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1. Introduction

In this paper, we study the existence and uniqueness of mild solution for the following Neutral stochastic partial differential

equation.

D [x (t) + g (t, x (t− r (t)))] = [Ax (t) + f (t, x (t− ρ (t)))] dt+ h (t, x (t− δ (t))) dw (t) +
[
σ (t) dBH (t) , 0 ≤ t ≤ T

]
(1)

x (t) = ∅(t), t ∈ [−τ, 0], where A is the infinitesimal generator of an analytic semigroup of bounded linear operators,

(S (t))t≥0 in a Hilbert space X, BH is a Q-fractional Brownian motion on a real and separable Hilbert space Y, r, ρ :

[0, T ]→ [0, τ ] (τ > 0) are continuous f, g : [0, T ]×X → X. h : [0, T ]→ L0
2 (Y,X) and σ : [0, T ]→ L0

2 (Y,X) are appropriate

function and ∅ ∈
(
[−τ, 0] ; L2 (Ω, X)

)
. Here L0

2 (Y,X) denotes the space of all Q-Hilbert-Schmidt operators from Y into X.

We would like to mention that the theory for the stochastic differential equations driven by Fractional Brownian motion

(FBM) have recently been studied intensively (see [5, 8, 11, 13, 14]). Senguttuvan et al., studied the existence of stochastic

differential equations with neutral and delay conditions [16, 17, 18, 19]. Stochastic Partial differential equations (SPDEs)

driven by a FBM arise in many areas of applied Mathematics. For this reason, the study of this type of equation has been

receiving increased attention in the last few years. The existence and uniqueness of mild solution for a class of Stochastic

differential equations in Hilbert space with a standard cylindrical FBM with the Hurst parameter in the interval
(
1
2
, 1
)

has

been studied in [6]. In [7] the authors studied the existence and regularity of the density by using the skorohod integral based
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on Malliavin Calculus. Recently, Caraballo and et al [4] investigated the existence and uniqueness result of mild solutions

to Stochastic delay equations driven by FBM with Hurst parameter H ∈
(
1
2
, 1
)
. Moreover by this consideration in this

paper we aim to extend the existence and uniqueness of mild solutions to cover a class of more general neutral stochastic

functional differential equations driven by a FBM. The outline of this paper is as follows. In section 2, we introduce some

notations, concepts and basic results about fractional Brownian motion, Wiener integral over Hilbert spaces and we recall

some preliminary results about analytic semigroups and fractional power associated to its generator. In section 3, the

existence and uniqueness of mild solutions are proved.

2. Preliminaries

In this section, we collect some notions, conceptions and lemmas on Wiener integrals with respect to an infinite dimensional

fractional Brownian motion. In addition, we also recall some basic results about analytical semi-groups and fractional powers

of their infinitesimal generators which will be used throughout this paper. Let (Ω,F ,P) be a complete probability space.

Consider a time interval [0, T ] with arbitrary fixed horizon T and let
{
βH (t) , t ∈ [0, T ]

}
be the one-dimensional fractional

Brownian motion with Hurst parameter H ∈
(
1
2
, 1
)
. This means by definition that βH is a centered Gaussian process with

covariance function:

RH (t, s) = E
(
βHt β

H
s

)
=

1

2

(
t2H + s2H − |t− s|2H

)
.

More over βH has the following Wiener integral representation:

βH (t) =

∫ t

0

KH (t, s) dβ (s)

where β =
{
βH (t) , t ∈ [0, T ]

}
is a Wiener process and KH (t, s) is the kernel given by

KH (t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−
1
2 uH−

1
2 du

for t > s, where cH =
√
H (2H − 1) /β

(
2− 2H,H − 1

2

)
and β (·, ·) denotes the Beta function. We put K = H (t, s) = 0 if

t ≤ s. We will denote by H the reproducing kernel Hilbert space of the FBM. In fact H is the closure of set of indicator

functions
{
l[0,t], t ∈ [0, T ]

}
with respect to the scalar product

〈
l[0,t], l[0,s]

〉
H = RH (t, s) .

The mapping l[0,t] → βH (t) can be extended to an isometry between H and the first Wiener chaos and we will denote by

βH (ϕ) the image of ϕ by the previous isometry. We recall that for ψ,Φ ∈ H their scalar product in H is given by

〈ψ, ϕ〉H = H (2H − 1)

∫ T

0

∫ T

0

ψ (s)ϕ (t) |t− s|2H−2dsdt.

Let us consider the operator K∗H from H to L2 ([0, T ]) defined by

(K∗H) (s) =

∫ T

s

ϕ (r)
∂K

∂r
(r, s) dr

We refer [12] for the proof of the fact that K∗H is an isometry between H and L2 ([0, T ]). Moreover for any ∈ H, we have

βH (ϕ) =

∫ t

0

(K∗H) (t) dβ (t) .
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It follows from [12] that the elements of H may be not functions but distributions of negative order. In order to obtain a

space of functions contained in H, we consider the linear space |H| generated b the measurable functions ψ such that

‖ψ‖2|H| = αH

∫ T

0

∫ T

0

|ψ (s)| |ψ (t)||t− s|2H−2dsdt <∞

where αH = H(2H − 1). The space |H| is a Banach space with the norm ‖ψ‖|H| and we have the following conclusions [12].

Lemma 2.1. Let

L2 ([0, T ]) ⊆ L1/H ([0, T ]) ⊆ |H| ⊆ H,

and for any ψ ∈ L2 ([0, T ]) we have

‖ψ‖2|H| ≤ 2HT 2H−1

∫ T

0

|ψ (s)|2ds.

Let X and Y be two real, separable Hilbert spaces and let L (Y,X) be the space of bounded linear operator from Y to X.

For the sake of convenience, we shall use the same notation to denote the norms in Y, X and L (Y,X). Let Q ∈ L (Y,X) be

an operator defined by Qen = λnen with finite trace tr Q =
∑∞
n−1 λn < ∞ where λn ≥ 0 (n = 1, 2, . . ..) are non-negative

real numbers and {en} (n = 1, 2, . . ..) is a complete orthonormal basis in Y. We define the infinite dimensional FBM on Y

with covariance Q as

BH (t) = BHQ (t) =

∞∑
n−1

√
λnenBH

Q
,

where BHQ are real, independent FBM. This process is a Y-valued Gaussian, it starts from 0, has zero mean and covariance:

E
〈
BH (t) , x

〉〈
BH (s) , y

〉
= R (s, t) 〈Q (x) , y〉 ,

for all x, y ∈ Y and t, s ∈ [0, T ]. In order to define Wiener integrals with respect to the Q-FBM, we introduce the space

L0
2 = L0

2 (Y,X) of all Q-Hilbert-Schmidt operators ψ : Υ → X. We recall that ψ ∈ L(Υ, X) is called a Q-Hilbert-Schmidt

operator if

‖ψ‖2L0
2

=

∞∑
n−1

∥∥∥√λnψen∥∥∥2 <∞,
and that the space L0

2 equipped with the inner product 〈ϕ,ψ〉L0
2

=
∑∞
n−1 〈ϕen, ψen〉 is a separable Hilbert space. Now, let

ϕ (s), s ∈ [0, T ] be a function with values in L0
2 (Y,X). The Wiener integral of ϕ with respect to BH is defined by

∫ t

0

ϕ (s)dBH (s) =

∞∑
n−1

√
λnϕ (s) dBHn (s) =

∞∑
n−1

∫ t

0

√
λn (K∗H) (ϕen) (s)BHn (s) (2)

where βn is the standard Brownian motion used to present BHn . Now we end this subsection by stating the following result

in [2].

Lemma 2.2. If ψ : [0, T ] → L0
2 (Y,X) satisfies

∫ T
0
‖ψ (s)‖2L0

2
<∞, then the above sum in (2) is well defined as a X-valued

random variable and we have

E

∥∥∥∥∫ t

0

ϕ (s)dBH (s)

∥∥∥∥2 ≤ 2Ht2H−1

∫ t

0

‖ψ (s)‖2L0
2
ds.

Now we turn to state notations and basic facts about the theory of semi-groups and fractional power operators. Let

A : D(A) → X be the infinitesimal generator of an analytic semi-group, (S (t))t≥0, of bounded linear operators on X. For

the theory of strongly continuous semigroup, we refer to Pazy [15]. We will point out here some notations and properties

that will be used in this work. It is well known that there exist M ≥ 1 and λ ∈ R such that ‖S (t)‖ ≤ Meλt for every
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t ≥ 0. If (S (t))t≥0 is a uniformly bounded and analytic semigroup such that 0 ∈ ρ (A), where ρ (A) is the resolvent set of

A, then it is possible to define the fractional power (−A)α for 0 ≤ α ≤ 1, as a closed linear operator on its domain D(−A)α.

Furthermore, the subspace (−A)α is dense in X, and the expression ‖h‖α = ‖(−A)αh‖ defines a norm in D(−A)α. If Xα

represents the space D(−A)α endowed with the norm ‖·‖α, then the following properties are well known [15].

Lemma 2.3. Suppose that the preceding conditions are satisfied.

(1). Let 0 < α ≤ 1. Then Xα is a Banach space.

(2). If 0 < β ≤ α then the injection Xα → Xβ is continuous.

(3). For every 0 < β ≤ 1 there exists Mβ > 0 such that
∥∥∥(−A)βS (t)

∥∥∥ ≤Mβt
βe−λt, t > 0, λ > 0.

Lemma 2.4 ([3]). For u, v ∈ X, and 0 < c < 1,

‖u‖ ≤ 1

1− c‖u− v‖
2 +

1

c
‖v‖2.

3. Existence and Uniqueness

In this section we study the existence and uniqueness of mild solution for Equation (1). For this equation we assume that

the following conditions hold.

(H1) A is the infinitesimal generator of an analytic semigroup, (S (t))t≥0, of bounded linear operators on X. Further, to

avoid unnecessary notations, we, suppose that 0 ∈ ρ (A) and that, (see Lemma 2.3), ‖S (t)‖ ≤ M and
∥∥∥(−A)βS (t)

∥∥∥ ≤ M1−β
t1−β

,

for some constants M,Mβ and every t ∈ [0, T ].

(H2) The function f and h satisfies the following non-Lipschitz condition: for any x, y ∈ X and t ≥ 0,

‖f (t, x)−f (t, y)‖2 ∨ ‖h (t, x)− h (t, y)‖2 ≤ k
(
‖x− y‖2

)
,

where k is a concave nondecreasing function from R+ → R+ such that κ(0) = 0, κ(u) > 0 and
∫ ∫

0+
du/κ(u) =∞ e.g

k ∼ uα, 1
2
< α < 1. We further assume that there is an M ′ > 0 such that sup0 ≤ t ≤ T ‖f (t, 0)‖ ≤M ′.

(H3) There exist constants 1
2
< α ≤ 1, K1 ≥ 0 such that the function g is Xα-valued and satisfies for any x, y ∈ X and

t ≥ 0,

‖(−A)αg (t, x)− (−A)αg (t, y)‖≤K1 ‖x− y‖ , ‖(−A)α‖K1 < 1

We further assume that g(t, 0) ≡ 0 for t ≥ 0 and the function (−A)α is continuous in the quadratic mean sense:

lim
t→s

E ‖(−A)αg (t, x (t))− (−A)αg (s, x (s))‖2 = 0.

(H4) The function σ : [0,+∞)→ L0
2 (Y,X) satisfies∫ T

0

‖σ (s)‖2L0
2
ds <∞, ∀ T > 0

Definition 3.1. A X-valued process x(t) is called a mild solution of (1) if x ∈
(
[−τ, T ] ,L2 (Ω, X)

)
for t ∈ [−τ, 0], x (t) =

ϕ (t), and for t ∈ [0, T ] satisfies

x (t) = S (t) [ϕ (0) + g (0, ϕ (−r (0)))]− g (t, x (t− r (t)))

−
∫ t

0

AS (t− s) g (s, x (s− r (s))) ds+

∫ t

0

S (t− s) f (s, x (s− ρ (s))) ds

+

∫ t

0

S (t− s)h (s, x (s− δ (s))) dw (s) +

∫ t

0

S (t− s)σ (s) dBH (s)
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Lemma 3.2 ([10]). Let T > 0 and c > 0. Let k: R+ to R+ be a continuous nondecreasing function such that κ(t) > 0 for

all t > 0. Let u(·) be a Borel measurable bounded nonnegative function n [0, T ]. If

u (t) ≤ c+

∫ t

0

v (s) k (u (s)) ds for all 0≤ t ≤ T .

u (t) ≤ J−1

(
J (c) +

∫ t

0

v (s) ds

)
,

holds for all such t ∈ [0, T ] that J (c) +
∫ t
0
v (s) ds ∈ Dom (J−1), where J (r) =

∫ r
0
ds/k (s) on r > 0 and J−1 is the inverse

function of J . In Particular, if, c = 0 and
∫ r
0+
ds/κ (s) =∞ then u (t) = 0 for all t ∈ [0, T ].

To complete our main results, we need to prepare several lemmas which will be utilize in the sequel. Note that g(t, 0) ≡ 0

and

‖(−A)αg (t, x)− (−A)αg (t, y)‖≤K1 ‖x− y‖ .

Then we easily get that ‖(−A)αg (t, x)‖2 ≤ K2
1‖x‖2. Thus by [2], we can introduce the following successive approximating

procedure: for each integer n = 1, 2, 3, . . ..

xn (t) = S (t) (ξ (0) + g (0, ξ (−r (0))))− g (t, xn (t− r (t)))

−
∫ t

0

AS (t− s) g (s, xn (s− r (s))) ds+

∫ t

0

S (t− s) f
(
s, xn−1 (s− ρ (s))

)
ds

+

∫ t

0

S (t− s)h
(
s, xn−1 (s− δ (s))

)
dw (s) +

∫ t

0

S (t− s)σ (s) dBH (s) (3)

and for n = 0, x0 (t) = S (t) ξ (0), t ∈ [0, T ]. While for n = 1, 2, . . ..

xn (t) = ξ (t) , t ∈ [−τ, T ] .

Lemma 3.3. Let the hypothesis (H1)-(H4) hold. Then there is a positive constant C1, which is independent of n ≥ 1, such

that for any t ∈ [0, T ],

E sup
0≤t≤T

‖xn (t)‖2 ≤ C1. (4)

Proof. For 0 ≤ t ≤ T , it follows easily from (3) that

E sup
0≤t≤T

‖xn (t) + g (t, xn (t− r (t)))‖2 ≤ 5E sup
0≤t≤T

‖S (t) (ξ (0) +) g (0, ξ (−r (0)))‖2

+ 5E sup
0≤t≤T

∥∥∥∥∫ t

0

AS (t− s) g (s, xn (s− r (s))) ds

∥∥∥∥2
+ 5E sup

0≤t≤T

∥∥∥∥∫ t

0

S (t− s) f
(
s, xn−1 (s− ρ (s))

)
ds

∥∥∥∥2
+ 5E sup

0≤t≤T

∥∥∥∥∫ t

0

S (t− s)h
(
s, xn−1 (s− δ (s))

)
dw (s)

∥∥∥∥2
+ 5E sup

0≤t≤T

∥∥∥∥∫ t

0

S (t− s)σ (s) dBH (s)

∥∥∥∥2
= 5(I1 + I2 + I3 + I4 + I5). (5)

Note from [15] that (−A)−α for 0 < α ≤ 1 is a bounded operator. Employing the assumption (H3), it follows that

I1 ≤ 2

[
E sup

0≤t≤T
‖S (t) ξ (t)‖2 + E sup

0≤t≤T

∥∥S (t) (−A)−α(−A)αg (0, ξ (−r (0)))
∥∥2]

≤ 2
(

1 +K2
1

∥∥(−A)−
∥∥2) .‖ξ‖2C (6)
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Applying the Holder’s inequality and taking into account Lemma 2.3 as well as (H3), and the fact that 1/2 < β ≤ 1, we

obtain

I2 = E sup
0≤t≤T

∥∥∥∥∫ t

0

(−A)1−αS (t− s) (−A)αg (s, xn (s− r (s))) ds

∥∥∥∥2
≤ ᵀ2α−1

2α− 1
M2

1−αE sup
0≤t≤T

∫ t

0

‖(−A)αg (s, xn (s− r (s)))‖2 ds

≤ ᵀ2α−1

2α− 1
M2

1−αK2
1 E sup

0≤t≤T

∫ t

0

‖xn (s− r (s))‖2ds. (7)

On the other hand, in view of (H2), we obtain that

I3 ≤ TE sup
0≤t≤T

∫ t

0

∥∥S (t− s) f
(
s, xn−1 (s− ρ (s))

)
− f (s, 0) + f(s, 0)

∥∥2ds
≤ 2TM2

[
M
′2T + E sup

0≤t≤T

∫ t

0

κ
(∥∥xn−1 (s− ρ (s))

∥∥2)ds] (8)

and

I4 ≤ TE sup
0≤t≤T

∫ t

0

∥∥S (t− s)h
(
s, xn−1 (s− ρ (s))

)
− h (s, 0) + h(s, 0)

∥∥2ds
≤ 2TM2

[
M
′2T + E sup

0≤t≤T

∫ t

0

κ
(∥∥xn−1 (s− δ (s))

∥∥2) ds] (9)

Next by Lemma 2.2, we have

I4 ≤ 2M2HT 2H−1

∫ T

0

‖σ (s)‖2L0
2
ds <∞ (10)

Since κ(u) is concave on u ≥ 0, there is a pair of positive constants a, b such that κ (u) ≤ a+ bu. Putting (6) to (10) into

(5) yields that, for some positive constants C2 and C3,

E sup
0≤t≤T

‖xn (t) + g (t, xn (t− r (t)))‖2 ≤ C2 + C3E sup
0≤t≤T

∫ t

0

‖xn (s− r (s))‖2ds+ 2C3E sup
0≤t≤T

∫ t

0

∥∥xn−1 (s− r (s))
∥∥2ds

(11)

While for
∥∥(−A)−α

∥∥2 < K1 By Lemma 2.4,

E sup
0≤t≤T

‖xn (t)‖2 ≤ 1

1−K1

∥∥(−A)−α
∥∥E sup

0≤t≤T
‖xn (t) + g (t, xn (t− r (t)))‖2

+
1

K1

∥∥(−A)−α
∥∥E sup

0≤t≤T
‖g (t, xn (t− r (t)))‖2

≤ 1

1−K1

∥∥(−A)−α
∥∥ E sup

0≤t≤T
‖xn (t) + g (t, xn (t− r (t)))‖2

+K1

∥∥∥(−A)−β
∥∥∥E‖ξ‖2C +K1

∥∥(−A)−α
∥∥E sup

0≤t≤T
‖xn (t)‖2

which further implies that

E sup
0≤t≤T

‖xn (t)‖2 ≤ 1(
1−K1

∥∥(−A)−α
∥∥)2E sup

0≤t≤T
‖xn (t) + g (t, xn (t− r (t)))‖2 +

K1

∥∥(−A)−α
∥∥

1−K1

∥∥(−A)−α
∥∥E ‖ ξ‖2C .

Thus, by (11) we have

E sup
0≤t≤T

‖xn (t)‖2 ≤

[
K1

∥∥(−A)−α
∥∥

1−
∥∥(−A)−α

∥∥ +
4C3r(

1−K1

∥∥(−A)−α
∥∥)2

]
E ‖ξ‖2C

+
C3(

1−K1

∥∥(−A)−α
∥∥)2

[
2

∫ T

0

E sup
0≤r≤s

∥∥xn−1 (r)
∥∥2 ds+

∫ T

0

E sup
0≤r≤s

‖xn (r)‖2 ds
]

+
C2(

1−K1

∥∥(−A)−α
∥∥)2
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Observing that

max
1≤n≤κ

E sup
0≤t≤T

∥∥xn−1 (t)
∥∥2 ≤ E ‖ ξ‖2C + max

1≤n≤κ
E sup

0≤t≤T
‖xn (t)‖2

We then derive that, for some positive constants C4 and C5

max
1≤n≤κ

E sup
0≤t≤T

‖xn (t)‖2 ≤ C4 + C5E
∫ T

0

max
1≤n≤κ

E sup
0≤r≤s

‖xn (s)‖2 ds

Now, the application of the well-known Gronwall’s inequality yields that

max
1≤n≤κ

E sup
0≤t≤T

‖xn (t)‖2 ≤ C4 + eC5T .

The required assertion (4) is obtained since k is arbitrary.

Lemma 3.4. Let the condition (H1)-(H4) be satisfied. For α ∈
(
1
2
, 1] further assume that

3K2
1M2

1−αγ
−2αᵀ2α−1

1−K1

∥∥(−A)−α
∥∥ +K1

∥∥(−A)−α
∥∥ < 1, (12)

where ᵀ (·) is the Gamma function and M1−α is a constant in Lemma 2.3. Then there exists a positive constant C such that,

for all 0 ≤ t ≤ T and n,m ≥ 0

E sup
0≤t≤T

∥∥xn+m (s)− xn (s)
∥∥2 ≤ C ∫ t

0

κ

(
E sup

0≤u≤s

∥∥xn+m−1 (u)− xn−1 (u)
∥∥2) ds. (13)

Proof. From (3), it is easy to see that for any 0 ≤ t ≤ T ,

E sup
0≤t≤T

∥∥xn+m (s)− xn (s) + g
(
s, xn+m (s)− g (s, xn (s))

)∥∥2
≤ 3E sup

0≤t≤T

∥∥∥∥∫ t

0

AS (s− u)
[
g
(
u, xn+m (u− r (u))

)
− g (u, xn (u− r (u)))

]
du

∥∥∥∥2
+ 3E sup

0≤t≤T

∥∥∥∥∫ t

0

S (s− u)
[
f
(
u, xn+m−1 (u− ρ (u))

)
− f

(
u, xn−1 (u− ρ (u))

)]
du

∥∥∥∥2
+ 3E sup

0≤t≤T

∥∥∥∥∫ t

0

S (s− u)
[
h
(
u, xn+m−1 (u− δ (u))

)
− h

(
u, xn−1 (u− δ (u))

)]
du

∥∥∥∥2

Following from the proof of Lemma 3.2, there exists a positive C6 satisfying

3E sup
0≤t≤T

∥∥∥∥∫ t

0

S (s− u)
[
f
(
u, xn+m−1 (u− ρ (u))

)
− f

(
u, xn−1 (u− ρ (u))

)]
du

∥∥∥∥2
≤ C6

∫ t

0

κ
(
E sup 0 ≤ u ≤ s

∥∥xn+m−1 (u)− xn−1 (u)
∥∥2) ds.

Also following from the proof of Lemma 3.2, there exists a positive C7 satisfying

3E sup
0≤t≤T

∥∥∥∥∫ t

0

S (s− u)
[
h
(
u, xn+m−1 (u− δ (u))

)
− h

(
u, xn−1 (u− δ (u))

)]
du

∥∥∥∥2
≤ C7

∫ t

0

κ

(
E sup

0≤u≤s

∥∥xn+m−1 (u)− xn−1 (u)
∥∥2) ds.

127



Existence of Mild Solutions to Stochastic Neutral Partial Functional Differential Equations Driven by Fractional Brownian Motion with
Non-Lipschitz Coefficients

The last inequality holds from the Jensen’s inequality. Now by the condition (H3), Lemma 2.3 and Holder’s inequality,

E sup
0≤t≤T

∥∥∥∥∫ t

0

AS (s− u)
[
g
(
u, xn+m (u− r (u))

)
− g (u, xn (u− r (u)))

]
du

∥∥∥∥2
≤ E sup

0≤t≤T

(∫ s

0

∥∥(−A)1−αS (s− u)
[
(−A)αg

(
u, xn+m (u− r (u))

)
− (−A)αg (u, xn (u− r (u)))

]
du
∥∥2)

≤ E sup
0≤t≤T

(∫ s

0

K1
M2

1−αe
−γ(s−u)

(s− u)1−α
∥∥xn+m (u− r (u))− xn (u− r (u))

∥∥ du)2

≤ E sup
0≤t≤T

∫ s

0

K2
1

M2
1−αe

−γ(s−u)

(s− u)1−α
du

∫ s

0

e−γ(s−u)
∥∥xn+m (u− r (u))− xn (u− r (u))

∥∥2du
≤ K2

1M2
1−αγ

−2αᵀ2α−1E sup
0≤t≤T

∫ s

0

e−γ(s−u)
∥∥xn+m (u− r (u))− xn (u− r (u))

∥∥2du
≤ K2

1M2
1−αγ

−2αᵀ2α−1E sup
0≤t≤T

∥∥xn+m (s)− xn (s)
∥∥2.

On the other hand, Lemma 2.4 and (H3) give that

E sup
0≤t≤T

∥∥xn+m (s)− xn (s)
∥∥2 ≤ 1

1−K1

∥∥(−A)−α
∥∥E sup

0≤t≤T

∥∥xn+m (s)− xn (s) + g
(
s, xn+m (s)− g (s, xn (s))

)∥∥2
+ K1

∥∥(−A)−α
∥∥E sup

0≤t≤T

∥∥xn+m (s)− xn (s)
∥∥2. (14)

So the desired assertion (13) follows from (14).

We can now state the main result of this paper.

Theorem 3.5. Under the conditions of Lemma 3.3, then (1) admits a unique mild solution.

Proof. Uniqueness: Let x and y be two mild solutions to Equation (1). In the same way as Lemma 3.3 was done, we

can show that for some K > 0

E sup
0≤t≤T

‖x (s)− y (s)‖2 ≤ K

∫ t

0

κ

(
E sup

0≤t≤T
‖x (r)− y (r)‖

)
ds

This together with Lemma 3.1 leads to

E sup
0≤t≤T

‖x (s)− y (s)‖2 = 0.

Consequently x = y which implies the uniqueness. The proof of theorem is complete.

Existence: By Lemma 3.3 there exists a positive C such that for t ∈ T and n,m ≥ 1,

E sup
0≤t≤T

∥∥xn+1 (s)− xm+1 (s)
∥∥2 ≤ C ∫ t

0

κ

(
E sup

0≤t≤T
‖xn (u)− xm (u)‖2

)
ds.

Integrating both sides and applying Jensen’s inequality gives that

∫ t

0

E sup
0≤t≤T

∥∥xn+1 (l)− xm+1 (l)
∥∥2ds ≤ {

∫ t

0

∫ s

0

κ

(
E sup

0≤t≤T
‖xn (u)− xm (u)‖2

)
dlds.

= C

∫ t

0

s

∫ s

0

κ

(
E sup

0≤t≤T
‖xn (u)− xm (u)‖2

)
1

s
dlds.

≤ Ct
∫ t

0

κ

(∫ s

0

E sup
0≤t≤T

‖xn (u)− xm (u)‖2 1

s
dl

)
ds.

Then

hn+1,m+1 (t) ≤ {
∫ t

0

κ (hn,m (s)) ds,
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where hn,m (t) =
∫ t
0 E sup0≤t≤T ‖xn+1(l)−xm+1(l)‖2ds

t
. While by Lemma 3.2, it is easy to see that sup

n,m
hn,m (t) <∞, so letting

h(t) := lim sup
n,m→∞

hn,m (t) and taking into account the Fatou’s lemma,we yield that h (t) ≤ C
∫ t
0
κ (h (s)). Now, applying

the Lemma 3.1 immediately reveals h(t) = 0 for any t ∈ [0, T ]. This further means {xn (t) , n ∈ N} is a Cauchy sequence in

L2. So there is a x ∈ L2 such that

lim
n→∞

∫ t

0

E sup
0≤t≤T

‖xn (s)− x (s)‖2ds = 0.

In addition, By Lemma 3.2, it is easy to follow that E‖x (t)‖2 ≤ C1. In what follows, we claim that x(t) is a mild solution

to (1). On one hand, by (H3),

E‖g (t, xn (t− r (t)))− g (t, x (t− r (t)))‖2 = E
∥∥(−A)−α [(−A)αg (t, xn (t− r (t)))− (−A)αg (t, x (t− r (t)))]

∥∥2
≤
∥∥(−A)−α

∥∥2K2
1E sup

0≤t≤T
‖xn (s)− x (s)‖2 → 0,

whenever n→∞. On the other hand, by (H3) and Lemma 2.3, compute for t ∈ [0, T ]

E
∥∥∥∥∫ t

0

AS (t− s) g (s, xn (t− r (t)))− g (s, x (t− r (t))) ds

∥∥∥∥2
= E

∫ t

0

∥∥(−A)1−αS (t− s)
[
(−A)−αg (s, xn (t− r (t)))− (−A)−αg (s, x (t− r (t)))

]
ds
∥∥2

≤ ᵀ2β−1

2β − 1
M2

1−β

∫ T

0

E sup
0≤t≤T

‖xn (u)− x (u)‖2ds→ 0, as →∞.

While, applying (H2) the Holder’s inequality and in [9, Theorem 1.2.6] and letting n → ∞, we can also claim that for

t ∈ [0, T ]

E
∥∥∥∥∫ t

0

S (t− s) [f (t, xn (t− ρ (t)))− f (t, x (t− ρ (t)))] ds

∥∥∥∥2 → 0 and

E
∥∥∥∥∫ t

0

S (t− s) [h (t, xn (t− δ (t)))− h (t, x (t− δ (t)))] ds

∥∥∥∥2 → 0.

Hence, taking limits on both sides of (3),

x (t) = S (t) [ϕ (0) + g (0, ϕ (−r (0)))]− g (t, x (t− r (t)))

∫ t

0

AS (t− s) g (s, x (s− r (s))) ds

+

∫ t

0

S (t− s) f (s, x (s− ρ (s))) ds+

∫ t

0

S (t− s)h (s, x (s− δ (s))) dw (s) +

∫ t

0

S (t− s)σ (s) dBH (s) .

Remark 3.6. If H = 1/2, then BHQ (t) is standard Q-Cylindrical FBM. Consequently, our results can be reduced to some

results in [1]. In other words, in this special case, we generalize [1].

Remark 3.7. In this work, we consider the existence and uniqueness of mild solutions to SNFDEs driven by a fractional

Brownian motion under a non-Lipschitz condition with the Lipschitz condition being regarded as special case and a weakened

linear growth assumption. Therefore, some of the results in [2] are improved to cover a class of more general SNFDEs driven

by a fractional Brownian motion.
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