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1. Introduction

A unique solution of the initial value problem on the plane of linear evolution equations is obtained by constructing and

analyzing its Lax pair [1]. This problem can be analysed by performing spectral analysis of the t-independent Lax pair which

reproduces the solution obtained by two dimensional Fourier transform. An equation will be called integrable if it admits

a Lax pair formulation. The equation can be written as the compatibility condition of two linear eigenvalue equations. In

particular, for evolution equations, these two equations are referred to as the x-part and as the t-part of the Lax pair. The

spectral analysis of the x-part yeilds the direct and inverse Fourier transform in two dimensions, while the t-part is used to

determine the time evolution of the Fourier data, which is called spectral data.

1.1. Lax pairs for linear PDE’s

Proposition 1.1. Let L(∂x1 , ∂x2) be a linear differential operation in ∂x1 and ∂x2 with constant coefficients. A Lax pair of

the equation Lq(x1, x2) = 0 is given by

µx1 − ikµ = q, (1)

Lµ = 0. (2)

Proof. Lq = L(∂x1 − ik)µ = (∂x1 − ik)Lµ = 0. This means that if q satisfies Lq = 0 then (1) and (2) are said to be

compatible.
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Proposition 1.2. Let q(z, z, t) satisfy the linear evolution equation with constant coefficients

L(∂z, ∂z, ∂t)q = 0. (3)

Then the equations

µz − kµ = q, k ∈ C (4)

Lµ = 0 (5)

form a Lax pair for this equation.

1.2. Notations

(1). S(R2) will denote the space of complex valued Schwartz functions on R2 i.e.

S(R2) =

{
q(x) ∈ C∞ : sup

x∈R2

∣∣∣xαDβq(x)
∣∣∣ <∞, ∀ α, β}

(2). − denotes complex conjugation.

(3). ∂z = 1
2
(∂x − i∂y), ∂z = 1

2
(∂x + i∂y).

The aim of this paper is to derive a unique solution of the following initial value problem :

iqt + Lq = iqt +
1

4
(qxx + qyy) + αq = 0, (6)

q(x, y, 0) = q0(x, y) ∈ S(R2). (7)

where −∞ < x <∞, −∞ < y <∞, t > 0 and α ∈ R.

2. Initial Value Problem

Theorem 2.1. Let q(x, y, t) satisfy (6) and (7). Then the unique solution of this initial value problem is given by

q(z, z, t) =
1

2πi

∫
R2

ekz−kz+i(α−kk)tρ0(k, k)dk ∧ dk (8)

where ρ(k, k, 0) = ρ(k, k, t) at t = 0 and

ρ(k, k, t) =
1

2πi

∫
R2

e−kz+kzq(z, z, t)dz ∧ dz. (9)

Proof. Let q(x, y, t) satisfy (7). Equation (6) can be rewritten in the form

iqt + qzz + αq = 0. (10)

Equations (4) and

iµt + kµz + αµ = −qz. (11)
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form its Lax pair. Indeed, if q satisfies (10), differentiating (4) w.r.t. z and eliminating µzz from (5), we get (11). If we

assume that q(z, z, t) exists, has sufficient smoothness and decay, and perform the spectral analysis of equation (4). Now

this means that we construct a solution µ, which for every fixed z and z is bounded in k, k ∈ C, and which is of O(1/k) as

k →∞ [3]. Equation (4) can be written as

∂z(µe
−kz+kz) = qe−kz+kz, (12)

where the term exp(kz) is used to ensure the boundedness of exp(−kz + kz). This equation together with the assumption

that q → 0 as z →∞ [3], imply

µ(z, z, t, k) =
1

2πi

∫
R2

ek(z−ξ)−(z−ξ)

ξ − z q(ξ, ξ, t)dξ ∧ dξ (13)

But

∂µ

∂k
= ekz−kzρ(k, k, t), (14)

where ρ(k, k, t) is defined by (9). Equation (13) implies that µ = O(1/k), k →∞. This estimate and (13) imply

µ(z, z, t, k) =
1

2πi

∫
R2

elz−lzρ(l, l, t)

l − k dl ∧ dl. (15)

Substituting, this equation into (4), we find

q(z, z, t) =
1

2πi

∫
R2

elz−lzρ(l, l, t)dl ∧ dl. (16)

Thus, the spectral analysis of (4) yields (9) and (16) which are direct and the inverse Fourier transform in two dimensions.

In order to find the time evolution of the Fourier data, we use the t part of the Lax pair : Equation (13) implies that

ρ(k, k, t) = − lim
z→∞

ze−kz+kzµ(z, z, t, k). (17)

Differentiating wrt z we get,

0 = lim
z→∞

ze−kz+kzµz(z, z, t, k) + kze−kz+kzµ(z, z, t, k) + e−kz+kzµ(z, z, t, k)

The last term in the absolute value tends to zero as z →∞ since exponential is bounded under absolute value for all z and

k and µ→∞ by the definition of µ. Thus we get,

0 = lim
z→∞

ze−kz+kzµz(z, z, t, k) + k(−ρ) + 0.

Now multiplying by ze−kz+kz in (11), equation (17) and the assumption q → 0 as z →∞ yields

ρt − i(α− kk)ρ = 0. (18)

Solving this equation in terms of ρ(k, k, 0) and using Eq.(9) at t = 0, (8) follows where

ρ0(k, k) =
1

2πi

∫
R2

e−kz+kzq0(z, z)dz ∧ dz (19)

Equations (8) and (19) hence lead the solution of the initial value problem (6) and (7) without a priori assumption of

existence: Given q0 ∈ S(R2) define ρ0(k, k) by (19).
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Given ρ0 define q(z, z, t) by (19). Since the dependence of q on z, z, t is of the form ekz−kz+i(α−kk)t, it immediately follows

that q satisfies the (10). All that remains is to show that q(z, z, 0) = q0(z, z) i.e.

q0(z, z) =
1

2πi

∫
R2

ekz−kzρ0(k, k)dk ∧ dk. (20)

If one assumes the validity of the inversion formula for the two dimensional Fourier transform, then (20) is a consequence

of the definition (19).

References

[1] P.D.Lax, Integrals of nonlinear equation of evolution and solitary waves, Commun. Pure Appl., 21(1968), 467-490.

[2] A.S.Fokas, On the integrability of linear and nonlinear partial differential equations, Journal of Mathematical Physics,

41(2000), 4188-4237.

[3] M.J.Ablowitz and A.S.Fokas, Introduction and Applications of Complex Variables, Cambridge University Press, Cam-

bridge, UK, (1997).

12


	Introduction
	Initial Value Problem
	References

