

International Journal of Mathematics And its Applications

Properties of (i, j)- β -compact Spaces

Research Article

R.Femina¹ and N.Rajesh^{1*}

1 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamilnadu, India.

Abstract:	A kind of new (i, j) - β -compactness axiom is introduced in L-bitopological spaces, where L is a fuzzy lattice. And its topological properties are systematically studied.
MSC:	54C10, 54C08, 54C05.
Keywords:	<i>L</i> -bitopology; (i, j) - β -open set, (i, j) - β -compact set. © JS Publication.

1. Introduction

It is known that compactness and its stronger and weaker forms play very important roles in topology. Based on fuzzy topological spaces introduced by Chang [3], various kinds of fuzzy compactness [3, 6, 10] have been established. However, these concepts of fuzzy compactness rely on the structure of L and L is required to be completely distributive. In [9], for a complete De Morgan algebra L, Shi introduced a new definition of fuzzy comactness in L-topological spaces using open L-sets and their inequality. This new definition does not depend on the structure of L. In this paper, A kind of new (i, j)- β -compactness axiom is introduced in L-bitopological spaces, where L is a fuzzy lattice. And its topological properties are systematically studied.

2. Preliminaries

Throughout this paper X and Y will be nonempty ordinary sets and $L = L(\leq, \lor, \land')$ will denote a fuzzy lattice, that is, a completely distributive lattice with a smallest element 0 and largest element 1 $(0 \neq 1)$ and with an order reversion involution $a \to a'(a \in L)$. We shall denote by L^X the lattice of all L-subsets of X and if $A \in X$ by χ_A the characteristic function of A. An L-topological space is a pair (X, τ) , where τ is a subfamily of L^X which contains $\underline{0}, \underline{1}$ and is closed for any suprema and finite infima. τ is called an L-topological space (or L-bts for short) is an ordered triple (X, τ_1, τ_2) , where τ_1 and τ_2 are subfamilies of L^X which contains $\underline{0}, \underline{1}$ and is closed for any suprema and finite infima. An topological space (or L-bts for short) is an ordered triple (X, τ_1, τ_2) , where τ_1 and τ_2 are subfamilies of L^X which contains $\underline{0}, \underline{1}$ and is closed for any suprema and finite infima. An element p of L is called prime if and only if $p \neq 1$ and whenever $a, b \in L$ with $a \land b \leq p$ then $a \leq p$ or $b \leq p$ [5, 6]. The set of all prime elements of L will be denoted by pr(L). An element α of L is called union

 $^{^*}$ E-mail: nrajesh_topology@yahoo.co.in

irreducible or coprime if and only if whenever $a, b \in L$ with $\alpha \leq a \lor b$ then $\alpha \leq a$ or $\alpha \leq b$ [5]. The set of all non zero union irreducible elements of L will be denoted by M(L). It is obvious that $p \in pr(L)$ if and only if $p' \in M(L)$. Warner [12] has determined the prime element of the fuzzy lattice L^X . We have $pr(L^X) = \{x_p : x \in X \text{ and } p \in pr(L)\}$, where for each $x \in X$ and each $p \in pr(L), x_p : X \to L$ is the L-subset defined by

$$x_p(y) = \begin{cases} p & \text{if } y=x, \\ 1 & \text{otherwise.} \end{cases}$$

These x_p are called the *L*-points of *X* and we say that x_p is a member of an *L*-subset *f* and write $x_p \in f$ if and only if $f(x) \not\leq p$. Thus, the union irreducible elements of L^X are the function $x_\alpha : X \to L$ defined by

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if y=x,} \\ 0 & \text{otherwise,} \end{cases}$$

where $x \in X$ and $\alpha \in M(L)$. Hence, we have $M(L^X) = \{x_\alpha : x \in X \text{ and } \alpha \in M(L)\}$. As these x_α are identified with the *L*-points x_p of *X*, we shall refer to them as fuzzy points. When $x_\alpha \in M(L^X)$, we hall *x* and α the support of x_α $(x = Suppx_\alpha)$ and the height of $x_\alpha(\alpha = h(x_\alpha))$, respectively.

Definition 2.1 ([1]). Let (X, τ_1, τ_2) be an L-bts, $A \in L^X$. Then A is called an (i, j)- β -open set if $A \leq j \operatorname{Cl}(i \operatorname{Int}(j \operatorname{Cl}(A)))$. The complement of an (i, j)- β -open set is called an (i, j)- β -closed set. Also, (i, j)- $\beta O(L^X)$ and (i, j)- $\beta C(L^X)$ will always denote the family of all (i, j)- β -open sets and (i, j)- β -closed sets respectively. Obviously, $A \in (i, j)$ - $\beta O(L^X)$ if and only if $A' \in (i, j)$ - $\beta C(L^X)$.

Definition 2.2 ([1]). Let (L^X, τ_1, τ_2) be an L-bitopological space, $A, B \in L^X$. Let (i, j)- $\beta \operatorname{Int}(A) = \lor \{B \in L^X | B \leq A, B \in (i, j)$ - $\beta O(L^X)\}, (i, j)$ - $\beta \operatorname{Cl}(A) = \land \{B \in L^X | A \leq B, B \in (i, j)$ - $\beta C(L^X)\}$. Then (i, j)- $\beta \operatorname{Int}(A)$ and (i, j)- $\beta \operatorname{Cl}(A)$ are called the (i, j)- β -interior and (i, j)- β -closue of A respectively.

Definition 2.3 ([11]). Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two L-bitopological spaces. A function $f(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called (i, j)- β -continuous if and only if $f^{-1}(g)$ is (i, j)- β -open in (X, τ_1, τ_2) for each $g \in \sigma_i$.

Definition 2.4 ([2]). Let $\alpha \in M(L)$ and $g \in L^X$. A collection η of L-subsets is said to form an α -level filter base in the L-subset g if and only if for any finite subcollection $\{f_1, ..., f_n\}$ of η , there exists $x \in X$ with $g(x) \ge \alpha$ such that $(\bigwedge_{i=1}^n f_i)(x) \ge \alpha$. When g is the whole space X, then η is an α -lever filter base if and only if for any finite subcollection $\{f_1, ..., f_n\}$ of η , there exists $x \in X$ such that $(\bigwedge_{i=1}^n f_i)(x) \ge \alpha$.

Lemma 2.5 ([9]). Let (X, τ) be a topological space, f be an L-subset in the L-ts $(X, \omega(\tau))$ and $p \in pr(L)$. Then we have

1. $(Cl(f))^{-1}(\{t \in L : t \nleq p\}) \subset Cl(f^{-1}(\{t \in L : t \nleq p\})).$

2.
$$(\operatorname{Int}(f))^{-1}(\{t \in L : t \leq p\}) \subset \operatorname{Int}(f^{-1}(\{t \in L : t \leq p\})).$$

Lemma 2.6 ([9]). Let (X, τ) be a topological space and $A \subset X$. Considering the L-ts $(X, \omega(\tau))$ and

$$f(x) = \begin{cases} e \in L & \text{if } x \in A, \\ 0 & \text{otherwise,} \end{cases}$$

we have the following $% \left(f_{i} \right) = \int_{\partial \Omega} f_{i} \left(f_{i} \right) \left(f_{i} \right)$

$$\operatorname{Cl}(f)(x) = \begin{cases} e & \text{if } x \in \operatorname{Cl}(A), \\ 0 & \text{otherwise,} \end{cases}$$

and

$$\operatorname{Int}(f)(x) = \begin{cases} e & \text{if } x \in \operatorname{Int}(A), \\ 0 & \text{otherwise,} \end{cases}$$

Definition 2.7 ([2]). Let (X, τ) be an L-ts and $g \in L^X, r \in L$.

- 1. A collection $\mu = \{f_i\}_{i \in J}$ of L-subsets is called an r-level cover of g if and only if $(\bigvee_{i \in J} f_i)(x) \nleq r$ for all $x \in X$ with $g(x) \ge r'$. If each f_i is open then μ is called an r-level open cover of g. If g is the whole space X, then μ is called an r-level open cover of g. If g is the whole space X, then μ is called an r-level cover of X if and only if $(\bigvee_{i \in J} f_i)(x) \nleq r$ for all $x \in X$.
- 2. An r-level cover $\mu = \{f_i\}_{i \in J}$ of g is said to have a finite r-level subcover if there exists a finite subset F of J such that $(\bigvee_{i \in T} f_i)(x) \nleq r$ for all $x \in x$ with $g(x) \ge r'$.

Definition 2.8. Let (X, τ) be an L-ts and $g \in L^X$. Then g is said to be compact [7] if and ony if for every prime $p \in L$ and every collection $\{f_i\}_{i \in J}$ of open L-subsets with $(\bigvee_{i \in J} f_i)(x) \nleq p$ for all $x \in X$ with $g(x) \ge p'$, there exists a finite subset F of J such that $(\bigvee_{i \in F} f_i)(x) \nleq p$ for all $x \in X$ with $g(x) \ge p'$, that is, every p-level open cover of g has a finite p-level subcover, where $p \in pr(L)$. If g is the whole space, then the L-ts (X, τ) is called compact.

3. (i, j)- β -compactness and its Goodness

Definition 3.1. Let (X, τ_1, τ_2) be an L-bts and $g \in L^X$. The g is called (i, j)- β -compact if and only if every p-level cover of g consisting of (i, j)- β -open L-subsets has a finite p-level subcover, where $p \in pr(L)$. If g is the whole space, then we say that the L-bts (X, τ_1, τ_2) is (i, j)- β -compact.

Lemma 3.2. Let (X, τ_1, τ_2) be a bitopological space and $A \subset X$. If A is (i, j)- β -open in (X, τ_1, τ_2) , then χ_A is (i, j)- β -open in the L-bts $(X, \omega(\tau_1), \omega(\tau_2))$.

Theorem 3.3. Let (X, τ_1, τ_2) be a bitopological space. Then (X, τ_1, τ_2) is (i, j)- β -compact if and only if the L-bts $(X, \omega(\tau_1), \omega(\tau_2))$ is (i, j)- β -compact.

Proof. Let $p \in pr(L)$ and $\{f_i\}_{i \in J}$ be a *p*-level (i, j)- β -open cover of $(X, \omega(\tau_1), \omega(\tau_2))$. Then $(\bigvee_{i \in J} f_i)(x) \notin p$ for all $x \in X$. Hence for each $x \in X$ there is $i \in J$ such that $f_i(x) \notin p$, that is, $x \in f_i^{-1}(\{t \in L : t \notin p\})$. So, $X = \bigcup_{i \in J} f_i^{-1}(\{t \in L : t \notin p\})$. Because f_i is (i, j)- β -open in $(X, \omega(\tau_1), \omega(\tau_2))$, there is an (i, j)-preopen *L*-subset g_i in $(X, \omega(\tau_1), \omega(\tau_2))$ such that $g_i \leq f_i \leq \operatorname{Cl}(g_i)$ for every $\in J$. Hence by Lemma 2.5, we get $g_i^{-1}(\{t \in L : t \notin p\}) \subset f_i^{-1}(\{t \in L : t \notin p\}) \subset (\operatorname{Cl}(g_i))^{-1}(\{t \in L : t \notin p\}) \subset \operatorname{Cl}(g_i^{-1}(\{t \in L : t \notin p\}))$, Which means that $f_i^{-1}(\{t \in L : t \notin p\})$ is (i, j)- β -open in (X, τ_1, τ_2) . Thus $\{f_i^{-1}(\{t \in L : t \notin p\})\}_{i \in J}$ is an (i, j)- β -open cover of (X, τ_1, τ_2) . Since (X, τ_1, τ_2) is (i, j)- β -compact, there is a finite subset F of J such that $X = \bigcup_{i \in F} f_i^{-1}(\{t \in L : t \notin p\})$, that is, $(\bigvee_{i \in F} f_i)(x) \notin p$ for all $x \in X$. Hence, $(X, \omega(\tau_1), \omega(\tau_2))$ is (i, j)- β -compact.

Conversely let $\{A_i\}_{i\in J}$ be an (i, j)- β -open cover of (X, τ_1, τ_2) . Then by Lemma 3.2 $\{\chi_{A_i}\}_{i\in J}$ is a family of (i, j)- β -open L-subsets in $(X, \omega(\tau_1), \omega(\tau_2))$ such that $1 = (\bigvee_{i\in J} \chi_{A_i})(x) \nleq p$ for all $x \in X$ and for all $p \in pr(L)$, that is, $\{\chi_{A_i}\}_{i\in J}$ is a p-level (i, j)- β -open cover of $(X, \omega(\tau_1), \omega(\tau_2))$. Since $(X, \omega(\tau_1), \omega(\tau_2))$ is (i, j)- β -compact, there is a finite F of J such that $(\bigvee_{i\in F} \chi_{A_i})(x) \nleq p$ for all $x \in X$. Hence $(\bigvee_{i\in F} \chi_{A_i})(x) = 1$ for all $x \in X$, that is, $X = \bigcup_{i\in F} A_i$ and therefore (X, τ_1, τ_2) is (i, j)- β -compact.

Theorem 3.4. Let (X, τ_1, τ_2) be an L-bts. Then $g \in L^X$ is (i, j)- β -compact if and only if for every $\alpha \in M(L)$ and every collection $\{h_i\}_{i \in J}$ of (i, j)- β -closed L-subsets with $(\bigwedge_{i \in J} h_i)(x) \not\geq \alpha$ for all $x \in X$ with $g(x) \geq \alpha$, there is a finite subset F of J such that $(\bigwedge_{i \in T} h_i)(x) \not\geq \alpha$ for all $x \in X$ with $g(x) \geq \alpha$.

Proof. This follows immediately from Definition 3.1.

Theorem 3.5. Let (X, τ_1, τ_2) be an L-bts. Then $g \in L^X$ is (i, j)- β -compact if and only if for every $p \in pr(L)$ and every collection $\{f_i\}_{i \in J}$ of (i, j)- β -open L-subsets with $(\bigvee_{i \in J} f_i \lor g')(x) \nleq p$ for all $x \in X$, there is a finite subset F of J such that $(\bigvee_{i \in F} f_i \lor g')(x) \nleq p$ for all $x \in X$.

Proof. Let $p \in pr(L)$ and $\{f_i\}_{i \in J}$ be a collection of (i, j)- β -open L-subsets with $(\bigvee_{i \in J} f_i \lor g')(x) \nleq p$ for all $x \in X$. Then $(\bigvee_{i \in J} f_i \lor g')(x) \nleq p$ for all $x \in X$ with $g(x) \ge p'$. Since g is (i, j)- β -compact, there is a finite subset F of J such that $(\bigvee_{i \in F} f_i)(x) \nleq p$ for all $x \in X$ with $g(x) \ge p'$. Take an arbitrary $x \in X$. If $g'(x) \le p$, then $g'(x) \lor (\bigvee_{i \in F} f_i)(x) = (\bigvee_{i \in F} f_i \lor g')(x) \nleq p$ because $(\bigvee_{i \in F} f_i)(x) \nleq p$. If $g'(x) \nleq p$, then we have $g'(x) \lor (\bigvee_{i \in F} f_i \lor g')(x) \nleq p$. Thus, we have $(\bigvee_{i \in F} f_i \lor g')(x) \nleq p$ for all $x \in X$.

Conversely, let $p \in pr(L)$ and $\{f\}_{i \in J}$ be a *p*-level (i, j)- β -open cover of *g*. Then $(\bigvee_{i \in J} f_i)(x) \nleq p$ for all $x \in X$ with $g(x) \ge p'$. Hence $(\bigvee_{i \in J} f_i \lor g')(x) \nleq p$ for all $x \in X$. From the hypothesis, there is a finite subset *F* of *J* such that $(\bigvee_{i \in F} f_i \lor g')(x) \nleq p$ for all $x \in X$. Then $(\bigvee_{i \in F} f_i)(x) \nleq p$ for all $x \in X$ with $g'(x) \le p$. Thus *g* is (i, j)- β -compact. \Box

Definition 3.6. Let (X, τ_1, τ_2) be an L-bts, x_α be an L-point in $M(L^X)$ and $S = (S_m)_{m \in D}$ be a net. x_α is called (i, j)- β cluster point of S if and only if for each (i, j)- β -closed L-subset f with $f(x) \not\geq \alpha$ and for all $n \in D$, there is $m \in D$ such that $m \geq n$ and $S_m \not\leq f$, that is, $h(S_m) \not\leq f$ (Supp S_m).

Theorem 3.7. Let (X, τ_1, τ_2) be an L-bts. Then $g \in L^X$ is (i, j)- β -compact if and only if every constant α -net in g, where $\alpha \in M(L)$, has an (i, j)- β -cluster point in g with height α .

Proof. Let $\alpha \in M(L)$ and $S = (S_m)_{m \in D}$ be a constant α -net in g without any (i, j)- β -cluster point with height α in g. Then for each $x \in X$ with $g(x) \geq \alpha$, x_{α} is not an (i, j)- β -cluster point of S, that is, there are $n_x \in D$ and an (i, j)- β -closed L-subset f_x with $f_x(x) \not\geq \alpha$ and $S_m \leq f_x$ for each $m \geq n_x$. Let $x^1, ..., x^k$ be elements of X with $g(x^i) \geq \alpha$ for each $i \in \{1, ..., k\}$. Then there are $n_{x_1}, ..., n_{x_k} \in D$ and (i, j)- β -closed L-subset f_{x_i} with $f_{x_i}(x^i) \not\geq \alpha$ and $S_m \leq f_{x_i}$ for each $m \geq n_{x_i}$ and for each $i \in \{1, ..., k\}$. Since D is a directed set, there is $n_0 \in D$ such that $n_0 \geq n_{x_i}$ for each $i \in \{1, ..., k\}$ and $S_m \leq f_{x_i}$ for $i \in \{1, ..., k\}$ and each $m \geq n_0$. Now, consider the family $\mu = \{f_x\}_{x \in X}$ with $g(x) \geq \alpha$. Then $(\bigwedge_{f_x \in \mu} f_x)(y) \not\geq \alpha$ for all $y \in X$ with $g(y) \geq \alpha$ because $f_y(y) \not\geq \alpha$. We also have that for any finite subfamily $v = \{f_{x_1}, ..., f_{x_k}\}$ of μ , there is $y \in X$ with $g(y) \geq \alpha$ and $(\bigwedge_{i=1}^k f_{x_i})(y) \geq \alpha$ since $S_m \leq \bigwedge_{i=1}^k f_{x_i}$ for each $m \geq n_0$ because $S_m \leq f_{x_i}$ for each $i \in \{1, ..., k\}$ and for each $m \geq n_0$. Hence, by Theorem 3.5, g is not (i, j)- β -compact.

Conversely, suppose that g is not (i, j)- β -compact. Then by Theorem 3.5, there exist $\alpha \in M(L)$ and a collection $\mu = \{f_i\}_{i \in J}$ of (i, j)- β -closed L-subsets with $(\bigwedge_{i \in J} f_i)(x) \not\geq \alpha$ for all $x \in X$ with $g(x) \geq \alpha$, but for any finite subfamily v of μ there is $x \in X$ with $g(x) \geq \alpha$ and $(\bigwedge_{f \in v} f_i)(x) \geq \alpha$. Consider the family of all finite subsets of μ , $2^{(\mu)}$, with the order $v_1 \leq v_2$ if and only if $v_1 \subset v_2$. Then $2^{(\mu)}$ is a directed set. So, writing x_α as S_v for every $v \in 2^{(\mu)}, (X_v)_{v \in 2}(\mu)$ is a constant α -net in g because the height of S_v for all $v \in 2^{(\mu)}$ is α and $S_v \leq g$ for all $v \in 2^{(\mu)}$, that is, $g(x) \geq \alpha$. $(S_v)_{v \in 2}(\mu)$ also satisfies the condition that for each (i, j)- β -closed L-subset $f_i \in v$ we have $x_\alpha = S_v \leq f_i$. Let $y \in X$ with $g(y) \geq \alpha$. Then $(\bigwedge_{i \in J} f_i)(y) \not\geq \alpha$, that is, there exists $j \in J$ with $f_j(y) \not\geq \alpha$. Let $v_0 = \{f_i\}$. So, for any $v \geq v_0, S_v \leq \bigwedge_{f_i \in v} f_i \leq \bigwedge_{f_i \in v_0} f_i = f_j$. Thus, we get an (i, j)- β -closed L-subset f_j with $f_j(y) \geq \alpha$ and $v_0 \in 2^{(\mu)}$ such that for any $v \geq v_0, S_v \leq f_j$. That means that $y_\alpha \in M(L^X)$ is not an (i, j)- β -cluster point $(X_v)_{v \in 2}(\mu)$ for all $y \in X$ with $g(y) \geq \alpha$. Hence, the constant α -net $(S_v)_{v \in 2}(\mu)$ has no (i, j)- β -cluster point in g with height α .

Corollary 3.8. An L-bts (X, τ_1, τ_2) is (i, j)- β -compact if and only if every constant α -net in (X, τ_1, τ_2) has an (i, j)- β -cluster point with height α , where $\alpha \in M(L)$.

Definition 3.9. Let (X, τ_1, τ_2) be an L-bts and η an α -level filter base, where $\alpha \in M(L)$. An L-point $x_r \in M(L^X)$ is called an (i, j)- β -cluster point of η , if $\bigwedge_{f \in \eta} (i, j)$ - $\beta \operatorname{Cl}(f)(x) \geq r$.

Theorem 3.10. Let (X, τ_1, τ_2) be an L-bts. Then $g \in L^X$ is (i, j)- β -compact if and only if every α -filter base in g, where $\alpha \in M(L)$, has an (i, j)- β -cluster point x_{α} in g with height α .

Proof. Assume that η is an α -level filter base in g with no (i, j)- β -cluster point in g with height α , where $\alpha \in M(L)$. Then for each $x \in X$ with $g(x) \ge \alpha, x_{\alpha}$ is not an (i, j)- β -cluster point of η , that is, there is $f_x \in \eta$ with (i, j)- $\beta \operatorname{Cl}(f_x)(x) \not\ge \alpha$. Hence (i, j)- $\beta \operatorname{Cl}(f_x)'(x) \not\le \alpha' = p \in pr(L)$. This means that the collection $\{(i, j)$ - $\beta \operatorname{Cl}(f_x)'\}_{x \in X}$ with $g(x) \ge \alpha$ is a p-level (i, j)- β -open cover of g. Since g is (i, j)- β -compact, there are (i, j)- $\beta \operatorname{Cl}(f_{x_1}), \dots, (i, j)$ - $\beta \operatorname{Cl}(f_{x_n})$ such that $(\bigvee_{i=1}^{n} (i, j)$ - $\beta \operatorname{Cl}(f_{x_i})')(x) \not\le p$ for all $x \in X$ with $g(x) \ge p' = \alpha$. Hence $\bigwedge_{i=1}^{n} (i, j)$ - $\beta \operatorname{Cl}(f_{x_i})(x) \not\ge \alpha$ for all $x \in X$ with $g(x) \ge \alpha$ which implies that $(\bigwedge_{i=1}^{n} f_{x_i})(x) \not\ge \alpha$ for all $x \in X$ with $g(x) \ge \alpha$. This is a contradiction.

Conversely, suppose that g is not (i, j)- β -compact. Then there is a p-level (i, j)- β -open cover μ of g with no finite p-level subcover, where $p \in pr(L)$. Hence for each finite subcollection $\{h_1, ..., h_n\}$ of μ , there exists $x \in X$ with $g(x) \ge p'$ such that $(\bigvee_{i=1}^n h_i)(x) \le p$, that is, $(\bigvee_{i=1}^n h'_i)(x) \ge p' = \alpha \in M(L)$. Thus, $\eta = \{h' : h \in \mu\}$ forms an α -level filter base in g. By the hypothesis, μ has an (i, j)- β -cluster point $y_\alpha \in M(L^X)$ in g with height α , that is, $g(y) \ge \alpha$ and $\bigwedge_{h \in \mu} (i, j)$ - $\beta \operatorname{Cl}(h')(y) = (\bigwedge_{h \in \mu} h')(y) \ge \alpha$. Then $(\bigwedge_{h \in \mu} h')(y) \le p$, which yileds a contradiction. \Box

Corollary 3.11. An L-bts (X, τ_1, τ_2) is (i, j)- β -compact if and only if every α -filter base has an (i, j)- β -cluster point with height α , where $\alpha \in M(L)$.

Theorem 3.12. Let (X, τ_1, τ_2) be an L-bts and $g, h \in L^X$. If g and h are (i, j)- β -compact, then $g \lor h$ is (i, j)- β -compact.

Proof. Let $p \in pr(L)$ and $\{f_i\}_{i \in J}$ be a collection of (i, j)- β -open L-subsets with $(\bigvee_{i \in J} f_i)(x) \notin p$ for all $x \in X$ with $(g \lor h)(x) \ge p'$. Since p is prime, we have $(g \lor h)(x) \ge p'$ if and only if $g(x) \ge p'$ or $h(x) \ge p'$. So, by the (i, j)- β -compactness of g and h, there are finite subsets E, F of J such that $(\bigvee_{i \in E} f_i)(x) \notin p$ for all $x \in X$ with $g(x) \ge p'$ and $(\bigvee_{i \in F} f_i)(x) \notin p$ for all $x \in X$ with $h(x) \ge p'$. Then $(\bigvee_{i \in E \cup F} f_i)(x) \notin p$ for all $x \in X$ with $g(x) \ge p'$, that is, $(\bigvee_{i \in E \cup F} f_i)(x) \notin P$ for all $x \in X$ with $(f \lor h)(x) \ge p'$. Thus, $g \lor h$ is (i, j)- β -compact.

Theorem 3.13. Let (X, τ_1, τ_2) be an L-bts and $g, h \in L^X$. If f is (i, j)- β -compact and h is (i, j)- β -closed, then $g \wedge h$ is (i, j)- β -compact.

Proof. Let $p \in pr(L)$ and $\{f_i\}_{i \in J}$ be a collection of (i, j)- β -open L-subsets with $(\bigvee_{i \in J} f_i)(x) \nleq p$ for all $x \in X$ with $(g \land h)(x) \ge p'$. Thus $\mu = \{f_i\}_{i \in J} \cup \{h'\}$ is a family of (i, j)- β -open L-subsets with $(\bigvee_{k \in \mu} k)(x) \nleq p$ for all $x \in X$ with $g(x) \ge p'$. In fact, for each $x \in X$ with $g(x) \ge p'$, if $h(x) \ge p'$, then $(g \land h)(x) \ge p'$ which implies that $(\bigvee_{i \in J} f_i)(x) \nleq p$, thus $(\bigvee_{k \in \mu} k)(x) \nleq p$. If $h(x) \nvDash p'$, then $h'(x) \nleq p$ which implies $(\bigvee_{k \in \mu} k)(x) \nleq p$. From the (i, j)- β -compactness of g there is a

finite subfamily v of μ , say $v = \{f_1, ..., f_n, h'\}$ with $(\bigvee_{k \in v} k)(x) \not\leq p$ for all $x \in X$ with $g(x) \geq p'$. Then $(\bigvee_{i=1}^n f_i)(x) \not\leq p$ for all $x \in X$ with $(g \wedge h)(x) \geq p'$. Hence $g \wedge h$ is (i, j)- β -compact.

Corollary 3.14. Let (X, τ_1, τ_2) be an (i, j)- β -compact space and g be an (i, j)- β -closed L-subset. Then g is (i, j)- β -compact.

Theorem 3.15. Let (X, τ_1, τ_2) be an L-bts where X is a finite set. Then (X, τ_1, τ_2) is (i, j)- β -compact.

Proof. Let $\{f_i\}_{i\in J}$ be a *p*-level (i, j)- β -open cover of (X, τ_1, τ_2) , where $p \in pr(L)$. Then $(\bigvee_{i\in J} f_i)(x) \nleq p$ for all $x \in X$. Hence, for each $x \in X$ there is $i \in J$ such that $x \in f_i^{-1}(\{t \in T : t \nleq p\})$. Since X is finite subset F of J such that $X = \bigcup_{i\in F} f_i^{-1}(\{t \in T : t \nleq p\})$, that is, $(\bigvee_{i\in F} f_i)(x) \nleq p$ for each $x \in X$. Hence (X, τ_1, τ_2) is (i, j)- β -compact. \Box

References

- [1] R.Femina and N.Rajesh, On Fuzzy (i, j)- β -open sets in L-fuzzy bitopological spaces, (submitted).
- [2] R.Femina and N.Rajesh, Some mappings on L-fuzzy bitopological spaces, (submitted).
- [3] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [4] P.Dwinger, Characterizations of the complete homomorhic images of a completely distributive complete lattice-I, Nedreal. Akad. Wetensh. Indag. Math., 44(1982), 403-414.
- [5] G.Gierz and et al., A Compendium of Continuous Lattices, Springer Verlang, Berlin, (1980).
- [6] Y.M.Liu and M.K.Luo, Fuzzy topology, World Scientific Publishing, Singapore, (1998).
- [7] F.G.Shi, Countable compactness and the Lindelof property of L-fuzzy sets, Iranian Journal of Fuzzy systems, 1(2004), 79-88.
- [8] F.G.Shi, Semicompactness in L-topological spaces, International Journal of Mathematics Mathematical Sciences, 12(2005), 1869-1878.
- [9] F.G.Shi, A new definition of fuzzy comapctness, Fuzzy sets and systems, 158(2007), 1486-1495.
- [10] G.J.Wang, Theory of L-fuzzy topological spaces, Shaanxi Normal University Press, Xi'an, (1988).
- [11] M.W.Warner, Fuzzy topology with respect to continuous lattices, Fuzzy Sets Syst., 35(1990), 85-91.
- [12] M.W.Warner, Frame-fuzzy points and membership, Fuzzy Sets Syst., 42(1991), 335-344.
- [13] D.S.Zhao, The N-comapctness in L-fuzzy topological spaces, J. Math. Anal. Appl., 128(1987), 64-79.