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1. Introduction

In this paper, we are concerned with the following second order nonlinear neutral difference equation of the form

∆(an∆(xn − pnxαn−k)) + qnx
β
n−l = 0, n ≥ n0 (1)

where n0 is a nonnegative integer, subject to the following conditions:

(H1) {an}, {pn} and {qn} are real positive sequences;

(H2) 0 < α ≤ 1 and β are ratios of odd positive integers;

(H3) l and k are positive integers;

(H4) 0 ≤ pn ≤ p < 1 for all n ≥ n0.

Let θ = max{k, l}. By a solution of equation (1), we mean a real sequence {xn} which is defined for all n ≥ n0 − θ, and

satisfies equation (1) for all n ≥ n0. A solution of equation (1) is said to be oscillatory if it is neither eventually positive nor

eventually negative, and nonoscillatory otherwise.

Recently, there has been a great interest in investigating the oscillatory behavior of difference equations, see [1, 2] and the

references cited therein. There are number of results concerning oscillatory and asymptotic behavior of solutions of neutral
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difference equations of the form (1) with linear neutral term, and very few results are available for the neutral difference

equations with nonlinear neutral term in the literature, see for example [4, 5, 7–12], and the references cited therein.

In [9], the authors investigated the oscillation of all solutions of equation (1) with
∞∑

n=n0

1
an

= ∞. In order to solve the

problem completely, we examine the other case where
∞∑

n=n0

1
an

<∞, which appears to be more difficult than the former. To

accomplish this is the main purpose of this paper. After establishing necessary preliminary results in Section 2, we obtain

sufficient conditions for the oscillation of all solutions of equation (1) in Section 3. Finally in Section 4, we provide some

examples to illustrate the main results. Thus, the results presented in this paper are new and complement to the existing

results reported in [5, 8–12].

2. Preliminary Lemmas

In this section, we present some lemmas which are useful to prove our main results. Define

zn = xn − pnxαn−k

Rn =

n−1∑
s=n1

1

as
, and An =

∞∑
s=n

1

as
.

Note that from the assumptions and the form of the equation (1), it is enough to state and prove the results for the case of

eventually positive solutions only since the proof for the eventually negative is similar. We begin with the following lemma.

Lemma 2.1. Let {xn} be an eventually positive solution of equation (1). Then one of the following three cases holds for all

sufficiently large n:

(I) zn > 0, an∆zn > 0, ∆(an∆zn) ≤ 0;

(II) zn > 0, an∆zn < 0, ∆(an∆zn) ≤ 0;

(III) zn < 0, an∆zn > 0, ∆(an∆zn) ≤ 0.

Proof. Assume that xn > 0, xn−k > 0, and xn−l > 0 for all n ≥ n1 for some n1 ≥ n0. From equation (1), we have

∆(an∆zn) = −qnxβn−l ≤ 0

for all n ≥ n1. Hence {zn} and {an∆zn} are eventually of one sign for all n ≥ n1. Then {zn} satisfying one of the following

four cases for all n ≥ n1 :

(I) zn > 0, an∆zn > 0, ∆(an∆zn) ≤ 0;

(II) zn > 0, an∆zn < 0, ∆(an∆zn) ≤ 0;

(III) zn < 0, an∆zn > 0, ∆(an∆zn) ≤ 0;

(IV ) zn < 0, an∆zn < 0, ∆(an∆zn) ≤ 0.

Now, we shall prove that case (IV) cannot happen. If so, then we have lim
n→∞

zn = −∞. From the definition of zn, we obtain

xn > (− zn+k

p
)1/α, and therefore lim

n→∞
supxn = ∞. Thus, there exists a subsequence {nj} of positive integers such that

lim
j→∞

nj =∞ and xnj = max
n0≤n≤nj

xn →∞ as j →∞. Then

znj = xnj − pnjx
α
nj−k ≥ xnj − px

α
nj = (1− pxα−1

nj )xnj →∞

as j →∞ since 0 < α ≤ 1. This contradiction completes the proof.
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Lemma 2.2. Let {xn} be an eventually positive solution of equation (1) such that Case (I) of Lemma 2.1 holds. Then

xn ≥ zn ≥ Rnan∆zn, n ≥ n1 ≥ n0, (2)

and { zn
Rn
} is eventually decreasing.

Proof. The proof is similar to that of Lemma 2 in [10], and hence the details are omitted.

Lemma 2.3. Let {xn} be an eventually positive solution of equation (1) such that Case (II) of Lemma 2.1 holds. Then

xn ≥ zn ≥ −Anan∆zn, n ≥ n1 ≥ n0, (3)

and { zn
An
} is eventually increasing.

Proof. The proof is similar to that of Lemma 2.3 in [5], and hence the details are omitted.

3. Oscillation Results

In this section, we present some sufficient conditions for the oscillation of all solutions of equation (1).

Theorem 3.1. Assume that β ≤ α < 1. If l > k,

∞∑
n=n1

qn
(
M1−α + pn−l

)β
Rαβn−k−l =∞ (4)

lim
n→∞

sup

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt > 0 (5)

and

lim
n→∞

sup

n−1∑
s=n1

[
M1As+1qs −

1

4asAs+1

]
=∞ (6)

for any constants M and M1 > 0, then every solution of equation (1) is oscillatory.

Proof. Assume that there is a nonoscillatory solution {xn} of equation (1), say, xn > 0, xn−k > 0, and xn−l > 0 for all

n ≥ n1 ≥ n0, where n1 is chosen so that all three cases of Lemma 2.1 are hold for all n ≥ n1.

Case(I): From the definition of zn, we have

xn ≥ zn + pnz
α
n−k ≥ (z1−αn−k + pn)zαn−k

≥ (M1−α + pn)zαn−k (7)

where we have used {zn} is increasing and zn ≥M > 0 for all n ≥ n1. Using (7) in equation (1), we obtain

∆(an∆zn) + qn(M1−α + pn−l)
βzαβn−k−l ≤ 0, n ≥ n1. (8)

Combining (2) with (8), we have

∆(an∆zn) + qn(M1−α + pn−l)
βRαβn−k−l(an−k−l∆zn−k−l)

αβ ≤ 0.
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Let wn = an∆zn. Then wn > 0 and {wn} is an eventually positive solution of the inequality

∆wn + qn(M1−α + pn−l)
βRαβn−k−lw

αβ
n−k−l ≤ 0. (9)

But by Theorem 1 of [6] and (4), the inequality (9) has no eventually positive solution, a contradiction.

Case(II): Define

wn =
an∆zn
zn

, n ≥ n1. (10)

Then wn < 0 for all n ≥ N. From (3) and (10), we have

− 1 ≤ Anwn ≤ 0, n ≥ n1. (11)

From the equation (1) and xn ≥ zn, we have

∆(an∆zn) + qnz
β
n−l ≤ 0, n ≥ n1. (12)

From (10) and (12), we obtain

∆wn ≤ −qn
zβn−l
zn+1

− an(∆zn)2

znzn+1

≤ −Mβ−1
1 qn −

w2
n

an
, n ≥ n1, (13)

where we have used {zn} is positive decreasing, β < 1 and M1 = zβ−1
n1−l. Multiplying (13) by An+1 and then summing it

from n1 to n− 1, we have

n−1∑
s=n1

As+1∆ws +

n−1∑
s=n1

Mβ−1
1 As+1qs +

n−1∑
s=n1

As+1
w2
s

as
≤ 0. (14)

Using summation by parts formula in the first term of (14) and then rearranging, we obtain

Anwn −An1wn1 +

n−1∑
s=n1

Mβ−1
1 As+1qs +

n−1∑
s=n1

(
ws
as

+
w2
s

as

)
≤ 0,

which on using completing the square yields

n−1∑
s=n1

[
Mβ−1

1 As+1qs −
1

4asAs+1

]
≤ 1 +An1wn1

when using (11). This contradicts with (6) as n→∞.

Case(III): From the definition of zn, we have

xn−k >

(
−zn
p

) 1
α

. (15)

Using (15) in equation (1), we obtain

∆(an∆zn)− 1

p
β
α

qnz
β
α
n+k−l ≤ 0, n ≥ n1. (16)

Summing (16) from s to n− 1 for n > s+ 1, we have

an∆zn − as∆zs −
1

p
β
α

n−1∑
t=s

qtz
β
α
t+k−l ≤ 0. (17)

414



B.Kamaraj and R.Vasuki

Since zn is negative and increasing, we obtain lim
n→∞

zn = c ≤ 0. Let c = 0. Summing (17) from n− l + k to n− 1 for s, we

have

zn−l+k − zn ≤
1

p
β
α

z
β
α
n−l+k

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt

or

zn−l+k

z
β
α
n−l+k

≥ 1

p
β
α

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt. (18)

Since
zn−l+k

z
β
α
n−l+k

= |zn−l+k|1−β/α and 1− β
α
> 0, we have

lim
n→∞

sup

n−1∑
s=n−l+k

1

as

n−1∑
t=s

qt ≤ 0,

which contradicts (5). Next assume that c > 0. From (5), we claim that

lim
n→∞

sup

n−1∑
s=n1

1

as

n−1∑
t=s

qt =∞. (19)

In fact, from (5), there is a subsequence {ni} and ni+1 − ni ≥ l − k such that

ni−1∑
s=ni−l+k

1

as

ni−1∑
t=s

qt ≥ b > 0,

where b is a constant. Hence

lim
n→∞

n−1∑
s=n1

1

as

n−1∑
t=s

qt ≥ lim
j→∞

j∑
i=1

ni−1∑
s=ni−l+k

1

as

ni−1∑
t=s

qt =∞,

where nj = max{ni : ni ≤ n}. From (17), we have

∆zs +
1

p
β
α

z
β/α
n

as

n−1∑
t=s

qt ≥ 0.

Summing the last inequality from n1 to n− 1, we obtain

zn1 − zn ≤
z
β/α
n

p
β
α

n−1∑
s=n1

1

as

n−1∑
t=s

qt

or

p
β
α zn1

z
β/α
n

≥
n−1∑
s=n1

1

as

n−1∑
t=s

qt.

In view of c < 0,
p
β
α zn1

z
β/α
n

has an upper bound, so

lim
n→∞

n−1∑
s=n1

1

as

n−1∑
t=s

qt <∞

which contradicts (19). This completes the proof of the theorem.

Theorem 3.2. Assume that β = 1. If

lim
n→∞

inf

n−1∑
s=n−l

qs
(
Rs−l +Kα−1ps−lR

α
s−l−k

)
=

(
l

l + 1

)l+1

, (20)

and

lim
n→∞

sup

n−1∑
s=n1

[
qsAs+1 −

1

4asAs+1

]
=∞ (21)

for any constant K > 0, then every solution of equation (1) is either oscillatory or tends to zero as n→∞.
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Proof. Assume that there exists a nonoscillatory solution {xn} of equation (1), say, xn > 0, xn−k > 0, and xn−l > 0 for

all n ≥ n1 ≥ n0, where n1 is chosen so that all three cases of Lemma 2.1 are hold for all n ≥ n1.

Case(I): From the definition of zn and zn
Rn

is decreasing, we have

xn ≥ zn + pnz
α
n−k ≥

(
1 +Kα−1pn

Rαn−k
Rn

)
zn (22)

where we have used zn
Rn
≤ K for some K > 0. Using (22) in equation (1), we obtain

∆(an∆zn) + qn

(
1 +Kα−1pn−l

Rαn−k−l
Rn−l

)
zn−l ≤ 0, n ≥ n1. (23)

From (2) in (23), we have

∆(an∆zn) + qn

(
1 +Kα−1pn−l

Rαn−k−l
Rn−l

)
Rn−lan−l∆zn−l ≤ 0.

Let wn = an∆zn. Then wn > 0 and {wn} is an eventually positive solution of the inequality

∆wn + qn(Rn−l +Kα−1pn−lR
α
n−k−l)wn−l ≤ 0. (24)

But by Theorem 7.6.1 of [3] and (20), the inequality (24) has no eventually positive solution, a contradiction.

Case(II): Define

wn =
an∆zn
zn

, n ≥ n1.

Proceeding as in Case (II) of Theorem 3.1, we obtain (11) and

∆wn ≤ −qn −
w2
n

an

where we have used {zn} is positive decreasing, and l is a positive integer. The remaining part of the proof is similar to

that of Case (II) of Theorem 3.1 and hence the details are omitted.

Case(III): In this case zn < 0 and ∆zn > 0 for all n ≥ n1 for some sufficiently large n1. Hence lim
n→∞

zn exists, and zn ≤ c ≤ 0

for all n sufficiently large. Then

xn = pnx
α
n−k + zn < pxαn−k + c. (25)

Next, we show that {xn} is bounded. If this is not the case, there is a sequence {nk} with nk →∞ as k →∞ such that

xnk = sup
n1≤j≤nk

xj and lim
k→∞

xnk =∞.

From (25) with k sufficiently large, we obtain

xnk ≤ px
α
k + c

or

(1− pxα−1
k )xnk ≤ c

which, as k → ∞, leads to a contradiction. Thus, {xn} is bounded. Let lim
n→∞

supxn = M2 > 0. Then there is a sequence

{nj} such that xnj →M2 as j →∞. Now

znj ≥ xnj − px
α
nj−k
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and so

xnj−k ≥
1

p1/α
(xnj − znj )

1
α .

Letting j →∞, we obtain

M2 ≥ lim
j→∞

xnj−k ≥
(
M2

p

) 1
α

.

Since p ∈ (0, 1), it follows that M2 = 0, that is lim
n→∞

xn = 0. This completes the proof.

Theorem 3.3. Assume that β > 1. If

∞∑
n=n1

qn

(
1 +Kα−1pn−l

Rαn−k−l
Rs−l

)β
=∞, (26)

and
∞∑

n=n1

1

as

n−1∑
s=n1

qsA
β
s−l =∞ (27)

then every solution of equation (1) is either oscillatory or tends to zero as n→∞.

Proof. Proceeding as in the proof of Theorem 3.2, we see that Lemma 2.1 holds for all n ≥ n1.

Case(I): Proceeding as in the proof of Theorem 3.2(Case(I)), we have

∆(an∆zn) + qn

(
1 +Kα−1pn−l

Rαn−k−l
Rn−l

)β
zβn−l ≤ 0, n ≥ n1.

Define

wn =
an∆zn

zβn−l
, n ≥ n1,

then wn > 0, and

∆wn ≤ −qn
(

1 +Kα−1pn−l
Rαn−k−l
Rn−l

)β
− βan+1∆zn+1∆zn−l

zβn−l

≤ −qn
(

1 +Kα−1R
α
n−k−l

Rn−l

)β
, n ≥ n1.

Summing the last inequality from n1 to n− 1, we obtain

n∑
s=n1

qs

(
1 +Kα−1ps−l

Rαs−k−l
Rs−l

)β
< wn1 <∞.

Letting as n→∞ in the last inequality, we obtain a contradiction to (26).

Case(II): From Lemma 2.3, we have

zn−l > −An−lan∆zn ≥ −An−lan1∆zn1 , n ≥ n1

≥ dAn−l (28)

where d = −an1∆zn1 . From equation (1) and (28), we obtain

∆(−an∆zn) ≥ qndβAβn−l, n ≥ n1.
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Summing the last inequality from n1 to n− 1, we have

−an∆zn ≥ −an1∆zn1 + dβ
n−1∑
s=n1

qsA
β
s−l.

Dividing the last inequality by an and then summing it from n1 to n− 1, we obtain

zn1 ≥ zn1 − zn ≥ d
β
n−1∑
s=n1

1

as

s−1∑
t=n1

qtA
β
t−l.

Letting n→∞ in the last inequality, we obtain

∞∑
n=n1

1

an

n−1∑
s=n1

qsA
β
s−l <∞

a contradiction to (27).

Case(III): In this case zn < 0 and ∆zn > 0 for all n ≥ n1. Then proceeding as in the Case (III) of Theorem 3.2, we obtain

lim
n→∞

xn = 0. This completes the proof.

4. Examples

In this section, we provide some examples to illustrate the main results.

Example 4.1. Consider the second order neutral difference equation

∆

(
2n∆

(
xn −

1

2
x
1/3
n−2

))
+ 3(2n)x

1/5
n−3 = 0, n ≥ 1. (29)

Here an = 2n, pn = 1
2
, qn = 3(2n), l = 3, k = 2, α = 1

3
and β = 1

5
. Since Rn = 1 − 1

2n−1 and An = 1
2n−1 , one can

easily verify that all conditions of Theorem 3.1 are satisfied and hence every solution of equation (29) is oscillatory. In fact

{xn} = {(−1)15n} is one such oscillatory solution of equation (29).

Example 4.2. Consider the second order neutral difference equation

∆

(
n(n+ 1)∆

(
xn −

1

2
x
1/3
n−1

))
+ 6(n+ 1)2xn−1 = 0, n ≥ 1. (30)

Here an = n(n + 1), pn = 1
2
, qn = 6(n + 1)2, l = k = 1, α = 1

3
and β = 1. Since Rn = 1 − 1

n
and An = 1

n
, one can easily

verify that all conditions of Theorem 3.2 are satisfied and hence every solution of equation (30) is either oscillatory or tends

to zero as n→∞. In fact {xn} = {(−1)3n} is one such oscillatory solution of equation (30).

Example 4.3. Consider the second order neutral difference equation

∆

(
n(n+ 1)∆

(
xn −

1

n2/3
x
1/3
n−1

))
+
n3(8(n+ 1)2(n+ 2)− 2n− 3)

(n+ 1)(n+ 2)
x3n−1 = 0, n ≥ 1. (31)

Here an = n(n + 1), pn = 1

n2/3 , qn = n3(8(n+1)2(n+2)−2n−3)
(n+1)(n+2)

, α = 1
3
, β = 3, k = 1 and l = 1. Since Rn = 1 − 1

n
and

An = 1
n
, one can easily verify that all conditions of Theorem 3.3 are satisfied and hence every solution of equation (31) is

either oscillatory or tends to zero as n→∞. In fact {xn} = { (−1)n

n
} is one such oscillatory solution of equation (31).

We conclude this paper with the following remark.

Remark 4.4. In this paper, we have presented some new oscillation results for the equation (1), and it would be interesting

to improve the results of Theorem 3.2 and Theorem 3.3 to similar to that of Theorem 3.1.
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