
International Journal of Mathematics And its Applications

Volume 5, Issue 3–B (2017), 105–112.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal of Mathematics And its Applications

Norms of the Composite Convolution Volterra Operators

Research Article

Anupama Gupta1∗

1 Department of Mathematics, Government P.G.College for Women, Gandhi Nagar, Jammu, J & K, India.

Abstract: In this paper an endeavor has been made to compute the norms of Composite Convolution Volterra operators. An attempt
has also been made to obtain the norms of powers of composite convolution operators in general and in specific cases.

MSC: Primary 47B38; Secondary 47B99.

Keywords: Composition operator, Composite Convolution Volterra operator, Radon- Nikodym derivative, Expectation operator,

Hankel operator.

c© JS Publication.

1. Introduction

Let (X,Ω, µ) be a σ−finite measure space. For each f ∈ Lp(µ), 1 ≤ p < ∞, there exists a unique φ−1(Ω) measurable

function E(f) such that
∫
gfdµ =

∫
gE(f)dµ for every φ−1(Ω) measurable function g for which left integral exists. The

function E(f) is called conditional expectation of f with respect to the sub- algebra φ−1(Ω). For more details about

expectation operator, one can refer to Parthasarthy [11]. Let φ : X → X be a non-singular measurable transformation

(i.e., µ(E) = 0 ⇒ µφ−1(E) = 0). Then a composition transformation , for 1 ≤ p < ∞, Cφ : Lp(µ) → Lp(µ) is defined by

Cφf = foφ for every f ∈ Lp(µ). In case Cφ is continuous, we call it a composition operator induced by φ. It is easy to see

that Cφ is a bounded operator if and only if fd = dµφ−1

dµ
, the Radon-Nikodym derivative of the measure µφ−1 with respect

to the measure µ, is essentially bounded. For more detail about composition operator we refer to Singh and Manhas [14].

Given f, g ∈ L2(R), then convolution of f and g, f ∗ g is defined by

f ∗ g(x) =

∫
g(x− y)f(y)d(y),

where g is fixed, k(x, y) = g(x− y) is a convolution kernel and the integral operator defined by

Ikf(x) =

∫
k(x− y)f(y)dµ(y)

is known as Convolution operator. Consider the Volterra operator V acting on the Hilbert space L2[0, 1] defined by

(V f)(x) =

∫ x

0

f(y)dµ(y)
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Thus, the Volterra operator V is an integral operator induced by the kernel k(x, y) defined as

k(x, y) =

 0 x ≤ 0

1 x > 1

It is well known result that, Volterra operator is quasinilpotent. In 1982, Halmos [6] proved that the operator norm of V is

2/π. Lao and Whitley [9] in 1997 gave the numerical evidence which led them to the conjecture that

lim
n→ infty

||n!V n|| = 1/2.

It is shown by Kershaw [8] that

1/2n! ≤ ||V n|| ≤ 1

2n!
(1− 1/2n)−1/2 = ||V n||2,

where ||.|| and ||.||2 denote the operator norm and Hilbert-Schmidt norm respectively. Thus, both ||V n|| and ||V n||2 are

asymptotically equal to 1/2n! as n rightarrow∞. Whitley [15] established the Lyubic’s conjecture [10] and generalized it to

Volterra composition operators on Lp[0, 1]. The Volterra composition operator is a composition of Volterra integral operator

V and a composition operator Cφ defined as

(Vφf)(x) = (CφV f)(x) = (V f)oφ(x)

(Vφf(x) =

∫ φ(x)

0

f(t)dµ(t)

for every f ∈ Lp[0, 1], where φ : [0, 1] → [0, 1] is a measurable function. Volterra convolution operator Vk is defined on

L2[0, 1] by

Vkf(x) =

∫ x

0

k(x− y)f(y)dµ(y).

Volterra convolution operator Vk is compact, linear, bounded and hence Hilbert-Schimidt operator. V ∗k is the adjoint of Vk,

given by

V ∗k f(x) =

∫ 1

x

k(t− x)f(t)dµ(t).

The composite convolution Volterra operator (CCVO) Vk,φ, is defined as

Vk,φf(x) =

∫ x

0

k(x− y)f(φ(y))dµ(y) =

∫ x

0

kφ(x− y)f(y)dµ(y)

where kφ(x − y) = E(fd(y)k(x − y)φ−1(y)). The study of composite convolution Volterra operator has been initiated in

the work of Gupta [4]. This paper broaden the approach that was taken in the papers of Gupta ([3],[4],[5]). The integral

operators, in particular convolution Volterra operators have already been studied extensively over the last few decades.

For more detail about composition operators, integral operators, convolution operators and composite integral operators,

we refer to Singh and Manhas [14], Halmos and Sunder [7], Stepanov ([12],[13]), Biswas [1], Eveson [2], Kershaw [8],

Gupta and Komal [3] and Gupta ([4],[5]). Here, I recall some basic notion in operator theory. Let H be a Hilbert space

and B(H) be the algebra of all bounded linear operators acting on H. Let L2(µ) consists of all measurable functions

f : X → R(orC) such that (
∫
|f(x)|2dµ(x))1/2 < ∞. The space L2(X,S,Ω) is a Banach space under the norm defined

by ||f || = (
∫
|f |2dµ)1/2. Also, L2(µ), the space of square-integrable functions of complex numbers is a Hilbert space. The

study of Composite Convolution Volterra operators has been introduced in the work of Gupta [4]. This paper addresses the

problem of numerically computation of the norm of powers of composite convolution Volterra operators. We calculate the

norms of composite convolution Volterra operators for different conditions on kernel function.
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2. Computation of Norms of the Composite Convolution Volterra
Operators (CCVO)

In this section, L2[0, 1] is a Lebesgue space of real-valued functions in [0, 1]. It has been proved by Gupta [4] that spectrum

of composite convolution Volterra operator is equal to zero. In this section we investigate the norm of powers of composite

convolution Volterra operators (CCVO).

Theorem 2.1. Let Vk,φ ∈ B(L2(µ)). Suppose kφ(x− y) = δ(x− y). Then |Vk,φf | ≤
√
x||f ||2. Moreover, ||Vk,φ||22 < 1.

Proof. For f ∈ L2[0, 1], we have

|Vk,φf(x)| =

∣∣∣∣∫ x

0

kφ(x− y)f(y)dµ(y)

∣∣∣∣
=

∣∣∣∣∫ 1

0

χ[0,x](y)kφ(x− y)f(y)dµ(y)

∣∣∣∣
=

∣∣∣∣∫ 1

0

χ[0,x](y)δ(x− y)f(y)dµ(y)

∣∣∣∣
≤
(∫ 1

0

|χ[0,x](y)dµ(y)|
)1/2(∫ 1

0

|f(y)dµ(y)|
)1/2

=

(∫ x

0

|dµ(y)|
)1/2(∫ 1

0

|f(y)dµ(y)|
)1/2

=
√
x||f ||2.

Thus, we have

|Vk,φf | ≤
√
x||f ||2. (1)

Also, we have

||Vk,φf || =

∫ 1

0

|Vk,φf(x)|2dµ(x)

≤
∫ 1

0

x||f ||22dµ(x),

= |x
2

2
|10||f ||22 = ||f ||22,

and we conclude that

||Vk,φ||22 ≤
1

2
< 1.

In the next result, we calculate the norm of nth power of CCVO. To evualate the norm of nth power, firstly we prove above

theorem.

Theorem 2.2. Let Vk,φ ∈ B(L2(µ)). Suppose kφ ∈ L2(µ×µ). Then V nk,φ = Vkn,φ, where k
n
φ(x− y) =

∫ x
y
kφ(x− z)kn−1

φ (z−

y)dµ(z).

Proof. Let f ∈ L2[0, 1]. Then, we have

V 2
k,φf(x) = Vk,φ(Vk,φf(x))

=

∫ x

0

kφ(x− y)Vk,φf(y)dµ(y)

=

∫ x

0

∫ y

0

kφ(x− y)kφ(y − z)f(z)dµ(z)dµ(y)

=

∫ x

0

∫ z

x

kφ(x− y)kφ(y − z)f(z)dµ(y)dµ(z)

=

∫ x

0

k2φ(x− z)f(z)dµ(z),
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where

k2φ(x− z) =

∫ z

x

kφ(x− y)kφ(y − z)dµ(y).

Suppose the result is true for n = m. That is,

V mk,φ = Vkm,φ

=

∫ x

0

kmφ (x− z))f(z)dµ(z)

where

kmφ (x− z) =

∫ z

x

kφ(x− y)km−1
φ (y − z)dµ(y).

Now, for n = m+ 1, we have

V m+1
k,φ f(x) = Vk,φV

m
k,φf(x)

=

∫ x

0

kφ(x− y)V mk,φf(y)dµ(y)

=

∫ x

0

km+1
φ (x− z)f(z)dµ(z,

where

km+1
φ (x− z) =

∫ z

x

kφ(x− y)kmφ (y − z)dµ(y).

Hence, by using principle of mathematical induction, we conclude that

V nk,φ = Vkn,φ.

Theorem 2.3. For 1 ≤ p <∞, suppose Vk,φ ∈ B(Lp[0, 1]). Then ||V nk,φ|| ≤Mn (x)n

n!
||f ||.

Proof. Let f ∈ Lp[0, 1]. Then, we have

|Vk,φf(x)| =

∣∣∣∣∫ x

0

kφ(x− y)f(y)dµ(y)

∣∣∣∣
≤
∫ x

0

|kφ(x− y)|dµ(y)

∫ x

0

|f(y)|dµ(y)

<

∫ x

0

|kφ(x− y)|dµ(y)

∫ 1

0

|f(y)|dµ(y)

≤ M

∫ x

0

dµ(y)||f ||

= xM ||f ||,

where M = sup{|kφ(x − y)| : 0 ≤ y ≤ x ≤ 1}. Thus, the required result is true for n = 1. Assume that it is also true for

n = m. Now, consider n = m+ 1, we have

|V m+1
k,φ f(x)| = |Vk,φ(V mk,φ)f(x)|

=

∣∣∣∣∫ x

0

kφ(x− y)(V mk,φf)(y)dµ(y)

∣∣∣∣
≤
∣∣∣∣∫ x

0

kφ(x− y)Mm||f ||x
m

m!
dµ(y)

∣∣∣∣
≤ Mm+1 x

m+1

m+ 1
||f ||,

where we have use the theorem 2.2. Hence, by using principle of mathematical induction, we conclude that

||V nk,φ|| ≤Mn x
n

n!
||f ||.
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In next result, we have obtained the norm of nth power of CCVO under different conditions on kernel function.

Theorem 2.4. Let Vk,φ ∈ B(Lp[0, 1]) and 1 ≤ p <∞. Suppose V nk,φ is CCVO induced by kernel function knφ . Then

(i). ||V nk,φ|| ≤ 1, whenever kφ(x− y) = δ(x− y),

(ii). ||V nk,φ|| ≤ 1
p√np+1

, whenever kφ(x− y) = x.

Proof. Case (i): For f ∈ Lp[a, b], we have

∥∥V nk,φf∥∥pp =

∥∥∥∥∫ x

0

knφ(x− y)f(y)dµ(y)

∥∥∥∥p
p

=

∫ 1

0

∣∣∣∣∫ x

0

knφ(x− y)f(y)dµ(y)

∣∣∣∣p dµ(x)

≤
∫ 1

0

∣∣∣∣∫ 1

0

knφ(x− y)f(y)dµ(y)

∣∣∣∣p dµ(x)

≤
∫ 1

0

∫ 1

0

|knφ(x− y)|pdµ(y)dµ(x)

∫ 1

0

|f(y)|pdµ(y)

= ||f ||pp,

by using the given condition, kφ(x− y) = δ(x− y) and Holder’s inequality, we obtained the required result, ||V nk,φ|| ≤ 1.

Case (ii): Given kφ(x− y) = x, this implies that knφ(x− y) = xn. Then, from case (i), we have

||V nk,φf ||pp =

∫ 1

0

∣∣∣∣∫ x

o

knφ(x− y)f(y)dµ(y)

∣∣∣∣p
=

∫ 1

0

∣∣∣∣xn ∫ x

0

f(y)dµ(y)

∣∣∣∣p dµ(x)

≤
∫ 1

0

xnp
(∫ x

0

|f(y)|dµ(y)

)p
dµ(x)

<

(∫ 1

0

|f(y)|dµ(y)

)p ∫ 1

0

xnpdµ(x)

=
1

np+ 1

(∫ 1

0

|f(y)|dµ(y)

)p
=

1

np+ 1
||f ||,

which shows that

||V nk,φ|| ≤
1

p
√
np+ 1

.

Theorem 2.5. Let Vk,φ ∈ B(L2[0, 1]) and V nk,φ is CCVO induced by kernel function knφ . Suppose kφ is continuous kernel

on [0, 1]. Then ||knφ ||2 ≤ ||kφ||n2 . Moreover, ||V nk,φ|| ≤ ||Vk,φ||n.

Proof. For f ∈ L2[0, 1], we have

∫ x

0

[knφ(x− t)− knφ(x0 − t0)]dµ(t) =

∫ x

0

[kφ(x− s)kn−1
φ (s− t)dµ(t)− knφ(x0 − s)kn−1

φ (s, t)]dµ(t)

+

∫ 1

0

[kφ(x0 − s)kn−1
φ (s− t)− kφ(x0 − s)kn−1

φ (s, t0)]dµ(t)

=

∫ 1

0

[kφ(x− s)− kφ(x0 − s)]kn−1
φ (s− t)dµ(t)

+

∫ 1

0

kφ(x0 − s)[kn−1
φ (s− t)− kn−1

φ (s− t0)]dµ(t)
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For ε > 0, there exist a δ > 0, such that

|kφ(x− s)− k(x0, s)| < ε for |x− x0| < 0, ∀ s ∈ [0, 1] and

|kn−1
φ (s, t)− kn−1

φ (s, t0)| < ε for |t− t0| < 0, ∀ s ∈ [0, 1]

If |x− x0| < 0, ∀s ∈ [0, 1] and |t− t0| < 0, ∀s ∈ [0, 1], then we get

|knφ(x− t)− knφ(x0 − t0)| ≤
∫ 1

0

ε||kn−1
φ ||dµ(s) + ε

∫ 1

0

||kφ||dµ(s)

= ||kφ||+ ||kn−1
φ ||

and we conclude that knφ(x− t) is continuous. Furthermore,

||knφ ||22 =

∫ 1

0

∫ 1

0

|knφ(x− t)|2dµ(x)dµ(t)

=

∫ 1

0

∫ 1

0

(∣∣∣∣∫ 1

0

kφ(x− s)kn−1
φ (s− t)|dµ(s)

∣∣∣∣)(∣∣∣∣∫ 1

0

kφ(x− r)kn−1
φ (r − t)|dµ(s)

∣∣∣∣) dµ(x)dµ(t)

≤
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

|kφ(x− s)||kn−1
φ (s− t)|dµ(s)

∫ 1

0

|kφ(x− r)||kn−1
φ (r − t)|dµ(r)dµ(x)dµ(t)

≤
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(
|kφ(x− s)|2|kn−1

φ (r − t)|2 + |kn−1
φ (s− t)|2|kφ(x, r)|2

)
dµ(s)dµ(r)|dµ(x)dµ(t)

=
1

2
[||kφ||22||kn−1

φ ||22 + ||kn−1
φ ||22||kφ||22]

= ||kφ||22||kn−1
φ ||22.

Hence,

||knφ ||22 ≤ ||kφ||22||kn−1
φ ||22.

Therefore, for n = 2, we have

||k2φ|| ≤ ||kφ||22.

Assume that ||kn−1
φ || ≤ ||kφ||n−1

2 . Thus, by principle of mathematical induction , we have

||knφ ||2 ≤ ||kφ||2||kn−1
φ ||2

≤ ||kφ||2||kφ||n−1
2

= ||kφ||n2 .

Again, we have

||V nk,φf(x)|| =
∥∥∥∥∫ 1

0

knφ(x− y)f(y)dµ(y)

∥∥∥∥ .
||Vk,φf(x)||n =

∥∥∥∥∫ 1

0

kφ(x− y)f(y)dµ(y)

∥∥∥∥n .
Hence, we have

||V nk,φ|| ≤ ||Vk,φ||n.

Consider a translation operator U : L2[0, 1]→ L2[0, 1] defined as Uf(x) = f(1− x), where U is also unitary operator.

110



Anupama Gupta

Theorem 2.6. Let Vk,φ ∈ B(L2[0, 1]) and kφ be a non-negative kernel. Then

||UVk,φ||2 ≤
∫ 1

0

∫ 1

x

k2φ(t− x)dµ(t)dµ(x).

Proof. Given f ∈ L2[0, 1], we define

UVk,φf(x) = Vk,φf(1− x) =

∫ 1−x

0

kφ(1− x− y)f(y)dµ(y),

where UVk,φ is a linear operator from L2[0, 1] into L2[0, 1] with kernel kφ(1−x−y) and which is of the type Hankel operator.

Suppose A = UVk,φ. Then

|Af(x)|2 =

∣∣∣∣∫ 1−x

0

kφ(1− x− y)f(y)dµ(y)

∣∣∣∣2
≤
∫ 1−x

0

k2φ(1− x− y)dµ(y)

∫ 1−x

0

|f(y)|2dµ(y)

by using Cauchy’s Schwartz inequality. Again, we have

∫ 1

0

|Af(x)|2dµ(x) ≤
∫ 1−x

0

k2φ(1− x− y)dµ(y)dµ(x)

∫ 1−x

0

|f(y)|2dµ(y)

=

∫ 1

0

∫ 1−x

0

k2φ(1− x− y)dµ(y)dµ(x)

∫ 1

0

|f(y)|2dµ(y)

Thus, we have

||A|| ≤
∫ 1

0

∫ 1−x

0

k2φ(1− x− y)dµ(y)dµ(x)

=

∫ 1

0

∫ 1

x

k2φ(t− x)dµ(t)dµ(x)

Hence, the desired result follows.

In the next result, we have obtained thr adjoint of UVk,φ.

Theorem 2.7. Let Vk,φ ∈ B(L2[0, 1]) and kφ be a non-negative kernel. Then the adjoint of UVk,φ is given by the formula

(UVk,φ)∗ = fdE(V ∗k oφ
−1). Moreover, ||(UVk,φ)(UVk,φ)∗|| = ||(UVk,φ)∗||2.

Proof. Suppose A = UVk,φ. Given f, g ∈ L2[0, 1], we have

〈f,Ag〉 =

∫ 1

0

f(x)Ag(x)dµ(x)

=

∫ 1

0

f(x)

(∫ 1−x

0

k(1− x− y)(goφ)(y)dµ(y)

)
dµ(x)

=

∫ 1

0

(goφ)(y)

(∫ 1

y

k(y − x)f(x)dµ(x)

)
dµ(y)

=

∫ 1

0

(goφ)(y)(V ∗k f)(y)dµ(y)

= 〈V ∗k f, Cφg〉

= 〈C∗φV ∗k f, g〉

Hence,

A∗f(x) = (UVk,φ)∗f(x) = C∗φV
∗
k f(x) = fdE(V ∗k oφ

−1(x)).
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Also, for f ∈ L2[0, 1] and ||f ||2 = 1, we have

||(UVk,φ)(UVk,φ)∗|| = sup{|〈AA∗f, f〉}

= sup{|〈A∗f,A∗f〉}

= sup ||A∗f ||2

= ||A∗||2.

Hence, the result follows.
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