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Abstract: It is well known that on a finite dimensional linear space, any two norms are always equivalent. But, is the converse also
true? That is if all norms on a linear space X are equivalent, then is X necessarily finite dimensional? In this article, we

try to find the answer to this question.

MSC: AMS Classification

Keywords: Norm, Infinite dimensional space, Equivalent norms.

c© JS Publication.

1. Introduction

It is known to all of us that in a finite dimensional norm linear space any two norms are always equivalent [5]. Now the

question is whether the inverse of this statement is true. To answer this question we have to first study about infinite

dimensional space. So in the first part of this article we have discussed various definitions and examples of both finite and

infinite dimensional spaces. From the examples discussed here we can conclude that in case of infinite dimensional normed

linear space there may exist some norms which are not equivalent.

2. Preliminaries

In this section we have listed some important definitions and examples.

Definition 2.1. Let V (F ) be a vector space (F is either R or C). A norm denoted by ‖.‖ is a function from X to R which

satisfies the following conditions:

(1). ‖x‖ ≥ 0, ∀x ∈ X

(2). ‖x‖ = 0 ⇐⇒ x = 0, ∀x ∈ X

(3). ‖kx‖ = |k|.‖x‖, ∀ x ∈ X and k ∈ F

(4). ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x ∈ X.

A vector space X together with ‖.‖ function i.e. (X, ‖.‖) is called a Normed space.
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Norms on Infinite Dimensional Space

Definition 2.2. A Normed space (X, ‖.‖) is called finite dimensional if X is finite dimensional. Otherwise if X is infinite

dimensional then (X, ‖.‖) is called infinite dimensional normed space.

Example 2.3. Define a function ‖.‖ : R → R by ‖x‖ = |x| where |x| = x if x ≥ 0 and |x| = −x if x < 0 ∀x ∈ R. Then

(R, ‖.‖) is a nomed linear space.

Example 2.4. Let X=Rn={x = (x1, x2, x3, ..., xn) : xi ∈ R, 1 ≤ i ≤ n} .Then we can define ‖.‖k = (
n∑
i=1

|xi|k)
1
k by choosing

any 1 ≤ k ≤ ∞. Then (Rn, ‖.‖k) is a normed linear space. We can have various norms on Rn by varying the value of k. In

particular for k = 2 the norm ‖.‖2 = (
n∑
i=1

|xi|2)
1
2 is called Euclidean norm. However, for 0 < k < 1, ‖.‖k does not define a

norm on Rn. We can see this by an example. If we take k = 1
2

and n = 2. Let x = (1, 0), y = (0, 1) in R2. Then we get

x + y = (1, 1). Now ‖x‖ 1
2

= 1 and ‖y‖ 1
2

= 1 But ‖x + y‖ 1
2

= 4. Therefore, ‖x + y‖ 1
2
> ‖x‖ 1

2
+ ‖y‖ 1

2
, which violates the

Triangular inequality.

These were some examples of finite dimensional normed linear spaces. Now we will discuss some examples of infinite

dimensional normed linear spaces.

Example 2.5. Let X = {p = p(t): p is a polynomial of any degree}. Therefore X be the space of polynomials of all degrees.

Now we can define a norm ‖.‖ on X by ‖p‖ = supt∈[0,1]|p(t)|. Then X is an infinite dimensional normed linear space.

Example 2.6. Consider X = C [0, 1] = {x : [0, 1] → R|xis continous}. Define a norm ‖.‖1 =
1∫
0

|x(t)|dt. Then X is an

infinite dimensional normed linear space.

Definition 2.7 ([1]). Let two norms ‖.‖1 and ‖.‖2 defined on same vector space X are said to be comparable if either

‖x‖1 ≤ c1‖x‖2 or ‖x‖2 ≤ c2‖x‖1 ∀x ∈ X and for some c1, c2 ∈ R+ is satisfied. If first one satisfied then ‖x‖2 is said to be

stronger than ‖x‖1 and ‖x‖1 is weaker than ‖x‖2. Similarly if second one is satisfied then ‖x‖1 is said to be stronger than

‖x‖2 and ‖x‖2 is weaker than ‖x‖1.

Definition 2.8. Two norms defined over a same linear space is said to be equivalent if one is weaker or stronger than the

other and conversly.

3. Main Section

Theorem 3.1 ([4]). Let ‖.‖1 and ‖.‖2 be two norms on a vector space X. Then ‖.‖1 and ‖.‖2 are equivalent iff ∃ c1 and

c2 > 0 such that c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1 for all x ∈ X.

Theorem 3.2 ([6]). On a finite dimensional vector space X, any norm ‖.‖1 is equivalent to any other norm ‖.‖2 defined

on this.

Now we have some examples of infinite dimensional space and norms on them which are not equivalent.

Example 3.3. Let X = {p = p(t): p is a polynomial of any degree}. Therefore X be the space of polynomials of all degrees.

X is an infinite dimensional norm linear space. Define two norms ‖.‖1 and ‖.‖2 defined on X as follows

‖p‖1 = sup
t∈[0,1]

|p(t)|

‖p‖2 =
n∑
i=0

|ai|, where p(t) =
n∑
i=0

ait
i

Then we can prove that the norms ‖.‖1 and ‖.‖2 are not equivalent.
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Proof. For p(t) = a0 + a1t+ ...+ ant
n

|p(t)| = |a0 + a1t+ ...+ ant
n|

≤ |a0|+ |a1||t|+ |a2||t|2 + ...+ |an||t|n

sup
t∈[0,1]

|p(t)| ≤
n∑
i=0

|ai|

⇒ ‖p‖1 ≤ ‖p‖2

Let if possible ∃ α > 0 such that,

‖p‖2 ≤ α‖p‖1 ∀ p(t) ∈ X

Let

pn(t) = 1− t+ t2 − t3 + ...+ t2n−2 − t2n−1 for all n = 1, 2, 3, ...

= (1− t)(1 + t2 + t4 + ...+ t2n−2).

∴ p1 = 1− t

p2 = 1− t+ t2 − t3

p3 = 1− t+ t2 − t3 + t4 − t5. Then

‖pn‖1 = sup
t∈[0,1]

|pn(t)| = 1

‖pn‖2 = 2n. Since,

‖pn‖2 ≤ α‖pn‖1 ∀ n

⇒ 2n ≤ α ∀ n

⇒ n ≤ α

2
∀ n; a contradiction.

Therefore, ‖p‖2 ≤ α‖p‖1 is not possible. So, ‖.‖1 and ‖.‖2 are not equivalent.

Example 3.4. Consider X = C [0, 1] = {x : [0, 1]→ R|x is continous}. Define two norms ‖.‖∞ and ‖.‖1 as follows:

‖.‖∞ = max
t∈[0,1]

|x(t)|

‖.‖1 =

∫ 1

0

|x(t)|dt

These two norms are not equivalent.

Proof. If possible consider ‖.‖∞ and ‖.‖1 on C [0, 1] are equivalent. Then completeness of ‖.‖∞ must imply completeness

of ‖.‖1.

Claim : Let {xn} be a Cauchy sequence in C [0, 1]. Then for any ε >0, there exists an N such that for all m,n > N we

have,

‖xn − xm‖∞ = max
t∈[0,1]

|xn(t)− xm(t)| < ε (1)

Hence for any fixed t = t0 ∈ [0, 1]

|xn(t0)− xm(t0)| < εfor all m,n > N
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This shows {x1(t0), x2(t0), x3(t0), ...} is a Cauchy sequence of real numbers for each t0 ∈ [0, 1]. Since R is complete, the

sequence converges, say xn(t0)→ x(t0) as n→∞. This defines a function x on [0, 1]. We show that x ∈ C [0, 1] and xn → x.

Again, with m→∞ in (1) we have,

max
t∈[0,1]

|xn(t)− x(t)| < ε (m > N)

Hence for every t ∈ [0, 1]

|xn(t)− x(t)| < ε (m > N)

This shows {xn(t)} converges to x(t) on [0, 1]. Since xns are continuous on [0, 1] and the convergence is uniform, the limit

function x is continuous on [0, 1]. Therefore x ∈ C [0, 1] and xn → x. Therefore ‖.‖∞ is complete.

‖.‖1 is not complete: We can give an example for it. Define a sequence {xn} in C [0, 1] as follows:

xn(t) = 0 if t ∈ [0, 1]

= n

(
x− 1

2

)
if t ∈

[
1

2
, an

]
= 1 if t ∈ [an, 1]

The sequence is Cauchy because for every ε > 0

‖xn − xm‖1 < ε when m,m >
1

ε

Here, ‖xn − xm‖1 is the area of the triangle shown in the figure. But this Cauchy sequence does not converge.

‖xn − xm‖1 =

∫ 1

0

|xn(t)− xm(t)|dt

=

∫ 1
2

0

|xn(t)|dt+

∫ an

1
2

|xn(t)− x(t)|dt+

∫ 1

an

|1− x(t)|dt

Therefore, ‖xn − xm‖1 → 0 as n→∞ implies that each integral approaches zero and since x is continuous we have,

x(t) = 0 if t ∈
[
0,

1

2

)
.

x(t) = 1 if t ∈
(

1

2
, 1

]
.

But it is impossible for continuous function. So, {xn} does not converge. Therefore c [0, 1] is not complete with‖.‖1 norm.

Thus, ‖.‖∞ and ‖.‖1 are not equivalent.

Therefore from the above examples we have the observation that in infinite dimensional norm linear space there exists norms

which are not equivalent. Now the question is whether this is a characteristics of infinite dimensional norm linear space. To

answer this question we have the following theorem.

Theorem 3.5. In every infinite dimensional space we can always define two norms which are not equivalent.

Proof. For simplicity, we can consider a separable infinite dimensional vector space X. Consider a norm ‖.‖ on X such

that ‖ei‖ = 1 for all i, where {e1, e2, ...} be a basis of X. Let x ∈ X. Then x has a unique representation

x =
∞∑
i=1

αiei
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where all but finitely many αi s are zero. Define φ : X → F such that

φ(x) =

∞∑
k=1

kαk, where x =
∑
k

αkek

φ is linear: Let x, y ∈ X , γ ∈ F

x =
∑
k

αkek and y =
∑
k

βkek

∴ x+ γy =
∑
k

(αk + γβk)ek

∴ φ(x+ γy) =
∑
k

k(αk + γβk)

=
∑
k

kαk + γ
∑
k

kβk

= φ(x) + γφ(y)

φ is discontinous: Let, yk =
ek√
k

. Then ‖yk‖ =
1√
k
→ 0 as k →∞. Therefore yk → 0 in X. But φ(yk) =

1√
k
φ(ek) =

k√
k

=
√
k → ∞ as k → ∞. Therefore, φ(yk) 9 0 as k → ∞ in F. Thus φ is discontinuous. Define, ‖.‖φ = ‖x‖ + |φ(x)|. Now we

show that ‖.‖φ is norm.

(1). Since ‖x‖ ≥ 0 and |φ(x)| > 0 therefore ‖.‖φ ≥ 0 for all x ∈ X.

(2). Again if x = 0 then ‖x‖ = 0 and |φ(x)| = 0. Therefore, ‖.‖φ = 0. Conversly, if ‖.‖φ = 0 implies ‖x‖+ |φ(x)| = 0 implies

‖x‖ = 0 and |φ(x)| = 0 implies x = 0.

(3). ‖αx‖φ = ‖αx‖+ |φ(αx)| = |α|‖x‖+ |α||φ(x)| = |α||‖x‖φ

(4). ‖x+ y‖φ = ‖x+ y‖+ |φ(x+ y)| = ‖x+ y‖+ |φ(x) + φ(y)| ≤ ‖x‖+ ‖y‖+ |φ(x)|+ |φ(y)| = ‖x‖φ + ‖y‖φ.

Also ‖x‖ ≤ ‖x‖ + |φ(x)| = ‖x‖φ. If possible, ∃ α > 0 such that ‖x‖φ ≤ α‖x‖ for all x ∈ X. Then we have, ‖yk‖ → 0

implies ‖yk‖φ → 0 implies ‖yk‖+ |φ(yk)| → 0 implies |φ(yk)| → 0 in X, which is a contradiction. So no α exists such that

‖x‖φ ≤ α‖x‖ for all x ∈ X. Hence ‖.‖φ and ‖.‖ are not equivalent. So, in case of infinite dimensional norm linear space, we

always have non equivalent norms.

4. Conclusion

Thus we arrive at the conclusion that if X is a vector space such that any two norms on X are always equivalent, then X

must be finite dimensional because in a infinite dimensional linear space there always exist non equivalent norms. Therefore

if all the norms on a linear space are equivalent then the space must be finite dimensional.
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