International Journal of Mathematics And its Applications

Further Odd-Even Sum Labeling Graphs

Research Article

K.Monika ${ }^{1 *}$ and K.Murugan ${ }^{2}$
1 Department of Mathematics, M.S.U College, Govindaperi, Tirunelveli, Tamil Nadu, India.
2 Department of Mathematics, The M.D.T.Hindu College, Tirunelveli, Tamil Nadu, India.

Abstract

A (p, q) graph $G=(V, E)$ is said to be an odd-even sum graph if there exists an injective function $f: V(G) \rightarrow\{ \pm 1, \pm 3 \pm$ $5, \ldots, \pm(2 p-1)\}$ such that the induced mapping $f^{*}: E(G) \rightarrow\{2,4,6, \ldots, 2 q\}$ defined by $f^{*}(u v)=f(u)+f(v) \forall u v \in E(G)$ is bijective. The function f is called an odd-even sum labeling of G. In this paper, odd-even sum labeling of subdivision of star $K_{1, n}(n \geq 1)$,Subdivision of bistar $B_{m, n}$, and H-graphs are studied.

MSC: 05 C 78 .

Keywords: Odd-even sum graph, odd-even sum labeling.
(C) JS Publication.

1. Introduction

Graphs considered in this paper are finite, undirected and without loops or multiple edges. Let $G=(V, E)$ be a graph with p vertices and q edges. Terms not defined here are used in the sense of Harary [3]. For number theoretic terminology [1] is followed.A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions.

If the domain of the mapping is the set of vertices(edges/both) then the labeling is called a vertex(edge/total) labeling. There are several types of graph labeling and a detailed survey is found in [6]. Harary [4] introduced the notion of a sum graph. A graph $G=(V, E)$ is called a sum graph if there is an bijection f from V to a set of $+v e$ integers S such that $x y \in E$ if and only if $(f(x)+f(y)) \in S$. In 1991 Harary [5] defined a real sum graph. An injective function $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ is an odd sum labeling [2] if the induced edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v) \forall u v \in E(G)$ is bijective and $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$.

A graph is said to be an odd sum graph if it admits an odd sum labeling. D.Ramya et al. introduced Skolem Even-Vertex-odd difference mean labeling in [10]. Ponraj et al. [9] defined pair sum labeling. An injective function $f: V(G) \rightarrow\{ \pm 1, \pm 3 \pm$ $5, \ldots, \pm(2 p-1)\}$ is an odd-even sum labeling [7] if the induced edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v) \forall u v \in E(G)$ is bijective and $f^{*}: E(G) \rightarrow\{2,4,6, \ldots, 2 q\}$. A graph is said to be an odd-even sum graph if it admits an odd-even sum labeling. In this paper, odd-even sum labeling of some other graphs are studied. The following definitions are used in the subsequent section.

[^0]Definition 1.1 ([3]). A complete bipartite graph $K_{1, n}(n \geq 1)$ is called a star and it has $n+1$ vertices and n edges.

Definition 1.2 ([3]). Bistar $B_{m, n}$ is the graph obtained from a copy of star $K_{1, m}$ and a copy of star $K_{1, n}$ by joining the vertices of maximum degree by an edge.

Definition 1.3 ([11]). A subdivision of a graph G is a graph that can be obtained from G by sequence of edge subdivisons.

Definition 1.4 ([8]). The H-graph of a path P_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd $v_{\frac{n}{2}}$ and $u_{\frac{n}{2}+1}$ if n is even.

2. Main Results

Theorem 2.1. Subdivision of Star $K_{1, n}(n \geq 1)$ is an odd-even sum graph.

Proof. Let $S\left(K_{1, n}\right)$ is a subdivision of star $K_{1, n}$. Let $v, v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $K_{1, n}$. Let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ be the vertices obtained by subdivision of every edge exactly once. Let $V\left(S\left(K_{1, n}\right)\right)=\left\{u, v_{i}, v_{i}^{\prime} / 1 \leq i \leq n\right\}$.
Let $E\left(S\left(K_{1, n}\right)\right)=\left\{u v_{i}^{\prime}, v_{i}^{\prime} v_{i} / 1 \leq i \leq n\right\}$. Then $\left|V\left(S\left(K_{1, n}\right)\right)\right|=2 n+1,\left|E\left(S\left(K_{1, n}\right)\right)\right|=2 n$. Let $f: V\left(S\left(K_{1, n}\right)\right) \rightarrow$ $\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(4 n+1)\}$ be defined as follows.

$$
\begin{aligned}
f(v) & =4 n+1 \\
f\left(v_{i+1}\right) & =4 i+3 ; \quad 0 \leq i \leq n-1 \\
f\left(v_{i+1}^{\prime}\right) & =-1-2 i ; \quad 0 \leq i \leq n-1
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then

$$
\begin{aligned}
& f^{*}\left(u v_{i+1}^{\prime}\right)=4 n-2 i, \quad 0 \leq i \leq n-1 \\
& f^{*}\left(v_{i+1}^{\prime} v_{i}\right)=2+2 i, \quad 0 \leq i \leq n-1
\end{aligned}
$$

The induced edge labels are $2,4,6, \ldots, 4 n$ which are all distinct. Hence $S\left(K_{1, n}\right)$ is an odd-even sum graph.

Theorem 2.2. The graph obtained by subdiving central edge of Bistar $B_{m, n}$ is an odd-even sum graph.

Proof. Let G be the graph obtained by subdiving central edge of $B_{m, n}$. Let $v, w, v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}$ and u be the vertices of G. Let $V(G)=\left\{v, w, u, v_{i}, w_{j} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E(G)=\left\{v v_{i}, w w_{j}, v u, u w / 1 \leq i \leq m, 1 \leq j \leq n\right\}$. Then $|V(G)|=m+n+3,|E(G)|=m+n+2$. Let $f: V(G) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(2 m+2 n+5)\}$ be defined as follows.

$$
\begin{aligned}
f(v) & =2 m+2 n+5 \\
f(w) & =2 m+2 n+3 \\
f\left(v_{i}\right) & =-1-2 i ; \quad 0 \leq i \leq m-1 \\
f(u) & =f\left(v_{n}\right)-2 \\
f\left(w_{j}\right) & =f(u)-2 j ; \quad 1 \leq j \leq n
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then

$$
\begin{aligned}
f^{*}\left(v v_{i}\right) & =2 m+2 n+4-2 i ; \quad 0 \leq i \leq m-1 \\
f^{*}(v u) & =2 n+4 \\
f^{*}(u w) & =2 n+2 \\
f^{*}\left(w w_{j}\right) & =2 n-2 j ; \quad 0 \leq j \leq n-1
\end{aligned}
$$

The induced edge labels are $2,4,6, \ldots, 2 m+2 n+4$ which are all distinct. Hence G is an odd-even sum graph.
Theorem 2.3. The graph obtained by subdiving all the edges except central edge of Bistar $B_{m, n}$ is an odd-even sum graph.
Proof. Let G be the graph obtained by subdiving all the edges except central edge of Bistar $B_{m, n}$. Let $v, w, v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}$ and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n}^{\prime}$ be the vertices of G.
Let $V(G)=\left\{v, w, v_{i}, w_{j}, v_{i}^{\prime}, w_{j}^{\prime} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E(G)=\left\{v v_{i}^{\prime}, v_{i}^{\prime} v_{i}, w w_{j}^{\prime}, w_{j}^{\prime} w_{j}, v w / 1 \leq i \leq m, 1 \leq j \leq n\right\}$. Then $|V(G)|=2 m+2 n+2,|E(G)|=2 m+2 n+1$. Let $f: V(G) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(4 m+4 n+3)\}$ be defined as follows.

$$
\begin{aligned}
f(v) & =4 m+4 n+3 \\
f\left(v_{i+1}^{\prime}\right) & =-1-2 i ; \quad 0 \leq i \leq m-1 \\
f(w) & =f\left(v_{n}^{\prime}\right)-2 \\
f\left(v_{i+1}\right) & =3+4 i ; \quad 0 \leq i \leq m-1 \\
f\left(w_{j}\right) & =f(w)-2 j ; \quad 1 \leq j \leq n \\
f\left(w_{j+1}^{\prime}\right) & =4 m+3+4 j ; \quad 0 \leq j \leq n-1
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then

$$
\begin{aligned}
f^{*}\left(v v_{i}^{\prime}\right) & =4 m+4 n+2-2 i ; \quad 0 \leq i \leq m-1 \\
f^{*}\left(v_{i+1}^{\prime} v_{i+1}\right) & =2+2 i ; \quad 0 \leq i \leq m-1 \\
f^{*}(v w) & =2 m+4 n+2 \\
f^{*}\left(w w_{j+1}^{\prime}\right) & =2 m+4 n-2 j ; \quad 0 \leq j \leq n-1 \\
f^{*}\left(w_{j+1}^{\prime} w_{j+1}\right) & =2 m+2 j, \quad 1 \leq j \leq n
\end{aligned}
$$

The induced edge labels are $2,4,6, \ldots, 4 m+4 n+2$ which are all distinct. Hence G is an odd-even sum graph.
Theorem 2.4. The graph obtained by subdiving all the edges of Bistar $B_{m, n}$ is an odd-even sum graph.
Proof. Let G be the graph obtained by subdiving all the edges of Bistar $B_{m, n}$. Let $v, w, u, v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}$ and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n}^{\prime}$ be the vertices of G.
Let $V(G)=\left\{v, u, w, v_{i}, w_{j}, v_{i}^{\prime}, w_{j}^{\prime} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E(G)=\left\{v v_{i}^{\prime}, v_{i}^{\prime} v_{i}, w w_{j}^{\prime}, w_{j}^{\prime} w_{j}, v u, u w / 1 \leq i \leq m, 1 \leq j \leq n\right\}$. Then $|V(G)|=2 m+2 n+3,|E(G)|=2 m+2 n+2$. Let $f: V(G) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(4 m+4 n+5)\}$ be defined as follows.

$$
\begin{aligned}
f(v) & =4 m+4 n+5 \\
f\left(v_{i+1}^{\prime}\right) & =-1-2 i ; \quad 0 \leq i \leq m-1 \\
f\left(v_{i+1}\right) & =3+4 i ; \quad 0 \leq i \leq m-1
\end{aligned}
$$

$$
\begin{aligned}
f(u) & =f\left(v_{n}^{\prime}\right)-2 \\
f(w) & =4 m+4 n+3 \\
f\left(w_{j}^{\prime}\right) & =f(u)-2 j ; \quad 1 \leq j \leq n \\
f\left(w_{j+1}\right) & =4 m+5+4 j ; \quad 0 \leq j \leq n-1
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then

$$
\begin{aligned}
f^{*}\left(v v_{i}^{\prime}\right) & =4 m+4 n+4-2 i ; \quad 0 \leq i \leq m-1 \\
f^{*}\left(v_{i+1}^{\prime} v_{i+1}\right) & =2+2 i ; 0 \leq i \leq m-1 \\
f^{*}(v u) & =2 m+4 n+4 \\
f^{*}(v u) & =2 m+4 n+2 \\
f^{*}\left(w w_{j+1}^{\prime}\right) & =2 m+4 n-2 j ; \quad 0 \leq j \leq n-1 \\
f^{*}\left(w_{j+1}^{\prime} w_{j+1}\right) & =2 m+2 j, \quad 1 \leq j \leq n
\end{aligned}
$$

The induced edge labels are $2,4,6, \ldots, 4 m+4 n+4$ which are all distinct. Hence G is an odd-even sum graph.

Theorem 2.5. The H-graph of a path P_{n} is an odd-even sum graph.
Proof. Let G be the H-graph. Let $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G. Let $V(G)=\left\{v_{i}, u_{i} / 1 \leq i \leq n\right\}$ and $E(G)=\left\{v_{i} v_{i+1}, u_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right.$ if n is odd $u_{\frac{n}{2}} v_{\frac{n}{2}+1}$ if n is even $\}$. Then $|V(G)|=2 n,|E(G)|=2 n-1$. Let $f: V(G) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(4 n-1)\}$ be defined as follows.

Case(i): if n is odd

$$
\begin{aligned}
f\left(u_{2 i+1}\right) & =(4 n-1)-2 i ; \quad 0 \leq i \leq \frac{n-1}{2} \\
f\left(u_{2 i+2}\right) & =-1-2 i ; \quad 0 \leq i<\frac{n-1}{2} \\
f\left(v_{2 i-1}\right) & =f\left(v_{n-1}\right)-2 i ; \quad 1 \leq i \leq \frac{n+1}{2} \\
f\left(v_{2 i}\right) & =f\left(v_{n}\right)-2 i ; \quad 1 \leq i \leq \frac{n-1}{2}
\end{aligned}
$$

Case(ii): if n is even

$$
\begin{aligned}
f\left(u_{2 i+1}\right) & =(4 n-1)-2 i ; \quad 0 \leq i<\frac{n}{2} \\
f\left(u_{2 i+2}\right) & =-1-2 i ; \quad 0 \leq i<\frac{n}{2} \\
f\left(v_{2 i-1}\right) & =f\left(v_{n-1}\right)-2 i ; \quad 1 \leq i \leq \frac{n}{2} \\
f\left(v_{2 i}\right) & =f\left(v_{n}\right)-2 i ; \quad 1 \leq i \leq \frac{n}{2}
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then, if n is odd

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i+1}\right) & =4 n-2 i ; 1 \leq i \leq n-1 \\
f^{*}\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right) & =2 n \\
f^{*}\left(v_{i} v_{i+1}\right) & =2 n-2 i ; 1 \leq i \leq n-1
\end{aligned}
$$

if n is even

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i+1}\right) & =4 n-2 i ; \quad 1 \leq i \leq n-1 \\
f^{*}\left(v_{\frac{n}{2}} u_{\frac{n}{2}+1}\right) & =2 n \\
f^{*}\left(v_{i} v_{i+1}\right) & =2 n-2 i ; \quad 1 \leq i \leq n-1
\end{aligned}
$$

The induced edge labels are $2,4,6, \ldots, 4 n-2$ which are all distinct. Hence G is an odd-even sum graph.

References

[1] M.Apostal, Introduction to Analytic Number Theory, Narosa Publishing House, Second Edition, (1991).
[2] S.Arockiaraj, P.Mahalakshmi and P.Namasivayam, Odd Sum Labeling Of Some Subdivision Graphs, Kragujevac Journal of Mathematics, 38(1)(2014), 203-222.
[3] Frank Harary, Graph Theory, Narosa Publishing House, New Delhi, (2001).
[4] F.Harary, Sum Graphs and Difference graphs, Congr.Numer., 72(1990), 101-108.
[5] F.Harary, Sum Graphs over all the integers, Discrete Math., 124(1994), 99-105.
[6] Joseph A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, (2015), \#DS6.
[7] K.Monika and K.Murugan, Odd-Even Sum labeling of Some Graphs, International Journal of Mathematics and Soft Computing, 7(1)(2017), 57-63.
[8] K.Murugan and A.Subramanian, Labeling of Subdivided Graphs, American Journal of Mathematics and Sciences, 4(1)(2014), 129-137.
[9] R.Ponraj and J.V.X.Parthipan, Pair Sum Labeling of Graphs, J.Indian Acad.Math., 32(2)(2010), 587-595.
[10] D.Ramya, R.Kalaiyarasi and P.Jeyanthi, Skolem Odd-Difference Mean Graphs, Journal of Algorithms and Computation, 45(2014), 1-12.
[11] T.Tharmaraj and P.B.Sarasija, Square Graceful Graphs, International Journal of Mathematics and Soft Computing, 1(1)(2015), 119-127.

[^0]: * E-mail: kmonikalyani@gmail.com

