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1. Introduction

The concept of an Almost distributive lattice was introduced by U.M.Swamy and G.C.Rao in [10] as a common abstraction

of most of the existing ring theoretic and lattice theoretic generalization of a Boolean algebra. The notion of pseudo-

complementation in an Almost distributive lattice was introduced by U.M.Swamy,G.C.Rao and G.N.Rao in [12] and they

observe that an Almostdistributive lattice have more than one pseudo-complementation while it is unique in case of dis-

tributive lattice. U.M.Swamy,G.C.Rao and G.N.Rao introduce the concept of Stone Almost distributive lattice in [13] with

respect to a pseudo-complementation on it, then it is a stone Almost distributive lattice (Stone ADL) with any other

pseudo-complementation.The notion of properties of Stone Almost distributive lattice was introduced by G.C.Rao and

Mihret Alemneh in [6]. The concept of a fuzzy set was introduced by Zadeh in [14] and this concept was adapted by

Goguen in [3] and Sanchez in [11] use to define and study fuzzy relations. In this paper we use fuzzy partial order relation

defined in [4] and the idea of fuzzy lattice in [4] to extend Properties of Stone Almost distributive lattice (Stone ADL) in

[6] to Properties of Stone Almost distributive fuzzy lattice (Stone ADFL) and we characterized Properties of Stone Almost

distributive fuzzy lattice (Stone ADFL).

2. Preliminaries

Definition 2.1. An algebra (R,∨,∧, 0) of type (2, 2, 0) is called an Almost distributive lattice (ADL),if the following con-

dition holds:

(1). a ∨ 0 = a,0 ∧ a = 0
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Properties of Stone Almost Distributive Fuzzy Lattice

(2). a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(3). (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(4). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(5). (a ∨ b) ∧ b = b

Lemma 2.2 ([7]). Let (R,∨,∧) be an ADL with 0. For any a, b, c ∈ R we have the following:

(1). a ∧ b = b⇔ a ∨ b = a

(2). a ∧ b = a⇔ a ∨ b = b

(3).
∧

is associative.

(4). a ∧ b ∧ c = b ∧ a ∧ c.

(5). (a ∨ b) ∧ c = (b ∨ a) ∧ c.

(6). a ∧ b = 0⇔ b ∧ a = 0.

(7). a ∧ (a ∨ b) = a,(a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a.

(8). a ∧ a = a and a ∨ a = a.

(9). a = a ∨ 0 and 0 ∨ a = a.

(10). 0 ∧ a = 0 and a ∧ 0 = 0.

Definition 2.3 ([7]). Let R be an ADL with 0. For any a, b ∈ R,define a ≤ b if and only if a ∧ b = a or equivalently

a ∨ b = b.Then ” ≤ ” is a partial order relation on R.

Lemma 2.4 ([7]). Let R be an ADL with 0, and m ∈ R. Then the following are equivalent:

(1). m is maximal with respect to partial order ” ≤ ”.

(2). m ∨ a = m,for all a ∈ R.

(3). m ∧ a = a, for all a ∈ R.

Definition 2.5 ([7]). Let (R,∨,∧, 0) be an ADL with 0. Anon-empty subset I of R is an ideal of R,if a∨b ∈ R and a∧x ∈ R.

Whenever a, b ∈ I and x ∈ R.

Proposition 2.6 ([7]). For any a, b ∈ R.

(1). (a] ∨ (b] = (a ∨ b] = (b ∨ a].

(2). (a] ∧ (b] = (a ∧ b] = (b ∧ a].

Definition 2.7 ([6]). Let (R,∨,∧) be an ADL with 0.Then a unary operation ? on R is called a pseudo- complementation

on R if,

(1). a ∧ a? = 0.

(2). a ∧ b = 0⇒ a? ∧ b = b.
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(3). (a ∨ b)? = a? ∧ b?, for all a, b ∈ R.

The unary operation ? is called a pseudo-complementation of a in R.

Lemma 2.8 ([6]). Let R be an ADL with 0, and ? be a pseudo-complementation on R.Then for any a, b ∈ R,the following

condition holds:

(1). 0? is maximal.

(2). If a is maximal,then a? = 0.

(3). 0?? = 0.

(4). a?? ∧ a = a.

(5). a? = 0⇔ a?? is maximal.

(6). a? ≤ 0?.

(7). a? ∧ b? = b? ∧ a?.

(8). a? ≤ (a ∧ b)? and b? ≤ (a ∧ b)?.

(9). a ≤ b⇒ b? ≤ a?.

(10). a? ≤ b? ⇔ b?? ≤ a??.

(11). a = 0⇔ a?? = 0.

Definition 2.9 ([6]). Ahomomorphism between ADLs, R1 and R2 is a mapping f : R1 → R2 satisfying the following

condition:

(1). f(a ∧ b) = f(a) ∧ f(b).

(2). f(a ∨ b) = f(a) ∨ f(b).

(3). f(0) = 0, for all a, b, 0 ∈ R.

Definition 2.10 ([6]). Let R be an ADL with 0, and ? be a pseudo- complementation on R.Then R is called a stone ADL

if,for any a ∈ R,a? ∨ a?? = 0?.

Lemma 2.11 ([6]). Let R be a stone ADL, and a, b ∈ R.Then the following condition holds:

(1). 0? ∧ a = a and 0? ∨ a = 0?.

(2). a??? = a?.

(3). (a ∧ b)? = a? ∨ b?.

(4). (a ∧ b)?? = a?? ∧ b??.

(5). An element a ∈ [0, 0?] is complemented if and only if a = b? for some b ∈ R.

Definition 2.12 ([6]). If R is an ADL with a maximal element,then the element a ∈ R is called a complemented element

if there exist an element b ∈ R such that a∧ b = 0 and a∨ b is a maximal element of R. Here b is called a complement of a.
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Definition 2.13 ([6]). Let R be an ADL with 0 and maximal element. The center of R is defined as the set of all

complemented elements of R and it is denoted by B(R) or simply B.

Theorem 2.14. An ideal I of an a ADL R is complemented if and only if I = (a] for some a ∈ B(R).

Definition 2.15 ([4]). Let X be a set ,A function A : X ×X → [0, 1] is said to be fuzzy partial order relation if it satisfies

the following condition;

(1). A(x, x) = 1, for all x inX that is A is reflexive.

(2). A(x, y) > 0, and A(y, x) > 0 implies that x = y .That is A is antisymmetric.

(3). A(x, z) ≥ supy inXmin[A(x, y), A(y, z)] > 0. That is A is transitive.

If A is a fuzzy partial order relation in a set X,then (X,A) is called a fuzzy partial order relation or fuzzy poset.

Definition 2.16 ([4]). Let (X,A) be a fuzzy poset.Then (X,A) is a fuzzy lattice if and only if x∨ y, and x∧ y exists for all

x, y ∈ X.

Definition 2.17 ([5]). Let(X,A) be a fuzzy lattice and Y ⊆ X. Then Y is an ideal of (X,A).

(1). If x ∈ X,y ∈ Y and A(x, y) > 0,then x ∈ Y .

(2). If x, y ∈ Y ,then x ∨ y ∈ Y .

Definition 2.18 ([1]). Let (R,∨,∧, 0) be an algebra of type (2, 2, 0) and we call (R,A) is an Almost Distributive Fuzzy

Lattice(ADFL) if the following condition satisfied:

(1). A(a, a ∨ 0) = A(a ∨ 0, a) = 1.

(2). A(0, 0 ∧ a) = A(0 ∧ a, 0) = 1.

(3). A((a ∨ b) ∧ c, (a ∧ c) ∨ (b ∧ c)) = A((a ∧ c) ∨ (b ∧ c), (a ∨ b) ∧ c) = 1.

(4). A(a ∧ (b ∨ c), (a ∧ b) ∨ (a ∧ c)) = A((a ∧ b) ∨ (a ∧ c), a ∧ (b ∨ c)) = 1.

(5). A(a ∨ (b ∧ c), (a ∨ b) ∧ (a ∨ c)) = A((a ∨ b) ∧ (a ∨ c), a ∨ (b ∧ c)) = 1.

(6). A((a ∨ b) ∧ b, b) = A(b, (a ∨ b) ∧ b) = 1, for all a, b, c ∈ R.

Definition 2.19 ([1]). Let (R,A) be an ADFL. Then for any a, b ∈ R a ≤ b if and only if A(a, b) > 0.

Definition 2.20 ([2]). Let (R1, A1) and (R2, A2) be two ADFLs. Then (A1 ×A2)((a, b), (c, d)) = min{A1(a, c), A2(b, d)}.

Definition 2.21 ([2]). Let (R1, A1) and (R2, A2) be two ADFLs. Then a mapping f : (R1, A1)→ (R2, A2) is said to be a

fuzzy latice homomorphism.If it satisfy the following condition for any x, y, 0 ∈ R1:

(1). A2(f(x ∧ y), f(x) ∧ f(y)) = A2(f(x) ∧ f(y), f(x ∧ y)) = 1.

(2). A2(f(x ∨ y), f(x) ∨ f(y)) = A2(f(x) ∨ f(y), f(x ∨ y)) = 1.

(3). A2(f(0), 0) > 0.
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3. Properties of Stone Almost Distributive Fuzzy Lattice

Definition 3.1. Let (R,A) be an ADFL with 0 . Then a unary operation ? on (R,A) is called a pseudo-complemented

if,any a, b ∈ R satisfy the following condition:

(1). A(a ∧ a?, 0) > 0.

(2). A(a ∧ b, 0) > 0⇒ A(b, a? ∧ b) > 0.

(3). A(a? ∧ b?, (a ∨ b)?) > 0.

Here a? is called a pseudo-complement of a in (R,A) and an ADFL with a pseudo-complementation is called a pseudo-

complemented ADFL.

Lemma 3.2. Let (R,A) be a pseudo-complemented Almost distributive fuzzy lattice ,then A(a ∧ a?, 0) > 0 if and only if

a ∧ a? = 0.

Definition 3.3. Let (R,A) be an ADFL. Then an element a ∈ R is called a dense element if A(a?, 0) > 0.

Definition 3.4. Let (R,A) be an ADFL with 0 and ? be a pseudo- complementation on (R,A).Then (R,A) is called a stone

ADFL if, any a ∈ R,A(0?, a? ∨ a??) > 0.

Example 3.5. Let (R,+, ., 0) be a commutative regular ring with unity.Let (R,A) be an ADFL and for any a ∈ R,let a0 be

the unique idempotent element in R such that A(a, a0aa0) = A(a0aa0, a) = 1.For any a, b ∈ R, define by:

(1). A(a ∧ b, a0b) = A(a0b, a ∧ b) = 1

(2). A(a ∨ b, a+ (1− a0)b) = A(a+ (1− a0)b, a ∨ b) = 1

(3). A(a?, 1− a0) = A(1− a0, a?) = 1. Then clearly (R,A) is an ADFL under the given condition.

(1). Let a ∈ R. Then A(a ∧ a?, 0) = A(a0a?, 0) = A(a0(1 − a0), 0) = A(a0 − a0a0, 0) = A(a0 − a0, 0) since a0a0 = a0=

A(0, 0) = 1. Similarly A(0, a ∧ a?) = 1. Hence A(a ∧ a?, 0) = A(0, a ∧ a?) = 1. Therefore we have A(a ∧ a?, 0) > 0.

(2). Let a, b ∈ R and A(a ∧ b, 0) > 0. That is A(a0b, 0) > 0. Now, A(a? ∧ b, b) = A((a?)0b, b) = A((1 − a0)0b, b) =

A((1 − a0)b, b) = A(b − a0b, b) = A(b − a ∧ b, b) = A(b, b) = 1 since a ∧ b = 0. Similarly A(b, a? ∧ b) = 1. Hence

A(a?∧b, b) = A(b, a?∧b) = 1. Let a, b ∈ R, so that A(ab, 0) > 0,then a0+b0 is also idempotent and A((a+b)0, a0+b0) =

A(a0 + b0, (a+ b)0) = 1.

(3). A(a? ∧ b?, (a ∨ b)?) = A(a? ∧ b?, 1− (a ∨ b)0)

= A(a? ∧ b?, 1− (a+ (1− a0)b)0

= A(a? ∧ b?, 1− (a0 + (1− a0)0b0

= A(a? ∧ b?, 1− (a0 + b0 − a0b0) since (1− a0)0 = 1− a0

= A(a? ∧ b?, 1− a0 − b0 + a0b0)

= A(a? ∧ b?, (1− a?)(1− b?)

= A(a? ∧ b?, a? ∧ b?) = 1.
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Hence A(a? ∧ b?, (a∨ b)?) = 1. So that we get A(a? ∧ b?, (a∨ b)?) > 0. Thus ? is a pseudo- complementation on (R,A).

Now, for any a ∈ R,

A(1, a? ∨ a??) = A(1, (1− a0) ∨ (1− a0)?)

= A(1, (1− a0) ∨ (1− (1− a0)0)

= A(1, (1− a0) ∨ (1− 1 + a0) since (1− a0)0 = 1− a0

= A(1, (1− a0) ∨ a0)

= A(1, (1− a0) + (1− (1− a0)0)a0)

= A(1, (1− a0) + (1− 1 + a0)a0) since (1− a0)0 = 1− a0

= A(1, (1− a0) + a0a0)

= A(1, 1− a0 + a0) since a0a0 = a0

= A(1, 1) = 1 > 0.

Hence A(1, a? ∨ a??) > 0. Therefore (R,A) is a stone ADFL with respect to ? a pseudo- complementation. Now,we

prove some properties of a pseudo-complementation in a stone ADFL (R,A).

Lemma 3.6. Let (R,A) be a stone ADFL and a, b ∈ R. Then the following condition holds:

(1). A(a, 0?) > 0

(2). A(a?, a???) = A(a??, a?) = 1 and A(0??, 0) > 0

(3). A((a ∧ b)?, a? ∨ b?) > 0.

(4). A(a?? ∧ b??, (a ∧ b)??) > 0 and A((a ∨ b)??, a?? ∨ b??) > 0

(5). An element a ∈ [0, 0?] is complemented if and only if A(a, b?) = A(b?, a) = 1, for some b ∈ R.

Proof.

(1). Let (R,A) be an ADFL. Then for a ∈ R and from definition of ADL 0 ∧ a = 0 ⇒ A(0 ∧ a, 0) > 0 ⇒ A(a, 0?) >

0, since a ≤ a ∨ 0? = (a ∧ 0?) ∨ 0? = 0?.

Hence A(a, 0?) > 0.

(2). Let a ∈ R. Since (R,A) is pseudo-complemented.

A(a?, a???) = A(a?, (a??)?)

= A(a?, (a?? ∨ a)?), since a?? = a?? ∨ a

= A(a?, a??? ∧ a?)

= A(a?, a?) = 1 > 0 since a?? ∧ a? = 0⇒ a??? ∧ a? = a?.

Hence A(a?, a???) = 1. Similarly A(a???, a?) = 1. Therefore A(a?, a???) = A(a???, a?) = 1. Again from stone ADL we

have a? ∨ a?? = 0? and a ∧ a? = 0. Now,A(0??, 0) = ((0?)?, 0) = A((a? ∨ a??)?, 0) = A(a?? ∧ a???, 0) = A(0, 0) = 1

since a?? ∧ a??? = 0. Similarly A(0, 0??) = 1. Hence A(0??, 0) = A(0, 0??) = 1. Hence A(0??, 0) > 0.
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(3). A((a ∧ b)?, a? ∨ b?) = A(a? ∨ b?, a? ∨ b?) = 1 since (a ∧ b)? = a? ∨ b? from pseudo-complemented ADL. Hence A((a ∧

b)?, a? ∨ b?) > 0

(4). (4)A(a?? ∧ b??, (a ∧ b)??) = A(a?? ∧ b??, ((a ∧ b)?)?)

= A(a?? ∧ b??, (a? ∨ b?)?), since (a ∧ b)? = a? ∨ b?

= A(a?? ∧ b??, a?? ∧ b??) = 1 > 0, since (a? ∨ b?)? = a?? ∧ b??.

Hence A(a?? ∧ b??, (a ∧ b)??) > 0 and

A((a ∨ b)??, a?? ∨ b??) = A(((a ∨ b)?)?, a?? ∨ b??)

= A((a? ∧ b?)?, a?? ∨ b??), since (a ∨ b)? = a? ∧ b?.

= A(a?? ∧ b??, a?? ∧ b??) = 1 > 0, since (a? ∧ b?)? = a?? ∧ b??.

Hence A((a ∨ b)??, a?? ∨ b??) > 0.

(5). Suppose a ∈ [0, 0?] is a complement element of (R,A). Then there exist b ∈ R such that A(a ∧ b, 0) > 0 and

A(0?, a ∨ b) > 0.

A(b ∧ a, 0) = A(b ∧ (a ∧ (a ∨ b), 0) = A((b ∧ a) ∧ (a ∨ b), 0)

= A(((b ∧ a) ∧ a) ∨ ((b ∧ a) ∧ b), 0), since b ∧ a ∧ c = a ∧ b ∧ c

= A((b ∧ a) ∨ (a ∧ b ∧ b), 0), since b ∧ b = b

= A(a ∧ ((b ∧ a) ∨ b), 0) = A((a ∧ (b ∧ a) ∨ (a ∧ b), 0)

= A(((a ∧ b) ∧ a) ∨ (a ∧ b), 0)

= A((0 ∧ a) ∨ 0, 0) = A(0, 0) = 1 > 0.

Hence A(b∧ a, 0) > 0. Since 0 is the least element 0 ≤ b∧ a⇒ A(0, b∧ a) > 0. So that we get b∧ a = 0. Which implies

A(b? ∧ a, a) = A(a, b? ∧ a) = 1. Now,

A(b?, a) = A((b ∨ 0)?, a), since b = b ∨ 0

= A(b? ∧ 0?, a)

= A(b? ∧ (a ∨ b), a), since a ∨ b = 0?

= A((b? ∧ a) ∨ (b? ∧ b), a)

= A((b? ∧ a) ∨ 0, a)

= A(a ∨ 0, a)

= A(a, a) = 1, since a ∨ 0 = a.

We have A(b?, a) = 1. Similarly A(a, b?) = 1. Hence A(b?, a) = A(a, b?) = 1. Conversely,assume that A(b?, a) =

A(a, b?) = 1 for some b ∈ R. Then

A(a ∧ b??, 0) = A(a ∧ (b?)?, 0)

= A(a ∧ a?, 0)

= A(0, 0) = 1, since a ∧ a? = 0
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Similarly A(0, a ∧ b??) = 1. Hence A(a ∧ b??, 0) = A(0, a ∧ b??) = 1.

A(a ∨ b??, o?) = A(b? ∨ b??, 0?) since a = b?

= A(0?, 0?) = 1 since b? ∨ b?? = 0? .

Similarly ,A(0?, a ∨ b??) = 1. Hence A(a ∨ b??, 0?) = A(0?, a ∨ b??) = 1. Therefore b?? is the complement of a in [0, 0?].

In general,if (R,A) is an ADFL with a maximal element,then an element a ∈ R is called a complemented element if there

exists an element b ∈ R such that A(a ∧ b, 0) > 0 and A((a ∨ b) ∨ x, a ∨ b) > 0 for all x ∈ R. Here b is called a complement

of a.Unlike in the distributive fuzzy lattice ,a complemented element in an ADFL (R,A) need not have a unique element. If

a is a complemented element in R,then we denote the set of all complements of a by BA(a).

Definition 3.7. Let (R,A) be an ADFL with maximal element. Then the center of (R,A) is defined by BA(R) = {a ∈

R|A(a ∧ b, 0) > 0 and A(x, (a ∨ b) ∧ x) > 0 for some b ∈ R, for all x ∈ R} and it is denoted by BA(R). So that BA(R) is

called Birkhoff center of an ADFL (R,A).

Lemma 3.8. If (R,A) is an ADFL with a maximal element and a is a complemented element in (R,A),then BA(a) is a

sub-ADFL of (R,A).

Lemma 3.9. Let (R,A) be a pseudo-complemented ADFL with centerBA(R) and a ∈ R.Then a ∈ BA(R) if and only if

A((a ∨ a?) ∨ x, a ∨ a?) > 0 for all x ∈ R.

Proof. Let (R,A) be a pseudo-complemented ADFL and a ∈ BA(R).Then there exists an element b ∈ R such that

A(a ∧ b, 0) > 0 and A((a ∨ b) ∨ x, a ∨ b) > 0. Since 0 ≤ a ∧ b⇒ A(0, a ∧ b) > 0. Hence a ∧ b = 0 by anti symmetry property

of A. So a ∧ b = 0⇒ A(b, a? ∧ b) > 0 by Definition 3.1. Then

A((a ∨ a?) ∧ (a ∨ b), a ∨ b) = A([(a ∨ a?) ∧ a] ∨ [(a ∨ a?) ∧ b], a ∨ b)

= A([(a ∧ a) ∨ (a? ∧ a)] ∨ [(a ∧ b) ∨ (a? ∧ b)], a ∨ b)

= A([a ∨ 0] ∨ [0 ∨ b], a ∨ b) since a? ∧ a = 0, a ∧ b = 0 and a? ∧ b = b

= A(a ∨ b, a ∨ b) = 1 > 0 since a ∨ 0 = a and 0 ∨ b = b.

Hence A((a ∨ a?) ∧ (a ∨ b), a ∨ b) = 1. Similarly A(a ∨ b, (a ∨ a?) ∧ (a ∨ b)) = 1 > 0. So that (a ∨ a?) ∧ (a ∨ b) = a ∨ b which

implies that a ∨ a? is maximal element. Therefor A((a ∨ a?) ∨ x, a ∨ a?) > 0 for all x ∈ R.

Conversely, suppose A((a ∨ a?) ∧ (a ∨ b), a ∨ b) > 0 for all x = a ∨ b ∈ R. Clearly A(a ∧ a?, 0) > 0 and 0 ≤ a ∧ a?,we have

A(0, a ∧ a?) > 0. Hence a ∧ a? = 0 by antisymmetry property of A.

A(a ∨ b, (a ∨ a?) ∧ (a ∨ b)) = A(a ∨ b, [(a ∨ a?) ∧ a] ∨ [(a ∨ a?) ∧ b])

= A(a ∨ b, [(a ∧ a) ∨ (a? ∧ a)] ∨ [(a ∧ b) ∨ (a? ∧ b)])

= A(a ∨ b, [(a ∨ 0) ∨ (0 ∨ b)]) since a? ∧ a = 0 and a ∧ b = 0

= A(a ∨ b, a ∨ b) = 1 > 0 since a ∨ 0 = a and 0 ∨ b = b.

Hence A(a∨ b, (a∨ a?)∧ (a∨ b)) > 0. Which implies that (a∨ a?)∧ (a∨ b) = a∨ b by antisymmetry property of A. So that

we have a ∨ a? is maximal element of (R,A). Therefore a ∈ BA(R).
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Theorem 3.10. Let (R,A) be a stone-ADFL. Then the center BA(R) of (R,A) coincides with the center of the distributive

fuzzy lattice ([0, 0?], A) and hence (BA(R),∨,∧) is a Fuzzy Boolean Algebra.

Proof. Let C be the center of [0, 0?] and a ∈ BA(R).Then there exists b ∈ R such that A(a∧b, 0) > 0 and A(x, (a∨b)∧x) > 0

for all x ∈ R. Now, A(a ∧ b, 0) > 0⇒ A(b, a? ∧ b) > 0

⇒ A(a?? ∧ b, 0) = A(a?? ∧ a? ∧ b, 0) since a? ∧ b = b

= A((a?? ∧ a?) ∧ b, 0)

= A(0 ∧ b, 0)

= A(0, 0) = 1

Similarly A(0, a?? ∧ b) = 1. Hence A(a?? ∧ b, 0) = A(0, a?? ∧ b) = 1.

A(a??, a) = A((a ∨ b) ∧ a??, a)

= A((a ∧ a??) ∨ (b ∧ a??), a)

= A((a ∧ a??) ∨ (b ∧ a??), a)

= A(a ∨ 0, a)

= A(a, a) = 1 since b ∧ a?? = 0.

A(a, a??) = A(a, (a ∨ b) ∧ a??)

= A(a, (a ∧ a??) ∨ (b ∧ a??))

= A(a, a ∨ 0) = A(a, a) = 1 since a ∧ a? = 0 and b ∧ a?? = 0.

Hence A(a??, a) = A(a, a??) = 1. Since (R,A) is a stone ADFL, we have A(0?, a? ∨ a??) > 0. A(a? ∨ a, 0?) = A(a? ∨

a??, 0?) since a = a?? and a? ∨ a?? = 0? in stone ADL.= A(0?, 0?) = 1. Hence A(a?∨a, 0?) = 1. Similarly A(0?, a?∨a) = 1.

So that we have A(a? ∨ a, 0?) = A(0?, a? ∨ a) = 1. Hence a? ∨ a = 0? by antisymmetry property A.Therefore a? ∨ a

is maximal. Thus a ∈ Cand hence BA(R) ⊆ C. Let a ∈ C. Then there exist b ∈ [0, 0?] such thatA(a ∧ b, 0) > 0 and

A(a ∨ b, 0?) = A(0?, a ∨ b) = 1 which implythat a ∨ b = 0? is maximal. Thus a ∈ BA(R).We have BA(R) = C. Since C is a

Boolean algebra. We get (BA(R),∨,∧) is a Fuzzy Boolean algebra.

Corollary 3.11. Let (R,A) be a stone ADFL with center BA(R).Then BA(R) = {a ∈ R : A(a??, a) = A(a, a??) = 1}.

Corollary 3.12. If (R,A) is a stone ADFL and a ∈ R is complemented,then BA(a) = {a?}.

Proof. Let a be a complemented element of (R,A).Then a ∈ BA(a) and hence A(a, b?) = A(b?, a) = 1 for some b ∈ R by

Corollary 3.11 A(a∧a?, 0) > 0 and A(a∨a?, 0?) = A(b? ∨ b??, 0?) = A(0?, 0?) = 1 since a = b?. Similarly A(0?, a∨a?) = 1.

Hence A(a ∨ a?, 0?) = A(0?, a ∨ a?) = 1 ⇒ A(0?, a ∨ a?) > 0 and A(a ∨ a?, 0?) > 0. Hence a ∨ a? = 0? by antisymmetry

property of A. So that we have a ∨ a? is maximal. Therefore a? ∈ BA(a). Let c ∈ BA(a).Then a?, c ∈ BA(a),so that

A(a?∧c, c∧a?) = A(c∧a?, a?∧c) = 1. Again since c ∈ BA(a), we have A(a∧c, 0) > 0 and A(x, (a∨c)∧x) > 0 for all x ∈ R

A(c, a?) = A(0? ∧ c, a?) since 0? is maximal.

= A((a ∨ a?) ∧ c, a?)since a ∨ a? = 0?.

= A((a ∧ c) ∨ (a? ∧ c), a?)

= A(0 ∨ (a? ∧ c), a?) since a ∧ c = 0.
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= A(a? ∧ c, a?) = A(c ∧ a?, a?)

= A((a ∧ a?) ∨ (c ∧ a?), a?) = A((a ∨ c) ∧ a?, a?)

= A(a?, a?) = 1 since a ∨ c is maximal.

As a result we have A(c, a?) = 1. Similarly A(a?, c) = 1. Implies that A(a?, c) = A(c, a?) = 1. Therefore BA(a) = {a?}.

Theorem 3.13. R is a stone ADL with 0 if and only if (R,A) is a stone ADFL with 0.

Proof. Assume R be a stone ADL with 0.Then ? is a pseudo-complementation on R. Let (R,A) be an ADFL. For any

a ∈ R, we have

(1). A(a ∧ a?, 0) > 0 since a ∧ a? = 0.

(2). Let a, b ∈ R and A(a ∧ b, 0) > 0 implies that A(b, a? ∧ b) > 0 since a ∧ b = 0⇒ a? ∧ b = b.

(3). A((a ∨ b)?, a? ∧ b?) = A(a? ∧ b?, a? ∧ b?) = 1, since (a ∨ b)? = a? ∧ b?.

Hence A((a∨b)?, a?∧b?) = 1. Similarly A(a?∧b?, (a∨b)?) = 1. So that we have A((a∨b)?, a?∧b?) = A(a?∧b?, (a∨b)?) = 1.

Implies A(a? ∧ b?, (a ∨ b)?) > 0. Thus ? is a pseudo-complement on (R,A). Let a ∈ R.Then a? ∨ a?? = 0? by definition of

stone ADL. Now,

A(0?, a? ∨ a??) = A(0?, a? ∨ (0? ∧ a??))

= A(0?, (a? ∨ 0?) ∧ (a? ∨ a??))

= A(0?, (a? ∨ 0?) ∧ 0?) since a? ∨ a?? = 0?

= A(0?, 0?) = 1 > 0.

Hence A(0?, a? ∨ a??) > 0. Therefore (R,A) is a stone ADFL.

Conversely,Suppose (R,A) is a stone ADFL and a ∈ R. Then ? is a pseudo- complementation on (R,A). Now, for any

a ∈ R,

(1). A(a ∧ a?, 0) > 0. Since 0 ≤ a ∧ a? implies that A(0, a ∧ a?) > 0. Hence a ∧ a? = 0 by antisymmetry property of A.

(2). A(a∧b, 0) > 0 implies that A(b, a?∧b) > 0. Since 0 ≤ a∧b. We have A(0, a∧b) > 0. So that a∧b = 0 by antisymmetry

property of A and a? ∧ b = b.

(3). A((a ∨ b)?, a? ∧ b?) = A(a? ∧ b?, (a ∨ b)?) = 1 > 0 imply that A((a ∨ b)?, a? ∧ b?) > 0 and A(a? ∧ b?, (a ∨ b)?) > 0. So

that we have (a ∨ b)? = a? ∧ b? by antisymmetry property of A. Hence ? is a pseudo complementation on R.

(4). A(0?, a?∨a??) > 0 by definition of stone Almost distributive fuzzy lattice(stone ADFL). Since 0? is a maximal element,

we have a? ∨ a?? ≤ 0?. Implies A(a? ∨ a??, 0?) > 0. Hence a? ∨ a?? = 0? by antisymmetry property of A. Therefore R

is a stone ADL.

In this paper (a]A represents a principal ideal of an ADFL (R,A) generated by a.

Definition 3.14. Let (PI(R), A) be the principal ideal of an ADFL (R,A). Then (a]A = {x ∈ R|A(x, a ∧ x) > 0}

for all (a] ∈ PI(R).
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Lemma 3.15. Let (PI(R), A) be a principal ideal of an ADFL (R,A). Then A(y, xα) > 0 if and only if (y]A ⊆ (xα]A

for all α ∈ T . For the family of sets {xα : α ∈ T} elements of (R,A).

Definition 3.16. Let (R,A) be an ADFL.Then (R,A) is said to be complete if (PI(R), A) is a complete fuzzy sub lattice

of (I(R), A). That is for any family {xα : α ∈ T} of elements of (R,A), there exist y, z ∈ R such that
∨
α(xα]A = (y]Aand∧

α(xα]A = (z]A. Where
∨
α(xα]A is the least upper bound and

∧
α

(xα]A is the greatest lower bound of the family {xα : α ∈ T}

in PI((R,A)).

Lemma 3.17. Let (R,A) be a complete ADFL and y, z, xα ∈ R for all α ∈ T . Then

(1).
∨
α(xα]A = (y]A if and only if there exist elements α1, α2, ..., αn ∈ T such that A(y, (xα1 ∨ xα2 ∨ ...∨ xαn)∧ y) > 0 and

A(xα, y) > 0 for all α ∈ T .

(2).
∧
α(xα]A = (z]A if and only if

(i). A(z, xα) > 0 for all α ∈ T . and

(ii). x ∈ R and A(x, xα) > 0 for all α ∈ T implies that A(x, z) > 0.

Proof.

(1). Assume
∨
α(xα]A = (y]A. Then y ∈ (y]A implies that y ∈ (xα]A ⇒ A(y, xα ∧ y) > 0. Since xα ∧ y ≤ y implies that

A(xα ∧ y, y) > 0. Hence we get xα ∧ y = y. So that we get y ≤ xα, for all α ∈ T since y ∈ (xα]⇒ y ≤ xα . Hence

y ≤ xαi , for 1 ≤ i ≤ n.

A(y, (xα1 ∨ xα2 ∨ ... ∨ xαn) ∧ y) = A(y, (xα1 ∧ y) ∨ (xα2 ∧ y) ∨ ... ∨ (xαn ∧ y)) by RD∧

= A(y, y ∨ y ∨ y... ∨ y) = A(y, y) = 1 > 0, since y ≤ xαi , 1 ≤ i ≤ n.

Hence A(y, (xα1∨xα2∨...∨xαn)∧y) > 0. Now,let α ∈ T . Then xα ∈
∨
α(xα]A imply that xα ∈ (y]A ⇒ A(xα, y∧xα) > 0.

As y ∧ xα ≤ xα ⇒ A(y ∧ xα, xα) > 0 and hence we get y ∧ xα = xα by antisymmetry property of A. Hence xα ≤ y

for all α ∈ T . Therefore A(xα, y) > 0 for all α ∈ T .

Conversely, assume that there exist α1, α2, ..., αn ∈ T such that A(y, (xα1 ∨ xα2 ∨ .... ∨ xαn) ∧ y) > 0 and A(xα, y) > 0,

for all α ∈ T . We need to show that
∨
α(xα]A = (y]A. Now,since A(xα, y) > 0, for every α ∈ T and hence we get xα ∈

(y]A, for every α ∈ T . Hence (xα]A ⊆ (y]A for every α ∈ T . Therefore (y]A is an upper bound of {(xα]A : α ∈ T} in

the fuzzy lattice (PI(R), A). Let J ∈ I((R,A)) be any upper bound of {(xα]A : α ∈ T}. So that xα ∈ J , for any α ∈ T .

By our assumption,there exists α1, α2, ..., αn ∈ T such that A(y, (xα1 ∨ xα2 ∨ .... ∨ xαn) ∧ y) > 0. Now,for 1 ≤ i ≤

n,xα1 , xα2 , ..., xαn ∈ J and (xα1 ∨xα2 ∨ ...∨xαn)∧y ≤ xαi , 1 ≤ i ≤ n. Therefore (xα1 ∨xα2 ∨xα3 ∨ ...∨xαn)∧y ∈ J and

hence we get (y]A ⊆ J . Thus (y]A is the least upper bound of {(xα]A : α ∈ T} in (I(R), A). That is
∨
α(xα]A = (y]A.

(2). Assume that
∧
α(xα]A = (z]A. Then we need to show A(x, z) > 0.

(i). Now,(z]A ⊆
∧
α(xα]A, for all α ∈ T and z ∈ (z]A ⊆

∧
α(xα]A which implies that z ∈ (xα]A ⇒ A(z, xα ∧ z) > 0.

Since xα ∧ z ≤ z⇒ A(xα ∧ z, z) > 0 and hence we get xα ∧ z = z by antisymmetry property of A. Hence we get

z ≤ xα sincez ∈ (xα]⇒ z ≤ xα. Therefore A(z, xα) > 0, for all α ∈ T .

(ii). Since
∧
α(xα]A ⊆ (z]A,x ∈

∧
α(xα]Ax ∈ (z]A ⇒ A(x, z ∧ x) > 0. Since z ∧ x ≤ x ⇒ A(z ∧ x, x) > 0. Hence

z ∧ x = x and we get x ≤ z.Therefore A(x, z) > 0. On the other hand, from (i), A(z, xα) > 0 implies z ∈ (xα]A.

Hence we get (z]A ⊆
∧
α(xα]A. Let x ∈

∧
α(xα]A ⇒ x ∈ (xα]A ⇒ A(x, xα ∧ x) > 0 and A(x, z) > 0 implies

x ∈ (z]A. Hence
∧
α(xα]A ⊆ (z]A’. Therefore

∧
α(xα]A = (z]A.
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Definition 3.18. An ADFL (R,A) is said to be relatively complemented if ([a, b], A) is a complemented fuzzy lattice for any

a, b ∈ R with A(a, b) > 0.

Definition 3.19. Let (R,A) be an ADFL.Then a pseudo-complemented distributive fuzzy lattice with 0 is called a stone

fuzzy lattice if,for any a ∈ R,A(1, a? ∨ a??) > 0.

Theorem 3.20. Let (R,A) be an ADFL and (R,A) is a complete relatively complemented ADFL with maximal element m.

Then the following condition holds:

(1). The set (I(R), A) of all ideals of (R,A) is a stone fuzzy lattice.

(2). The center of (I(R), A) = (PI(R), A).

Lemma 3.21. Let (R,A) be an ADFL and a ∈ R. Then (Ra, A) is a sub-ADFL of (R,A).Where Ra = {a ∧ x : x ∈ R}.

Theorem 3.22. Let (R,A) be a stone-ADFL and a ∈ R. Then the map f : (R,A) → (Ra × Ra, A1 × A1) defined by

(A1 × A1)(f(x), (a ∧ x, a? ∧ x)) = (A1 × A1)((a ∧ x, a? ∧ x), f(x)) = 1, for all x ∈ R is an isomorphism if and only if

a ∈ BA(R). Where (Ra, A1) is a sub-ADFL of (R,A).

Proof. Let (R,A) be a stone-ADFL and a ∈ R. Suppose the map f : (R,A) → (Ra × Ra, A1 × A1) defined by (A1 ×

A1)(f(x), (a ∧ x, a? ∧ x)) = (A1 ×A1)((a ∧ x, a? ∧ x), f(x)) = 1, for all x ∈ R is an isomorphism. Now,

(A1 ×A1)(f(a), (a ∧ a, a? ∧ a)) = (A1 ×A1)((a ∧ a, a? ∧ a), (a, 0))

= (A1 ×A1)((a, 0), (a, 0))

= min {A1(a, a), A1(0, 0)}

= min {1, 1} = 1, since a ∧ a = a and a? ∧ a = 0.

(A1 ×A1)(f(a??), (a ∧ a??, a? ∧ a??)) = (A1 ×A1)((a ∧ a??, a? ∧ a??), (a, 0))

= (A1 ×A1)((a, 0), (a, 0)

= min {A1(a, a), A1(0, 0)}

= min {1, 1} = 1, since a ∧ a?? = a and a? ∧ a?? = 0.

Hence (A1 ×A1)(f(a), (a, 0)) = A1 ×A1)(f(a??), (a, 0)) = 1. Again,

(A1 ×A1)(f(a), f(a??)) = (A1 ×A1)((a ∧ a, a? ∧ a), (a ∧ a??, a? ∧ a??))

= (A1 ×A1)((a, 0), (a, 0))

= min {A1(a, a), A1(0, 0)}

= min {1, 1} = 1.

Hence (A1 ×A1)(f(a), f(a??)) > 0. Similarly (A1 ×A1)((f(a??), f(a)) > 0. Implies f(a) = f(a??) by antisymetry property

of A1 ×A1. Hence a = a?? since f is one-to-one. Thus a ∈ BA(R) by Corollary 3.11.

Conversely, assume a ∈ BA(R). We need to show f is an isomorphism. Let x, y ∈ R. Then
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(i). (A1 ×A1)(f(x ∧ y), f(x) ∧ f(y)) = (A1 ×A1)((a ∧ (x ∧ y), a? ∧ (x ∧ y)), (a ∧ x, a? ∧ x) ∧ (a ∧ y, a? ∧ y))

= (A1 ×A1)((a ∧ a) ∧ (x ∧ y), (a? ∧ a?) ∧ (x ∧ y)), ((a ∧ x) ∧ (a ∧ y), (a? ∧ x) ∧ (a? ∧ y))

= (A1 ×A1)((a ∧ (x ∧ y), (a? ∧ (x ∧ y)), ((a ∧ x) ∧ (a ∧ y), (a? ∧ x) ∧ (a? ∧ y))

= min {A1((a ∧ (x ∧ y), (a ∧ x) ∧ (a ∧ y)), A1(a? ∧ (x ∧ y), (a? ∧ x) ∧ (a? ∧ y))}

= min {A1(a ∧ (x ∧ y), a ∧ (x ∧ y)), A1(a? ∧ (x ∧ y), a? ∧ (x ∧ y))}

= min {1, 1} = 1.

Hence (A1 × A1)(f(x ∧ y), f(x) ∧ f(y)) = 1. Similarly (A1 × A1)(f(x) ∧ f(y), f(x ∧ y)) = 1. We get

(A1 ×A1)(f(x ∧ y), f(x) ∧ f(y)) = (A1 ×A1)(f(x) ∧ f(y), f(x ∧ y)) = 1.

(ii). (A1 ×A1)(f(x ∨ y), f(x) ∨ f(y)) = (A1 ×A1)((a ∧ (x ∨ y), a? ∧ (x ∨ y)), (a ∧ x, a? ∧ x) ∨ (a ∧ y, a? ∧ y))

= (A1 ×A1)(((a ∧ (x ∨ y), (a? ∧ (x ∨ y)), ((a ∧ x) ∨ (a ∧ y), (a? ∧ x) ∨ (a? ∧ y))

= min {(A1((a ∧ (x ∨ y), (a ∧ x) ∨ (a ∧ y)), A1(a? ∧ (x ∨ y), (a? ∧ x) ∨ (a? ∧ y))}

= min {A1(a ∧ (x ∨ y), a ∧ (x ∨ y)), A1(a? ∧ (x ∨ y), a? ∧ (x ∨ y))}

= min {1, 1} = 1.

Hence (A1 × A1)(f(x ∨ y), f(x) ∨ f(y)) = 1. Similarly (A1 × A1)(f(x) ∨ f(y), f(x ∨ y)) = 1. Implies

(A1 ×A1)(f(x ∨ y), f(x) ∨ f(y)) = (A1 ×A1)(f(x) ∨ f(y), f(x ∨ y)) = 1.

(iii). If 0 ∈ R,

(A1 ×A1)(f(0), (0, 0)) = (A1 ×A1)((a ∧ 0, a? ∧ 0), (0, 0))

= min {A1((0, 0), A1(0, 0)}

= min {1, 1} = 1 > 0.

Hence (A1 ×A1)(f(0), (0, 0)) > 0. Therefore f is a fuzzy lattice homomorphism.

Let x, y ∈ R and (A1 ×A1)(f(x), f(y)) = (A1 ×A1)(f(y), f(x)) = 1. Now,

(A1 ×A1)(x, y) = (A1 ×A1)(0? ∧ x, y) since 0? is maximal.

= (A1 ×A1)((a ∨ a?) ∧ x, y) = (A1 ×A1)((a ∧ x) ∨ (a? ∧ x), y)

= (A1 ×A1)((a ∧ y) ∨ (a? ∧ y), y), replace x by y.

= (A1 ×A1)((a ∨ a?) ∧ y, y)

= (A1 ×A1)(y, y) = 1 > 0.

Hence (A1 × A1)(x, y) > 0. Similarly (A1 × A1)(y, x) > 0. Implies x = y by antisymmetry property of A1 × A1. Hence f is

one-to-one. To show f is onto. Suppose (a ∧ x, a? ∧ y) ∈ Ra ×Ra for some x, y ∈ R. Write w = (a ∧ x) ∨ (a? ∧ y). Then

(A1 ×A1)(f(w), (a ∧ x, a? ∧ y)) = (A1 ×A1)((a ∧ w, a? ∧ w), (a ∧ x, a? ∧ y))

= (A1 ×A1)(a ∧ [(a ∧ x) ∨ (a? ∧ y)], a? ∧ [(a ∧ x) ∨ (a? ∧ y)], (a ∧ x, a? ∧ y))

= (A1 ×A1)([(a ∧ x) ∨ a ∧ (a? ∧ y)], [(a? ∧ a) ∧ x ∨ (a? ∧ y)], (a ∧ x, a? ∧ y))

= (A1 ×A1)([(a ∧ x) ∨ 0, 0 ∨ (a? ∧ y)], (a ∧ x, a? ∧ y))

= min {A1((a ∧ x, a ∧ x), A1(a? ∧ y, a? ∧ y)}

= min {1, 1} = 1 > 0.
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Hence (A1 ×A1)(f(w), (a ∧ x, a? ∧ y)) > 0. Similarly (A1 ×A1)((a ∧ x, a? ∧ y), f(w)) > 0. We get f(w) = (a ∧ x, a? ∧ y) by

antisymmetry property of A1 ×A1. Hence f is onto. Therefore f is an isomorphism.

Definition 3.23. Let (R,A) be an ADFL with 0 and a ∈ R. Then an element b in (R,A) is said to be a semi-complement

of the element a if, A(a ∧ b, 0) > 0. We denote the set of all semi-complement of the element a by S(a).

Definition 3.24. Let (R,A) be an ADFL with a pseudo-complementation and a ∈ R. Then S(a) = (a?]A and S(a) is also

an ideal of (R,A).

An ideal I in an ADFL (R,A) is called a direct factor if there exists an ideal J of (R,A) such that I∧J = (0]A and R ⊆ I∨J .
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