International Journal of Mathematics And its Applications

Super Lehmer-3 Mean Labeling of Tree Related Graphs

Research Article

R.Gopi ${ }^{1 *}$ and V.Suba ${ }^{1}$

1 PG and Research Department of Mathematics, Srimad Andavan Arts and Science College (Autonomous), Trichy, Tamilnadu, India.

Abstract: Let $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ be an injective function. The induced edge labeling $f^{*}(e=u v)$ is defined by

$$
\left.f^{*}(e)=\left\lceil\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rceil \quad(\text { or }) \quad \frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rfloor,
$$

then f is called Super Lehmer-3 mean labeling, if $\{f(V(G))\} U\{f(e) / e \in E(G)\}=\{1,2,3, \ldots, p+q\}$. A graph which admits Super Lehmer-3 Mean labeling is called Super Lehmer-3 Mean graph. In this paper we prove that $P_{m} \Theta K_{1, n}$, $\left(P_{m}, S_{n}\right)$.
Keywords: Super Lehmer-3 mean graph, $P_{m} \Theta K_{1, n},\left(P_{m}, S_{n}\right)$.
(C) JS Publication.

1. Introduction

A graph considered here are finite, undirected and simple. The vertex set and the edge set of a graph is denoted by $V(G)$ and $E(G)$ respectively. Lehmer mean is another type of generalized mean. For standard terminology and notations, we follow [2] and for the detailed survey of graph labeling we follow [1]. [3, 4] introduced the concept of Harmonic Mean Labeling of Graph and its basic results was proved. We will provide a brief summary of other in formations which are necessary for our present investigation.

Definition 1.1. A graph $G=(V, E)$ with p vertices and q edges is called Lehmer-3 mean graph. If it is possible to label vertices $x \in V$ with distinct labels $f(x)$ from $1,2,3, \ldots, q+1$ in such a way that when each edge $e=u v$ is labeled with

$$
f^{*}(e)=\left\lceil\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rceil \quad \text { (or) }\left\lfloor\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rfloor
$$

then the edge labels are distinct. In this case f is called Lehmer-3 mean labeling of G.

2. Main Results

Theorem 2.1. The graph $P_{m} \Theta K_{1, n}$ is a super lehmer 3-mean graph.

Proof. Let $\left\{u_{i}, 1 \leq i \leq m, u_{i j}, 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the vertices and $\left\{e_{i}, 1 \leq i \leq m-1, e_{i j}, 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the edges which are denoted as in Figure 1

[^0]

Figure 1. Ordinary labeling of $P_{m} \Theta K_{1, n}$

First we label the vertices as follows: Define $f: V \rightarrow\{1,2, \ldots, p+q\}$ by
For $1 \leq i \leq m, f\left(u_{i}\right)=2 i-1$; For $1 \leq i \leq m, 1 \leq j \leq n, f\left(u_{i j}\right)=2 m+2 n(i-1)+2 j-1$. Then the induced edge labels are:

For $1 \leq i \leq m-1, f^{*}\left(e_{i}\right)=2 i$; For $1 \leq i \leq m, 1 \leq j \leq n, f^{*}\left(e_{i j}\right)=2 m+2 n(i-1)+2(j-1)$. Therefore, the graph $P_{m} \Theta K_{1, n}$ is a super lehmer 3-mean graph. Super lehmer 3-mean labeling of $P_{4} \Theta K_{1,4}$ is shown in Figure 2

Figure 2. Super Lehmer-3 mean graph $P_{4} \Theta K_{1,4}$

Theorem 2.2. The graph $\left(P_{m}, S_{n}\right)$ is a super lehmer-3 mean graph.
Proof. Let $\left\{u_{i}, v_{i}, 1 \leq i \leq m, v_{i j}, 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the vertices and $\left\{a_{i}, 1 \leq i \leq m-1, b_{i}, 1 \leq i \leq m, e_{i j}, 1 \leq\right.$ $i \leq m, 1 \leq j \leq n\}$ be the edges which are denoted as in Figure 3

Figure 3. Ordinary labeling of $\left(P_{m}, S_{n}\right)$

First we label the vertices as follows: Define $f: V \rightarrow\{1,2, \ldots, p+q\}$ by
For $1 \leq i \leq m$
$f\left(u_{i}\right)=2 i-1$
$f(v i)=2 n+2(m+1)(i-1)+1$
For $1 \leq i \leq m, 1 \leq j \leq n, f\left(v_{i j}\right)=2 n+2(m+1)(i-1)+2 j+1$. Then the induced edge labels are:
For $1 \leq i \leq m-1, f^{*}\left(a_{i}\right)=2 i$
For $1 \leq i \leq m, f^{*}\left(b_{i}\right)=2 n+2(m+1)(i-1)$
For $1 \leq i \leq m, 1 \leq i \leq n, f^{*}\left(e_{i j}\right)=2 n+2(m+1)(i-1)+2 j$. Therefore, the graph $\left(P_{m}, S_{n}\right)$ is a super lehmer 3-mean graph. Super lehmer 3-mean labeling of $\left(P_{4}, S_{4}\right)$ is shown in Figure 4

Figure 4. Super Lehmer-3 mean graph (P_{4}, S_{4})

References

[1] J.A.Gallian, A dynamic survey of graph labelling, The electronic journal of combinatories, 17(2015), \#DS6.
[2] F.Harary, Graph theory, Narosa Publication House reading, New Delhi, (1988).
[3] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, Lehmer-3 Mean Labeling of Some New Disconnected Graphs, International Journal of Mathematics Trends and Technology, 35(1)(2016).
[4] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, Lehmer-3 Mean Labeling of Disconnected Graphs, Asia Pacific Journal of Research, 1(XL)(2016).

[^0]: * E-mail: drrgmaths@gmail.com

