ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Graceful Labeling in the Context of Duplication of Some Graph Elements in $K_{m,n}$

Research Article

V.J.Kaneria¹ and H.P.Chudasama²*

- 1 Department of Mathematics, Saurashtra University, Rajkot, India.
- 2 Department of Mathematics, Government Polytechnic, Rajkot, India.

Abstract: In this paper, we obtained graceful labeling or α -labeling for some graphs obtained by duplication of some graph elements

in the complete bipartite graph $K_{m,n}$.

MSC: 05C78

Keywords: Duplication of a vertex by an edge, duplication of an edge by a vertex, graceful labeling, α -labeling.

© JS Publication.

1. Introduction

Graphs, considered in this paper, are finite, simple and undirected. Let G be a (p,q) graph. Throughout this paper, $K_{m,n}$ will be denoted as complete bipartite graph with m part $M = \{u_1, u_2, \ldots, u_m\}$ and n part $N = \{v_1, v_2, \ldots, v_n\}$. i.e. $V(K_{m,n}) = M \cup N$. For a graph G = (V, E), a function having domain V or E or $V \cup E$ is known as a graph labeling for G. Graceful labeling (β -valuation) and α -labeling for a graph G are well known concept introduced by Rosa [5]. A graph G which admits an α -labeling, here we call it α -graceful graph. Duplication of a vertex v of a graph G is the graph G' by adding a new vertex v' (duplicant of v) such that $N_{G'}(v') = N_{G}(v) = N_{G'}(v)$. i.e. v' is adjacent with all vertices of G which are adjacent to v in G. Duplication of a vertex v by a new edge e = v'v'' in a graph G produces a new graph $G' = (V(G) \cup \{v', v''\}, E(G) \cup \{v'v'', vv', vv''\})$. Duplication of an edge e = uv by a new vertex w in a graph G produces a new graph $G' = (V(G) \cup \{w\}, E(G) \cup \{uw, vw\})$. i.e. $N_{G'}(w) = \{u, v\}$. Kaneria and Jariya [3] defined smooth graceful labeling and proved $C_n(n \equiv 0 \pmod{4}), P_n, P_n \times P_m$ and $K_{2,n}$ are smooth graceful graphs. Prajapati and Suthar [4] proved duplication of some graph elements in $K_{2,n}$ are prime graphs. In present work, we obtained graceful labeling or α -graceful labeling for some graphs obtained by duplication of some graph elements in $K_{m,n}$.

2. Main Results

Theorem 2.1. Duplication of any vertex in $K_{m,n}$ is α -graceful graph.

Theorem 2.2. Let G be a graph obtained by duplication of one vertex of $K_{m,n}$. It is obvious that G is either $K_{m+1,n}$ or $K_{m,n+1}$, which both are having α -labeling. So, G is α -graceful graph.

 $^{^*}$ E-mail: hirensrchudasama@gmail.com

Theorem 2.3. Duplication of all the vertices of m-part or n-part in $K_{m,n}$ is α -graceful graph.

Proof. Without loss of generality, we assume here G is a graph obtained by duplication of all the vertices of $M = \{u_1, u_2, \ldots, u_m\}$ in $K_{m,n}$. Then $G = K_{2m,n}$, which is an α -graceful graph.

Theorem 2.4. Duplication of any vertex v of $K_{m,n}$ by an edge e = v'v'' is graceful, but not α -graceful.

Proof. Without loss of generality, we assume that G is a graph obtained by duplication of the vertex u_1 of $K_{m,n}$ by an edge $u'_1u''_1$ i.e., $V(G) = \{u'_1, u''_1, u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n\}$ and $E(G) = \{u_iv_j/1 \le i \le m, 1 \le j \le n\} \cup \{u_1u'_1, u_1u''_1, u'_1u''_1\}$. i.e. p = |V(G)| = m + n + 2 and q = mn + 3. Define $f : V(G) \to \{0, 1, 2, \dots, q\}$ as follows:

$$f(u'_1) = q, \ f(u''_1) = q - 1 \ and$$

$$f(u_i) = i - 1, \ \forall \ i = 1, 2, \dots, m;$$

$$f(v_i) = q - 2 - mj + m, \ \forall \ j = 1, 2, \dots, n.$$

Since, $f(u_i) \in \{0, 1, ..., m-1\}$ and $f(v_j) \in \{m+1, m+2, ..., q-2\}$, f is an injective map. Further $f^*(u_1u_1') = q$, $f^*(u_1u_1'') = q-1$, $(u_1'u_1'') = 1$ and $f^*(u_iv_j) = m(n-j+1)-i+2$, $\forall i=1,2,...,m; \forall j=1,2,...,n$. i.e. $\{f^*(u_iv_j)/1 \le i \le m, 1 \le j \le n\} = \{2,3,...,mn+1\} = \{2,3,...,q-2\}$ as q=mn+3. Therefore $f^*: E(G) \to \{1,2,...,q\}$ defined by $f^*(uv) = |f(u)-f(v)|$, $\forall uv \in E(G)$ is a bijection. Thus, G admits above graceful labeling. Since, G is not a bipartite graph as it contains triangle $u_1u_1', u_1'u_1'', u_1''u_1$, it can not admit any α -graceful labeling. Thus, G is graceful, but not α -graceful.

Theorem 2.5. Duplication of any edge e of $K_{m,n}$ by a new vertex w is graceful, but not α - graceful.

Proof. Without loss of generality, we assume that G is a graph obtained by duplication of the edge $u_1v_1 \in E(K_{m,n})$ by a vertex w. i.e. $V(G) = V(K_{m,n}) \cup \{w\}$ and $E(G) = E(K_{m,n}) \cup \{u_1w, wv_1\}$. Observe that p = m + n + 1 and q = mn + 2. Define $f: V(G) \to \{0, 1, 2, ..., q\}$ as follows:

$$f(w) = q,$$

 $f(u_i) = i - 1, \ \forall \ i = 1, 2, ..., m \ and$
 $f(v_i) = q - 1 - mj + m, \ \forall \ j = 1, 2, ..., n.$

Note that f is an injective function and $f^*(wu_1) = q, f^*(wv_1) = 1$ and

$$f^*(u_i v_j) = q - jm + m - i$$

= $m(n - j + 1) - i + 2$, $\forall i = 1, 2, ..., m$; $\forall j = 1, 2, ..., n$.

i.e. $\{f^*(u_iv_j)/1 \le i \le m, 1 \le j \le n\} = \{2, 3, ..., mn+1\}$. Therefore, $f^*: E(G) \to \{1, 2, ..., mn+2\}$ is a bijection. Thus, G admits graceful labeling. Since, G contains triangle u_1w, wv_1, u_1v_1 , it is not a bipartite graph. So, it can not admit any α -graceful labeling. Thus, G is graceful graph, but it is not α -graceful graph.

Theorem 2.6. The graph obtained by duplication of both the vertices u_1, u_2 from 2-part in $K_{2,n}$ by edges is graceful, but it is not α -graceful, where n is an odd integer.

Proof. Let G be a graph obtained by duplication of both the vertices u_1, u_2 from 2-part in $K_{2,n}$ (where n is odd) by edges $e_1 = u'_1 u''_1, e_2 = u'_2 u''_2$. It is obvious that

$$V(G) = V(K_{2,n}) \cup \{u'_1, u''_1, u'_2, u''_2\},$$

$$E(G) = E(K_{2,n}) \cup \{u_1u'_1, u'_1u''_1, u''_1u_1, u_2u'_2, u'_2u''_2, u''_2u_2\}$$

i.e. p = n + 6 and q = 2n + 6. Define $f: V(G) \rightarrow \{0, 1, 2, ..., q\}$ as follows:

$$f(u_1') = q, \ f(u_1'') = q - 1, \ f(u_1) = 0, \ f(u_2) = 2, \ f(u_2') = 4, \ f(u_2'') = 7 \ and$$

$$f(v_i) = \begin{cases} 2 + 4 \lceil \frac{i}{2} \rceil, & \text{when i is an odd number} \\ 5 + 2i, & \text{when i is an even number.} \end{cases}$$

Note that $\{f(v_i)/1 \leq i \leq n\} = \{6, 9, 10, 13, 14, ..., q - 3, q - 2\}$ and so, f is an injective function. Moreover $f^*(u_1u_1') = q$, $f^*(u_1'u_1'') = 1$, $f^*(u_1''u_1) = q - 1$, $f^*(u_2u_2') = 2$, $f^*(u_2'u_2'') = 3$, $f^*(u_2''u_2) = 5$ and $\{f^*(u_iv_j/1 \leq i \leq 2, 1 \leq j \leq n\} = \{4, 6, 7, 8, ..., q - 2\}$. Therefore, $f^*: E(G) \rightarrow \{1, 2, ..., 2n + 6\}$ is a bijective function and so, it becomes a graceful labeling for G. Since, G is not a bipartite graph, it is graceful graph, but it is not an α -graceful graph.

References

- [1] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, 18(2015), #DS6.
- [2] F.Harary, Graph Theory, Narosa Publishing House, New Delhi, (2001).
- [3] V.J.Kaneria and M.M.Jariya, Smooth Graceful Graphs and its Applications to Construct Graceful Graphs, Int. J. Sci. and Res., 3(8)(2014), 909-912.
- [4] U.M.Prajapati and B.N.Suthar, Prime Labeling in the Context of Duplication of Graph Elements in $K_{2,n}$, Int. J. of Mathematics and Soft Computing, 7(1)(2017), 117-125.
- [5] A.Rosa, On Certain Valuation of Graph Theory of Graphs, (Rome July 1966), Goden and Breach, N. Y. and Paris, (1967), 349-355.