

International Journal of Mathematics And its Applications

$$\mathbf{T}_{(1,2)^{\star}-\psi} ext{-spaces}$$

Research Article

S.Saranya¹, N.Seenivasagan¹ and O.Ravi^{1*}

1 Department of Mathematics, SLS MAVMM AV College, Madurai, Tamil Nadu, India.

- 2 PG and Research Department of Mathematics, Government Arts College, Kumbakonam, Tamil Nadu, India.
- 3 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

Abstract: In this paper, we introduce the notions called $T_{(1,2)^{\star}-\psi}$ -spaces, $gT_{(1,2)^{\star}-\psi}$ -spaces and $\alpha T_{(1,2)^{\star}-\psi}$ -spaces and obtain their properties and characterizations.

MSC: 54E55.

Keywords: $T_{(1,2)^{\star}-\psi}$ -space, $gT_{(1,2)^{\star}-\psi}$ -space, $\alpha T_{(1,2)^{\star}-\psi}$ -space. © JS Publication.

1. Introduction

Levine [6] introduced the notion of $T_{\frac{1}{2}}$ -spaces which properly lies between T_1 -spaces and T_0 -spaces. Many authors studied properties of $T_{\frac{1}{2}}$ -spaces: Dunham [3], Arenas et al. [1] etc. In this paper, we introduce the notions called $T_{(1,2)^*-\psi}$ -spaces, $gT_{(1,2)^*-\psi}$ -spaces and $\alpha T_{(1,2)^*-\psi}$ -spaces and obtain their properties and characterizations.

2. Preliminaries

Throughout this paper, (X, τ_1, τ_2) (briefly, X) will denote bitopological space.

Definition 2.1. Let S be a subset of X. Then S is said to be $\tau_{1,2}$ -open [9] if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.2 ([9]). Let S be a subset of a bitopological space X. Then

- (1). the $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as $\cup \{F : F \subseteq S \text{ and } F \text{ is } \tau_{1,2}\text{-open}\}$.
- (2). the $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined as $\cap \{F : S \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-closed}\}$.

Definition 2.3. A subset A of a bitopological space X is called

(1). $(1,2)^*$ -semi-open [10] if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A));

 $^{^{*}}$ E-mail: siingam@yahoo.com

(2). $(1,2)^* - \alpha - open$ [5] if $A \subseteq \tau_{1,2} - int(\tau_{1,2} - cl(\tau_{1,2} - int(A)));$

The complements of the above mentioned open sets are called their respective closed sets.

Definition 2.4. A subset A of a bitopological space (X, τ_1, τ_2) is called

- (1). $(1,2)^*$ -g-closed [15] if $\tau_{1,2}$ -cl(A) \subseteq U whenever $A \subseteq$ U and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -g-closed set is called $(1,2)^*$ -g-open;
- (2). $(1,2)^*$ -sg-closed [10] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ -sg-closed set is called $(1,2)^*$ -sg-open;
- (3). $(1,2)^*$ -gs-closed [10] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gs-closed set is called $(1,2)^*$ -gs-open;
- (4). $(1,2)^*$ - αg -closed [12] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ - αg -closed set is called $(1,2)^*$ - αg -open;
- (5). $(1,2)^*-\hat{g}$ -closed [2] or $(1,2)^*-\omega$ -closed [4] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*-\hat{g}$ -closed (resp. $(1,2)^*-\omega$ -closed) set is called $(1,2)^*-\hat{g}$ -open (resp. $(1,2)^*-\omega$ -open);
- (6). $(1,2)^*$ - \ddot{g}_{α} -closed [7] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -sg-open in X. The complement of $(1,2)^*$ - \ddot{g}_{α} -closed set is called $(1,2)^*$ - \ddot{g}_{α} -open;
- (7). $(1,2)^*$ -gsp-closed [14] if $(1,2)^*$ -spcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gsp-closed set is called $(1,2)^*$ -gsp-open;
- (8). $(1,2)^* \psi$ -closed [8] if $(1,2)^* \operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* \operatorname{sg-open}$ in X. The complement of $(1,2)^* \psi$ -closed set is called $(1,2)^* \psi$ -open.

Remark 2.5. The collection of all $(1,2)^*$ - \ddot{g}_{α} -closed (resp. $(1,2)^*$ -gsp-closed, $(1,2)^*$ - \hat{g} -closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -g-close

Definition 2.6. A subset A of a bitopological space X is called $(1,2)^*$ -preopen [13] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)). The complement of a $(1,2)^*$ -pre-open set is called $(1,2)^*$ -preclosed.

The $(1,2)^*$ -preclosure [13] of a subset A of X, denoted by $(1,2)^*$ -pcl(A) is defined to be the intersection of all $(1,2)^*$ -preclosed sets of X containing A. It is known that $(1,2)^*$ -pcl(A) is a preclosed set. For any subset A of an arbitrarily chosen bitopological space, the $(1,2)^*$ -semi-interior [10] (resp. $(1,2)^*$ - α -interior [13], $(1,2)^*$ -preinterior [13]) of A, denoted by $(1,2)^*$ -sint(A)(resp. $(1,2)^*$ - α int(A), $(1,2)^*$ -pint(A)), is defined to be the union of all $(1,2)^*$ -semi-open (resp. $(1,2)^*$ - α -open, $(1,2)^*$ preopen) sets of X contained in A.

Definition 2.7 ([11]). A bitopological space X is called

- (1). $(1,2)^*$ - $T_{\frac{1}{2}}$ -space if every $(1,2)^*$ -g-closed subset of X is $\tau_{1,2}$ -closed in X.
- (2). $(1,2)^*$ - T_b -space if every $(1,2)^*$ -gs-closed subset of X is $\tau_{1,2}$ -closed in X.

Definition 2.8 ([12]). Let X be a bitopological space and $A \subseteq X$. We define the $(1,2)^*$ -sg-closure of A (briefly $(1,2)^*$ -sgcl(A)) to be the intersection of all $(1,2)^*$ -sg-closed sets containing A. **Proposition 2.9** ([16]). Every $\tau_{1,2}$ -closed set is $(1,2)^*$ - ψ -closed.

Proposition 2.10 ([16]). Every $(1, 2)^*$ - ψ -closed set is $(1, 2)^*$ - \hat{g} -closed.

Proposition 2.11 ([16]). Every $(1, 2)^*$ - ψ -closed set is $(1, 2)^*$ -g-closed.

Proposition 2.12 ([16]). Every $(1, 2)^*$ - ψ -closed set is $(1, 2)^*$ - α g-closed.

Proposition 2.13 ([16]). Every $(1, 2)^*$ - ψ -closed set is $(1, 2)^*$ -gsp-closed.

Proposition 2.14 ([16]). Every $(1, 2)^*$ - ψ -closed set is $(1, 2)^*$ -gs-closed.

3. Properties of $T_{(1,2)^*-\psi}$ -spaces

We introduce the following definitions.

Definition 3.1.

- (1). A bitopological space X is called $(1,2)^*$ -semi generalized- R_0 (briefly $(1,2)^*$ -sg- R_0) if and only if for each $(1,2)^*$ -sg-open set G and $x \in G$ implies $(1,2)^*$ -sg- $cl(\{x\}) \subset G$.
- (2). A subset A of a bitopological space X is called $(1,2)^*-g^*$ -preclosed (briefly $(1,2)^*-g^*p$ -closed) if $(1,2)^*-pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*-g$ -open in X. The complement of a $(1,2)^*-g^*p$ -closed set is called $(1,2)^*-g^*p$ -open.

The family of all $(1,2)^*$ -g*p-closed sets of X is denoted by $(1,2)^*$ -G*PC(X).

Definition 3.2. A bitopological space X is called

- (1). $(1,2)^*$ -semi generalized- T_0 (briefly $(1,2)^*$ -sg- T_0) if and only if to each pair of distinct points x, y of X, there exists a $(1,2)^*$ -sg-open set containing one but not the other.
- (2). $(1,2)^*$ -semi generalized- T_1 (briefly $(1,2)^*$ -sg- T_1) if and only if to each pair of distinct points x, y of X, there exist a pair of $(1,2)^*$ -sg-open sets, one containing x but not y, and the other containing y but not x.
- **Definition 3.3.** A bitopological space X is called
- (1). $(1,2)^* \alpha T_b$ -space if every $(1,2)^* \alpha g$ -closed subset of X is $\tau_{1,2}$ -closed in X.
- (2). $(1,2)^*$ - T_{ω} -space if every $(1,2)^*$ - ω -closed subset of X is $\tau_{1,2}$ -closed in X.
- (3). $(1,2)^*$ - T_{p*} -space if every $(1,2)^*$ - g^*p -closed subset of X is $\tau_{1,2}$ -closed in X.
- (4). $(1,2)^{*}$ -* $_{s}T_{p}$ -space if every $(1,2)^{*}$ -gsp-closed subset of X is $(1,2)^{*}$ -g*p-closed in X.
- (5). $(1,2)^* \alpha T_d$ -space if every $(1,2)^* \alpha g$ -closed subset of X is $(1,2)^* g$ -closed in X.
- (6). $(1,2)^*$ - α -space if every $(1,2)^*$ - α -closed subset of X is $\tau_{1,2}$ -closed in X.

Theorem 3.4. For a bitopological space X, each of the following statement is equivalent:

- (1). X is $(1,2)^*$ -sg-T₁.
- (2). Each one point set is $(1,2)^*$ -sg-closed set in X.

Definition 3.5. A bitopological space X is called a $T_{(1,2)^{\star}-\psi}$ -space if every $(1,2)^{\star}-\psi$ -closed subset of X is $\tau_{1,2}$ -closed in X.

Example 3.6. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, \{b, c\}, X\}$. Then the sets in $\{\emptyset, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1, 2)^* - \psi C(X) = \{\emptyset, \{a\}, \{b, c\}, X\}$. Thus X is a $T_{(1,2)^* - \psi}$ -space.

Example 3.7. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}\}$ are called $\tau_{1,2}$ -closed. Then $(1, 2)^* - \psi C(X) = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$. Thus X is not a $T_{(1,2)^*-\psi}$ -space.

Proposition 3.8. Every $(1,2)^* - T_{\frac{1}{2}}$ -space is $T_{(1,2)^*-\psi}$ -space but not conversely.

The converse of Proposition 3.8 need not be true as seen from the following example.

Example 3.9. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{c\}\}$ and $\tau_2 = \{\emptyset, X, \{a, b\}\}$. Then the sets in $\{\emptyset, X, \{c\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}, \{a, b\}\}$ are called $\tau_{1,2}$ -closed. Then we have $(1,2)^* - GC(X) = P(X)$ and $(1,2)^* - \psi C(X) = \{\emptyset, X, \{c\}, \{a, b\}\}$. Thus X is a $T_{(1,2)^* - \psi}$ -space but not an $(1,2)^* - T_{\frac{1}{2}}$ -space.

Proposition 3.10. Every $(1,2)^*$ - T_ω -space is $T_{(1,2)^*-\psi}$ -space but not conversely.

The converse of Proposition 3.10 need not be true as seen from the following example.

Example 3.11. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X, \{b\}\}$. Then the sets in $\{\emptyset, X, \{b\}, \{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1, 2)^* - \hat{G}C(X) = P(X)$ and $(1, 2)^* - \psi C(X) = \{\emptyset, \{b\}, \{a, c\}, X\}$. Thus X is a $T_{(1,2)^* - \psi}$ -space but not an $(1, 2)^* - T_{\omega}$ -space.

Proposition 3.12. Every $(1,2)^* \cdot \alpha T_b$ -space is $T_{(1,2)^* \cdot \psi}$ -space but not conversely.

The converse of Proposition 3.12 need not be true as seen from the following example.

Example 3.13. In Example 3.9, we have $(1,2)^* - \alpha GC(X) = P(X)$. Thus X is a $T_{(1,2)^*-\psi}$ -space but not an $(1,2)^* - \alpha T_b$ -space.

Proposition 3.14. Every $(1,2)^*$ -*s T_p -space and $(1,2)^*$ - T_{p*} -space is $T_{(1,2)^*-\psi}$ -space but not conversely.

The converse of Proposition 3.14 need not be true as seen from the following example.

Example 3.15. In Example 3.9, we have $(1,2)^*$ -GSPC(X) = P(X) and $(1,2)^*$ -G*PC(X) = P(X). Thus X is a $T_{(1,2)^*-\psi^-}$ space but it is neither an $(1,2)^*$ -*s T_p -space nor an $(1,2)^*$ - T_{p*} -space.

Proposition 3.16. Every $(1,2)^*$ - T_b -space is $T_{(1,2)^*-\psi}$ -space but not conversely.

The converse of Proposition 3.16 need not be true as seen from the following example.

Example 3.17. In Example 3.9, we have $(1,2)^*$ -GSC(X) = P(X). Thus X is a $T_{(1,2)^*-\psi}$ -space but not an $(1,2)^*$ - T_b -space.

Remark 3.18. Every $T_{(1,2)^*-\psi}$ -space is $(1,2)^*-\alpha$ -space but not conversely.

Example 3.19. In Example 3.7, we have $(1, 2)^* - \alpha C(X) = \{\emptyset, \{b\}, X\}$. Thus X is an $(1, 2)^* - \alpha$ -space but not an $T_{(1,2)^* - \psi}$ -space.

Theorem 3.20. For a bitopological space X, we have $(1) \Rightarrow (2)$ where

(1). X is a $T_{(1,2)^*-\psi}$ -space.

(2). Every singleton subset of X is either $(1,2)^*$ -sg-closed or $\tau_{1,2}$ -open.

Proof. (1) \Rightarrow (2). Assume that for some $x \in X$, the set $\{x\}$ is not $(1,2)^*$ -sg-closed in X. Then the only $(1,2)^*$ -sg-open set containing $\{x\}^c$ is X and so $\{x\}^c$ is $(1,2)^*$ - ψ -closed in X. By assumption $\{x\}^c$ is $\tau_{1,2}$ -closed in X or equivalently $\{x\}$ is $\tau_{1,2}$ -open.

Theorem 3.21. For a bitopological space X the following properties hold:

(1). If X is $(1,2)^*$ -sg-T₁, then it is $T_{(1,2)^*-\psi}$.

(2). If X is $T_{(1,2)^{\star}-\psi}$, then it is $(1,2)^{\star}$ -sg-T₀.

Proof.

(1). The proof is obvious from Theorem 3.4.

(2). Let x and y be two distinct elements of X. Since the space X is $T_{(1,2)^*-\psi}$, we have that $\{x\}$ is $(1,2)^*$ -sg-closed or $\tau_{1,2}$ -open. Suppose that $\{x\}$ is $\tau_{1,2}$ -open. Then the singleton $\{x\}$ is a $(1,2)^*$ -sg-open set such that $x \in \{x\}$ and $y \notin \{x\}$. Also, if $\{x\}$ is $(1,2)^*$ -sg-closed, then $X \setminus \{x\}$ is $(1,2)^*$ -sg-open such that $y \in X \setminus \{x\}$ and $x \notin X \setminus \{x\}$. Thus, in the above two cases, there exists a $(1,2)^*$ -sg-open set U of X such that $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$. Thus, the space X is $(1,2)^*$ -sg-T₀.

Theorem 3.22. For a $(1,2)^*$ -sg-R₀ bitopological space X the following properties are equivalent:

- (1). X is $(1,2)^*$ -sg-T₀.
- (2). X is $T_{(1,2)^{\star}-\psi}$.
- (3). X is $(1,2)^*$ -sg-T₁.

Proof. It suffices to prove only $(1) \Rightarrow (3)$. Let $x \neq y$ and since X is $(1,2)^*$ -sg-T₀, we may assume that $x \in U \subseteq X \setminus \{y\}$ for some $(1,2)^*$ -sg-open set U. Then $x \in X \setminus (1,2)^*$ -sg-cl($\{y\}$) and $X \setminus (1,2)^*$ -sg-cl($\{y\}$) is $(1,2)^*$ -sg-open. Since X is $(1,2)^*$ -sg-R₀, we have $(1,2)^*$ -sg-cl($\{x\}$) $\subseteq X \setminus (1,2)^*$ -sg-cl($\{y\}$) $\subseteq X \setminus \{y\}$ and hence $y \notin (1,2)^*$ -sg-cl($\{x\}$). There exists $(1,2)^*$ -sg-open set V such that $y \in V \subseteq X \setminus \{x\}$ and X is $(1,2)^*$ -sg-T₁.

4. $gT_{(1,2)^{\star}-\psi}$ -spaces

Definition 4.1. A bitopological space X is called an $gT_{(1,2)^{\star}-\psi}$ -space if every $(1,2)^{\star}$ -g-closed set in it is $(1,2)^{\star}-\psi$ -closed.

Example 4.2. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{c\}, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ are called $\tau_{1,2}$ -closed. Then X is an $gT_{(1,2)^{\star}-\psi}$ -space and the space X in the Example 3.6, is not an $gT_{(1,2)^{\star}-\psi}$ -space.

Proposition 4.3. Every $T_{(1,2)^{\star}-\psi}$ -space and $gT_{(1,2)^{\star}-\psi}$ -space is $(1,2)^{\star}$ - $T_{1/2}$ -space but not conversely.

The converse of Proposition 4.3 need not be true as seen from the following example.

Example 4.4. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{c\}\}$. Then the sets in $\{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Then X is a $gT_{(1,2)^*-\psi}$ -space but not an $(1,2)^*-T_{\frac{1}{2}}$ -space.

Remark 4.5. $T_{(1,2)^{\star}-\psi}$ -spaces and $gT_{(1,2)^{\star}-\psi}$ -spaces are independent.

Example 4.6. In Example 3.6, X is $gT_{(1,2)^*-\psi}$ -space but not an $T_{(1,2)^*-\psi}$ -space.

Example 4.7. In Example 3.6, X is an $T_{(1,2)^{\star}-\psi}$ -space but not an $gT_{(1,2)^{\star}-\psi}$ -space.

Theorem 4.8. If X is a $gT_{(1,2)^*-\psi}$ -space, then every singleton subset of X is either $(1,2)^*$ -g-closed or $(1,2)^*-\psi$ -open.

Proof. Assume that for some $x \in X$, the set $\{x\}$ is not a $(1,2)^*$ -g-closed set in X. Then $\{x\}$ is not a $\tau_{1,2}$ -closed set, since every $\tau_{1,2}$ -closed set is a $(1,2)^*$ -g-closed set. So $\{x\}^c$ is not $\tau_{1,2}$ -open and the only $\tau_{1,2}$ -open set containing $\{x\}^c$ is X itself. Therefore $\{x\}^c$ is trivially a $(1,2)^*$ -g-closed set and by assumption, $\{x\}^c$ is an $(1,2)^*$ - ψ -closed set or equivalently $\{x\}$ is $(1,2)^*$ - ψ -open.

The converse of Theorem 4.8 need not be true as seen from the following example.

Example 4.9. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{b\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a, c\}\}$ are called $\tau_{1,2}$ -closed, the sets $\{a\}$ and $\{c\}$ are $(1, 2)^*$ -g-closed in X and the set $\{b\}$ is $(1, 2)^*$ - ψ -open. But the space X is not an $gT_{(1,2)^*-\psi}$ -space.

5. $\alpha \mathbf{T}_{(1,2)^{\star}}$ -spaces

Definition 5.1. A bitopological space X is called an $\alpha T_{(1,2)^{\star}-\psi}$ -space if every $(1,2)^{\star}-\alpha g$ -closed subset of X is $(1,2)^{\star}-\psi$ -closed in X.

Example 5.2. In Example 3.7, X is an $\alpha T_{(1,2)^{\star}-\psi}$ -space and the space X in the Example 3.6, is not an $T_{(1,2)^{\star}-\psi}$ -space.

Proposition 5.3. Every $(1, 2)^* - \alpha T_b$ -space is an $\alpha T_{(1,2)^*-\psi}$ -space but not conversely.

The converse of Proposition 5.3 need not be true as seen from the following example.

Example 5.4. In Example 3.7, X is an $\alpha T_{(1,2)^*}$ - ψ -space but not an $(1,2)^*$ - αT_b -space.

Proposition 5.5. Every $\alpha T_{(1,2)^*-\psi}$ -space is an $(1,2)^*-\alpha T_d$ -space but not conversely.

Proof. Let X be an $\alpha T_{(1,2)^*-\psi}$ -space and let A be an $(1,2)^*-\alpha g$ -closed set of X. Then A is a $(1,2)^*-\psi$ -closed subset of X and by Proposition 2.11, A is $(1,2)^*$ -g-closed. Therefore X is an $(1,2)^*-\alpha T_d$ -space.

The converse of Proposition 5.5 need not be true as seen from the following example.

Example 5.6. In Example 4.9, X is an $(1,2)^* - \alpha T_d$ -space but not an $\alpha T_{(1,2)^*-\psi}$ -space.

Theorem 5.7. If (X, τ) is an $\alpha T_{(1,2)^*-\psi}$ -space, then every singleton subset of X is either $(1,2)^*-\alpha g$ -closed or $(1,2)^*-\psi$ -open.

The converse of Theorem 5.7 need not be true as seen from the following example.

Example 5.8. In Example 4.9, the sets $\{a\}$ and $\{c\}$ are $(1,2)^*$ - αg -closed in X and the set $\{b\}$ is $(1,2)^*$ - ψ -open. But the space X is not an $\alpha T_{(1,2)^*-\psi}$ -space.

References

F.G.Arenas, J.Dontchev and M.Ganster, On λ-sets and dual of generalized continuity, Questions Answers Gen. Topology, 15(1997), 3-13.

 ^[2] Z.Duszynski, O.Ravi, M.Jeyaraman, M.S.Joseph and M.L.Thivagar, A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.

- [3] W.Dunham, T_{1/2}-spaces, Kyungpook Math. J., 17(1977), 161-169.
- [4] S.Jafari, M.Lellis Thivagar and Nirmala Mariappan, $On(1,2)^* \alpha \hat{g}$ -closed sets, J. Adv. Math. Studies, 2(2)(2009), 25-34.
- [5] M.Lellis Thivagar, O.Ravi and M.E.Abd El-Monsef, Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1)(2008), 17-25.
- [6] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [7] O.Ravi and S.Ganesan, $(1, 2)^*$ - \ddot{g}_{α} -closed sets in bitopology, (submitted).
- [8] O.Ravi, M.Kamaraj, A.Pandi and K.Kumaresan, (1,2)*-*ÿ*-closed and (1,2)*-*ÿ*-open maps in bitopological spaces, International Journal of Mathematical Archive, 3(2)(2012), 586-594.
- [9] O.Ravi and M.Lellis Thivagar, On stronger forms of (1,2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra., 14(6)(2004), 481-492.
- [10] O.Ravi and M.Lellis Thivagar, A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2)29(1)(2006), 79-88.
- [11] O.Ravi, A.Pandi and R.Latha, Contra-pre-(1,2)*-semi-continuous functions, Bessel Journal of Mathematics, (To appear).
- [12] O.Ravi, S.Pious Missier and T.Salai Parkunan, On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11)(2010), 543-557.
- [13] O.Ravi, M.L.Thivagar and E.Hatir, Decomposition of (1,2)*-continuity and (1,2)*-α-continuity, Miskolc Mathematical Notes., 10(2)(2009), 163-171.
- [14] O.Ravi and M.L.Thivagar, Remarks on λ -irresolute functions via $(1, 2)^*$ -sets, Advances in App. Math. Analysis, 5(1)(2010), 1-15.
- [15] O.Ravi, M.L.Thivagar and Jinjinli, Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2)(2011), 177-187.
- [16] S.Saranya, N.Seenivasagan and O.Ravi, $(1, 2)^*$ - ψ -closed sets, Submitted.