}>0$, and

$$
\begin{aligned}
\Delta w_{n} & \leq-q_{n}\left(1+K^{\alpha-1} p_{n-l} \frac{R_{n-k-l}^{\alpha}}{R_{n-l}}\right)^{\beta}-\frac{\beta a_{n+1} \Delta z_{n+1} \Delta z_{n-l}}{z_{n-l}^{\beta}} \\
& \leq-q_{n}\left(1+K^{\alpha-1} \frac{R_{n-k-l}^{\alpha}}{R_{n-l}}\right)^{\beta}, n \geq n_{1}
\end{aligned}
$$

Summing the last inequality from n_{1} to $n-1$, we obtain

$$
\sum_{s=n_{1}}^{n} q_{s}\left(1+K^{\alpha-1} p_{s-l} \frac{R_{s-k-l}^{\alpha}}{R_{s-l}}\right)^{\beta}<w_{n_{1}}<\infty
$$

Letting as $n \rightarrow \infty$ in the last inequality, we obtain a contradiction to (26).
Case(II): From Lemma 2.3, we have

$$
\begin{align*}
z_{n-l} & >-A_{n-l} a_{n} \Delta z_{n} \geq-A_{n-l} a_{n_{1}} \Delta z_{n_{1}}, n \geq n_{1} \\
& \geq d A_{n-l} \tag{28}
\end{align*}
$$

where $d=-a_{n_{1}} \Delta z_{n_{1}}$. From equation (1) and (28), we obtain

$$
\Delta\left(-a_{n} \Delta z_{n}\right) \geq q_{n} d^{\beta} A_{n-l}^{\beta}, n \geq n_{1}
$$

Summing the last inequality from n_{1} to $n-1$, we have

$$
-a_{n} \Delta z_{n} \geq-a_{n_{1}} \Delta z_{n_{1}}+d^{\beta} \sum_{s=n_{1}}^{n-1} q_{s} A_{s-l}^{\beta} .
$$

Dividing the last inequality by a_{n} and then summing it from n_{1} to $n-1$, we obtain

$$
z_{n_{1}} \geq z_{n_{1}}-z_{n} \geq d^{\beta} \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}} \sum_{t=n_{1}}^{s-1} q_{t} A_{t-l}^{\beta} .
$$

Letting $n \rightarrow \infty$ in the last inequality, we obtain

$$
\sum_{n=n_{1}}^{\infty} \frac{1}{a_{n}} \sum_{s=n_{1}}^{n-1} q_{s} A_{s-l}^{\beta}<\infty
$$

a contradiction to (27).
Case(III): In this case $z_{n}<0$ and $\Delta z_{n}>0$ for all $n \geq n_{1}$. Then proceeding as in the Case (III) of Theorem 3.2, we obtain $\lim _{n \rightarrow \infty} x_{n}=0$. This completes the proof.

4. Examples

In this section, we provide some examples to illustrate the main results.

Example 4.1. Consider the second order neutral difference equation

$$
\begin{equation*}
\Delta\left(2^{n} \Delta\left(x_{n}-\frac{1}{2} x_{n-2}^{1 / 3}\right)\right)+3\left(2^{n}\right) x_{n-3}^{1 / 5}=0, n \geq 1 \tag{29}
\end{equation*}
$$

Here $a_{n}=2^{n}, p_{n}=\frac{1}{2}, q_{n}=3\left(2^{n}\right), l=3, k=2, \alpha=\frac{1}{3}$ and $\beta=\frac{1}{5}$. Since $R_{n}=1-\frac{1}{2^{n-1}}$ and $A_{n}=\frac{1}{2^{n-1}}$, one can easily verify that all conditions of Theorem 3.1 are satisfied and hence every solution of equation (29) is oscillatory. In fact $\left\{x_{n}\right\}=\left\{(-1)^{15 n}\right\}$ is one such oscillatory solution of equation (29).

Example 4.2. Consider the second order neutral difference equation

$$
\begin{equation*}
\Delta\left(n(n+1) \Delta\left(x_{n}-\frac{1}{2} x_{n-1}^{1 / 3}\right)\right)+6(n+1)^{2} x_{n-1}=0, n \geq 1 \tag{30}
\end{equation*}
$$

Here $a_{n}=n(n+1), p_{n}=\frac{1}{2}, q_{n}=6(n+1)^{2}, l=k=1, \alpha=\frac{1}{3}$ and $\beta=1$. Since $R_{n}=1-\frac{1}{n}$ and $A_{n}=\frac{1}{n}$, one can easily verify that all conditions of Theorem 3.2 are satisfied and hence every solution of equation (30) is either oscillatory or tends to zero as $n \rightarrow \infty$. In fact $\left\{x_{n}\right\}=\left\{(-1)^{3 n}\right\}$ is one such oscillatory solution of equation (30).

Example 4.3. Consider the second order neutral difference equation

$$
\begin{equation*}
\Delta\left(n(n+1) \Delta\left(x_{n}-\frac{1}{n^{2 / 3}} x_{n-1}^{1 / 3}\right)\right)+\frac{n^{3}\left(8(n+1)^{2}(n+2)-2 n-3\right)}{(n+1)(n+2)} x_{n-1}^{3}=0, n \geq 1 . \tag{31}
\end{equation*}
$$

Here $a_{n}=n(n+1), p_{n}=\frac{1}{n^{2 / 3}}, q_{n}=\frac{n^{3}\left(8(n+1)^{2}(n+2)-2 n-3\right)}{(n+1)(n+2)}, \alpha=\frac{1}{3}, \beta=3, k=1$ and $l=1$. Since $R_{n}=1-\frac{1}{n}$ and $A_{n}=\frac{1}{n}$, one can easily verify that all conditions of Theorem 3.3 are satisfied and hence every solution of equation (31) is either oscillatory or tends to zero as $n \rightarrow \infty$. In fact $\left\{x_{n}\right\}=\left\{\frac{(-1)^{n}}{n}\right\}$ is one such oscillatory solution of equation (31).

We conclude this paper with the following remark.
Remark 4.4. In this paper, we have presented some new oscillation results for the equation (1), and it would be interesting to improve the results of Theorem 3.2 and Theorem 3.3 to similar to that of Theorem 3.1.

References

[1] R.P.Agarwal, Difference Equations and Inequalities, Second Edition, Marcel Dekker, New York, (2000).
[2] R.P.Agarwal, M.Bohner, S.R.Grace and D.O'Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York, (2005).
[3] I.Gyori and G.Ladas, Oscillation Theory of Delay differential Equations with Applications, Clarendan Press, Oxford, (1991).
[4] X.Liu, Oscillation of solutions of neutral difference equations with a nonlinear term, J. Comput. Math. Appl., 52(2006), 439-448.
[5] D.Seghar, E.Thandapani and S.Pinelas, Oscillation theorems for second order difference equations with negative term, Tamkang J. Math., 46(2015), 441-451.
[6] X.H.Tang and Y.Liu, Oscillation for nonlinear delay difference equations, Tamkang J.Math., 32(2001), 275-280.
[7] E.Thandapani and K.Mahalingam, Necessary and sufficient conditions for oscillation of second order neutral delay difference equations, Tamkang J. Math., 34(2003), 137-145.
[8] E.Thandapani, S.Pandian and R.K.Balasubramanian, Oscillation of solutions of nonlinear neutral difference equations with nonlinear neutral term, Far East J. Appl. Math., 15(2004), 47-62.
[9] E.Thandapani, Z.Liu, R.Arul and P.S.Raja, Oscillation and asymptotic behavior of second order difference equations with nonlinear neutral terms, Appl. Math. E-Notes, 4(2004), 59-67.
[10] E.Thandapani, V.Balasubramanian and J.R.Greaf, Oscillation criteria for second order neutral difference equation with negative neutral term, Inter. J. Pure. Appl. Math., 87(2013), 283-292.
[11] M.K.Yildiz and H.Ogunmez, Oscillation results of higher order nonlinear neutral delay difference equations with a nonlinear neutral term, Hacettepe J. Math. Stat., 43(2014), 809-814.
[12] Z.Zhang, J.Chen and C.Zhang, Oscillation of solutions for second order nonlinear difference equations with nonlinear neutral term, Comput. Math. Appl., 41(2001), 1487-1494.

[^0]: Abstract: In this paper, the authors obtain sufficient conditions for the oscillatory behavior of neutral delay difference equation of the form

 $$
 \Delta\left(a_{n} \Delta\left(x_{n}-p_{n} x_{n-k}^{\alpha}\right)\right)+q_{n} x_{n-l}^{\beta}=0
 $$

 where $\left\{a_{n}\right\},\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are positive real sequences, α and β are ratios of odd positive integers. Examples are provided to illustrate the main results.

 MSC: 39A11

[^1]: * E-mail: kamaraj1928@yahoo.co.in

