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Abstract: In this paper, we prove ` ≤ m < n, the five star K1,` ∪ K1,` ∪ K1,` ∪ K1,m ∪ K1,n is a Relaxed skolem mean graph if

|m− n| ≤ 3` + 6 for ` = 2, 4, 3, . . .; m = 2, 3, 4. . .; and 3` + m ≤ n ≤ 3` + m + 6.
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1. Introduction

All graphs in this chapter are finite, simple and undirected. Terms not defined here are used in the sense of Harry [10].

In [5], ` ≤ m < n, the three star K1,` ∪K1,m ∪K1,nis a relaxed skolem mean graph if |m− n| ≤ 6 + ` for ` = 1, 2, 3, . . . ;

m = 1, 2, 3, . . . ; ` + m ≤ n ≤ ` + m + 6. Also if ` ≤ m < n the four star K1,` ∪K1,` ∪K1,m ∪K1,n is a relaxed skolem mean

graph if |m− n| ≤ 6 + 2` for ` = 2, 3, 4, . . . ; m = 2, 3, 4, . . . and 2` + m ≤ n ≤ 2` + m + 6. In [4], the necessary condition

for a graph to be relaxed skolem mean is that p ≥ q.

2. Relaxed Skolem Mean Labeling

Definition 2.1. The five star is the disjoint union of K1,a,K1,b,K1,c,K1,d,K1,e. then it is denoted by K1,a ∪K1,b ∪K1,c ∪

K1,d ∪K1,e.

Definition 2.2. A graph G = (V,E) with p vertices and q edges is said to be a relaxed skolem mean graph if there exists a

function f from the vertex set of G to{1, 2, 3, ..., p + 1}such that the induced map f* from the edge set of G to {2, 3, 4, ..., p + 1}

defined by

f∗(e = uv) =


f(u)+f(v)

2
, if f(u) + f(v) is even

f(u)+f(v)+1
2

, if f(u) + f(v) is odd

then the resulting edges get distinct labels from the set {2, 3, 4, . . . , p + 1}.

Note 2.3. In a Relaxed skolem mean graph, p ≥ q.
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Theorem 2.4. If ` ≤ m < n, five star K1,` ∪K1,` ∪K1,` ∪K1,m ∪K1,n is a Relaxed skolem mean graph if |m− n| ≤ 3`+ 6

for ` = 2, 4, 3, . . .; m = 2, 3, 4, . . .; and 3` + m ≤ n ≤ 3` + m + 6.

Proof. Let G = K1,`∪K1,`∪K1,`∪K1,m∪K1,n. Without loss of generality assume that ` ≤ m < n. Hence |m− n| ≤ 3`+6

Implies n −m ≤ 3` + 6 and it means 3` + m ≤ n ≤ 3` + 6. There are seven cases viz: n = 3` + m + 6, n = 3` + m + 5,

n = 3`+m+ 4, n = 3`+m+ 3, n = 3`+m+ 2, n = 3`+m+ 1andn = 3`+m. Let us prove in each of the cases the graph

G is a relaxed skolem mean graph.

Case (a): When n = 3` + m + 6.

We’ve to prove that G is a relaxed skolem mean graph n = 3` + m + 6.

V (G) = {u, v, w, x, y} ∪ {ui : 1 ≤ i ≤ `}, {v} ∪ {vj : 1 ≤ j ≤ `}, {w} ∪ {wk : 1 ≤ k ≤ `},

{x} ∪ {xh : 1 ≤ h ≤ m}, {y} ∪ {ys : 1 ≤ s ≤ n} and

E(G) = {uui : 1 ≤ i ≤ `} ∪ {vvj : 1 ≤ j ≤ `} ∪ {wwk : 1 ≤ k ≤ `} ∪ {xxh : 1 ≤ h ≤ m} ∪ {yys : 1 ≤ s ≤ n}.

Then G has 3`+m+n+ 5 nodes and 3`+m+n links. The required node labeling f : V (G)→ {1, 2, 3, 4 . . . , 3`+m+n+ 5}

is defined as follows

f(u) = 1; f(v) = 2; f(w) = 4; f(x) = 6; f(y) = 3` + m + n + 5;

f(ui) = 2i + 6 for 1 ≤ i ≤ `

f(vj) = 2` + 2j + 6 for 1 ≤ j ≤ `

f(wk) = 4` + 2k + 6 for 1 ≤ k ≤ `

f(xh) = 6` + 2h + 6 for 1 ≤ h ≤ m

f(ys) = 2s + 1 for 1 ≤ s ≤ n− 2

f(yn−1) = 3` + m + n + 4

f(yn) = 3` + m + n + 6

The corresponding link labels are as follows: The link label of uui is i + 4 for 1 ≤ i ≤ `; vvj is ` + j + 4 for 1 ≤ i ≤ `; wwk

is 2` + k + 5 for 1 ≤ k ≤ `; xxh is 3` + h + 6 for 1 ≤ h ≤ m; yys
3`+m+n+2s+6

2
; 1 ≤ s ≤ n− 2; yyn − 1 is 3` + m + n + 5; yyn

is 3` + m + n + 6. Hence the induced link labels are distinct. Hence the graph G is Relaxed skolem mean graph.

Case (b): When n = 3` + m + 5.

We’ve to prove that G is a relaxed skolem mean graph n = 3` + m + 5.

V (G) = {u, v, w, x, y} ∪ {ui : 1 ≤ i ≤ `}, {v} ∪ {vj : 1 ≤ j ≤ `}, {w} ∪ {wk : 1 ≤ k ≤ `}

{x} ∪ {xh : 1 ≤ h ≤ m}, {y} ∪ {ys : 1 ≤ s ≤ n} and

E(G) = {uui : 1 ≤ i ≤ `} ∪ {vvj : 1 ≤ j ≤ `} ∪ {wwk : 1 ≤ k ≤ `} ∪ {xxh : 1 ≤ h ≤ m} ∪ {yys : 1 ≤ s ≤ n}

Then G has 3`+m+n+5 nodes and 3`+m+n links. The required node labeling f : V (G)→ {1, 2, 3, 4, . . . , 3`+m+n+5}

is defined as follows

f(u) = 1; f(v) = 2; f(w) = 3; f(x) = 5; f(y) = 3` + m + n + 5;

f(ui) = 2i + 7 for 1 ≤ i ≤ `

f(vj) = 2` + 2j + 7 for 1 ≤ j ≤ `

f(wk) = 4` + 2k + 7 for 1 ≤ k ≤ `
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f(xh) = 6` + 2h + 7 for 1 ≤ h ≤ m

f(ys) = 2s + 2 for 1 ≤ s ≤ n− 2

f(yn−1) = 3` + m + n + 4

f(yn) = 3` + m + n + 6

The corresponding link labels are as follows: The link label of uui is i + 4 for 1 ≤ i ≤ `; vvj is ` + j + 5 for 1 ≤ j ≤ `; wwk

is 2`+ k + 5 for 1 ≤ k ≤ `; xxh is 3`+ h+ 6 for 1 ≤ h ≤ m; yys
3`+m+n+2s+7

2
; 1 ≤ s ≤ n− 2; yyn−1 is 3`+m+ n+ 5; yyn is

3` + m + n + 6. Hence the induced link labels are distinct. Hence the graph G is Relaxed skolem mean graph.

Case (c): When n = 3` + m + 4

We’ve to prove that G is a relaxed skolem mean graph n = 3` + m + 4.

V (G) = {u, v, w, x, y} ∪ {ui : 1 ≤ i ≤ `}, {v} ∪ {vj : 1 ≤ j ≤ `}, {w} ∪ {wk : 1 ≤ k ≤ `}

{x} ∪ {xh : 1 ≤ h ≤ m}, {y} ∪ {ys : 1 ≤ s ≤ n}and

E(G) = {uui : 1 ≤ i ≤ `} ∪ {vvj : 1 ≤ j ≤ `} ∪ {wwk : 1 ≤ k ≤ `} ∪ {xxh : 1 ≤ h ≤ m} ∪ {yys : 1 ≤ s ≤ n}

Then G has 3`+m+n+5 nodes and 3`+m+n links. The required node labeling f : V (G)→ {1, 2, 3, 4, . . . , 3`+m+n+5}

is defined as follows

f(u) = 1; f(v) = 2; f(w) = 3; f(x) = 4; f(y) = 3` + m + n + 5;

f(ui) = 2i + 6 for 1 ≤ i ≤ `

f(vj) = 2` + 2j + 6 for 1 ≤ j ≤ `

f(wk) = 4` + 2k + 6 for 1 ≤ k ≤ `

f(xh) = 6` + 2h + 6 for 1 ≤ h ≤ m

f(ys) = 2s + 3 for 1 ≤ s ≤ n− 2

f(yn−1) = 3` + m + n + 4

f(yn) = 3` + m + n + 6

The corresponding link labels are as follows: The link label of uui is i + 4 for 1 ≤ i ≤ `; vvj is ` + j + 4 for 1 ≤ j ≤ `; wwk

is 2`+ k + 5 for 1 ≤ k ≤ `; xxh is 3`+ h+ 5 for 1 ≤ h ≤ m; yys
3`+m+n+2s+8

2
; 1 ≤ s ≤ n− 2; yyn−1 is 3`+m+ n+ 5; yyn is

3` + m + n + 6. Hence the induced link labels are distinct. Hence the graph G is Relaxed skolem mean graph.

Case (d): When n = 3` + m + 3.

We’ve to prove that G is a relaxed skolem mean graph n = 3` + m + 3.

V (G) = {u, v, w, x, y} ∪ {ui : 1 ≤ i ≤ `}, {v} ∪ {vj : 1 ≤ j ≤ `}, {w} ∪ {wk : 1 ≤ k ≤ `}

{x} ∪ {xh : 1 ≤ h ≤ m}, {y} ∪ {ys : 1 ≤ s ≤ n} and

E(G) = {uui : 1 ≤ i ≤ `} ∪ {vvj : 1 ≤ j ≤ `} ∪ {wwk : 1 ≤ k ≤ `} ∪ {xxh : 1 ≤ h ≤ m} ∪ {yys : 1 ≤ s ≤ n}

Then G has 3`+m+n+5 nodes and 3`+m+n links. The required node labeling f : V (G)→ {1, 2, 3, 4, . . . , 3`+m+n+5}

is defined as follows

f(u) = 1; f(v) = 2; f(w) = 3; f(x) = 5; f(y) = 3` + m + n + 5;

f(ui) = 2i + 5 for 1 ≤ i ≤ `
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f(vj) = 2` + 2j + 5 for 1 ≤ j ≤ `

f(wk) = 4` + 2k + 5 for 1 ≤ k ≤ `

f(xh) = 6` + 2h + 5 for 1 ≤ h ≤ m

f(ys) = 2s + 4 for 1 ≤ s ≤ n− 2

f(yn−1) = 3` + m + n + 4

f(yn) = 3` + m + n + 6

The corresponding link labels are as follows: The link label of uui is i + 3 for 1 ≤ i ≤ `; vvj is ` + j + 4 for 1 ≤ j ≤ `; wwk

is 2` + k + 4 for 1 ≤ k ≤ `; xxh is 3` + h + 5 for 1 ≤ h ≤ m; yys
3`+m+n+2s+9

2
; 1 ≤ s ≤ n− 2; yyn − 1 is 3` + m + n + 5; yyn

is 3` + m + n + 6. Hence the induced link labels are distinct. Hence the graph G is Relaxed skolem mean graph.

Case (e): When n = 3` + m + 2

We’ve to prove that G is a relaxed skolem mean graph n = 3` + m + 2.

V (G) = {u, v, w, x, y} ∪ {ui : 1 ≤ i ≤ `}, {v} ∪ {vj : 1 ≤ j ≤ `}, {w} ∪ {wk : 1 ≤ k ≤ `}

{x} ∪ {xh : 1 ≤ h ≤ m}, {y} ∪ {ys : 1 ≤ s ≤ n} and

E(G) = {uui : 1 ≤ i ≤ `} ∪ {vvj : 1 ≤ j ≤ `} ∪ {wwk : 1 ≤ k ≤ `} ∪ {xxh : 1 ≤ h ≤ m} ∪ {yys : 1 ≤ s ≤ n}

Then G has 3`+m+n+5 nodes and 3`+m+n links. The required node labeling f : V (G)→ {1, 2, 3, 4, . . . , 3`+m+n+5}

is defined as follows

f(u) = 1; f(v) = 2; f(w) = 3; f(x) = 5; f(y) = 3` + m + n + 5;

f(ui) = 2i + 4 for 1 ≤ i ≤ `

f(vj) = 2` + 2j + 4 for 1 ≤ j ≤ `

f(wk) = 4` + 2k + 4 for 1 ≤ k ≤ `

f(xh) = 6` + 2h + 4 for 1 ≤ h ≤ m

f(ys) = 2s + 5 for 1 ≤ s ≤ n− 2

f(yn−1) = 3` + m + n + 4

f(yn) = 3` + m + n + 6

The corresponding link labels are as follows: The link label of uui is i + 3 for 1 ≤ i ≤ `; vvj is ` + j + 3 for 1 ≤ j ≤ `; wwk

is `+ k + 4 for 1 ≤ k ≤ `; xxh is 3`+ h+ 5 for 1 ≤ h ≤ m; yys
3`+m+n+2s+10

2
; 1 ≤ s ≤ n− 2; yyn−1 is 3`+m+ n+ 5; yyn is

3` + m + n + 6. Hence the induced link labels are distinct. Hence the graph G is Relaxed skolem mean graph.

Case (f): When n = 3` + m + 1.

We’ve to prove that G is a relaxed skolem mean graph n = 3` + m + 1.

V (G) = {u, v, w, x, y} ∪ {ui : 1 ≤ i ≤ `}, {v} ∪ {vj : 1 ≤ j ≤ `}, {w} ∪ {wk : 1 ≤ k ≤ `}

{x} ∪ {xh : 1 ≤ h ≤ m}, {y} ∪ {ys : 1 ≤ s ≤ n} and

E(G) = {uui : 1 ≤ i ≤ `} ∪ {vvj : 1 ≤ j ≤ `} ∪ {wwk : 1 ≤ k ≤ `} ∪ {xxh : 1 ≤ h ≤ m} ∪ {yys : 1 ≤ s ≤ n}
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Then G has 3`+m+n+5 nodes and 3`+m+n links. The required node labeling f : V (G)→ {1, 2, 3, 4, dots, 3`+m+n+5}

is defined as follows

f(u) = 1; f(v) = 2; f(w) = 4; f(x) = 6; f(y) = 3` + m + n + 5;

f(ui) = 2i + 6 for 1 ≤ i ≤ `

f(vj) = 2` + 2j + 6 for 1 ≤ j ≤ `

f(wk) = 4` + 2k + 6 for 1 ≤ k ≤ `

f(xh) = 6` + 2h + 6 for 1 ≤ h ≤ m

f(ys) = 2s + 6 for 1 ≤ s ≤ n− 2

f(yn−1) = 3` + m + n + 4

f(yn) = 3` + m + n + 6

The corresponding link labels are as follows: The link label of uui is i + 4 for 1 ≤ i ≤ `; vvj is ` + j + 4 for 1 ≤ j ≤ `; wwk

is 2` + k + 5 for 1 ≤ k ≤ `; xxh is 3` + h + 6 for 1 ≤ h ≤ m; yys
3`+m+n+2s+11

2
; 1 ≤ s ≤ n− 2; yyn−1 is 3` + m + n + 5; yyn

is 3` + m + n + 6. Hence the induced link labels are distinct. Hence the graph G is Relaxed skolem mean graph.

Case (g): When n = 3` + m.

We’ve to prove that G is a relaxed skolem mean graph n = 3` + m.

V (G) = {u, v, w, x, y} ∪ {ui : 1 ≤ i ≤ `}, {v} ∪ {vj : 1 ≤ j ≤ `}, {w} ∪ {wk : 1 ≤ k ≤ `}

{x} ∪ {xh : 1 ≤ h ≤ m}, {y} ∪ {ys : 1 ≤ s ≤ n}and

E(G) = {uui : 1 ≤ i ≤ `} ∪ {vvj : 1 ≤ j ≤ `} ∪ {wwk : 1 ≤ k ≤ `} ∪ {xxh : 1 ≤ h ≤ m} ∪ {yys : 1 ≤ s ≤ n}

Then G has 3`+m+n+5 nodes and 3`+m+n links. The required node labeling f : V (G)→ {1, 2, 3, 4, . . . , 3`+m+n+5}

is defined as follows

f(u) = 1; f(v) = 3; f(w) = 5; f(x) = 7; f(y) = 3` + m + n + 5;

f(ui) = 2i + 2 for 1 ≤ i ≤ `

f(vj) = 2` + 2j + 2 for 1 ≤ j ≤ `

f(wk) = 4` + 2k + 2 for 1 ≤ k ≤ `

f(xh) = 6` + 2h + 2 for 1 ≤ h ≤ m

f(ys) = 2s + 7 for 1 ≤ s ≤ n− 2

f(yn−1) = 3` + m + n + 4

f(yn) = 3` + m + n + 6

The corresponding link labels are as follows: The link label of uui is i + 2 for 1 ≤ i ≤ `; vvj is ` + j + 3 for 1 ≤ j ≤ `; wwk

is 2` + k + 4 for 1 ≤ k ≤ `; xxh is 3` + h + 5 for 1 ≤ h ≤ m; yys
3`+m+n+2s+12

2
; 1 ≤ s ≤ n− 2; yyn−1 is 3` + m + n + 5; yyn

is 3` + m + n + 6. Hence the induced link labels are distinct. Hence the graph G is Relaxed skolem mean graph.
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3. Application of Graph Labeling

The skolem mean labeling is applied on a graph (network), such as bus topology, mesh topology and star topology in order

to solve the problems in establishing fastness, efficient communication and various issues in that area, in which the following

will be taken into account.

(1). A protocol, with secured communication can be achieved, provided the graph (network) is sufficiently connected.

(2). To find an efficient way for safer transmissions in areas such as Cellular telephony, Wi-Fi, Security systems and many

more.

(3). Channel labeling can be used to determine the time at which sensor communicate.

4. Conclusion

Researchers may get some information related to graph labeling and its applications in communication field and work on

some ideas related to their field of research.
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