Edge-Odd Graceful Labeling on Circulant Graphs With Different Generating Sets

Research Article

K.Ameenal Bibi ${ }^{1}$ and T.Ranjani ${ }^{1 *}$

1 PG and Research Department of Mathematics, D.K.M College for women (Autonomous), Vellore, Tamilnadu, India.

Abstract

Let $G=(V, E)$ be a simple, finite, undirected and connected graph. A graph $G=(V, E)$ with p vertices and q edges is said to have an edge - odd graceful labeling if there exists a bijection f from E to $\{1,3,5, \ldots .2 q-1\}$ so that the induced mapping f^{+}from V to $\{0,1,2, \ldots 2 q-1\}$ given by $f^{+}(x)=\sum\{f(x y / x y \in E\} \bmod |2 q|)$. In this paper, we have constructed an edge odd graceful labeling on circulant graphs $C_{n}(1,2,3,4,5,6)$ and $C_{n}(1,2,3,4,5,6,7)$ for odd $n, n \in I$. Here $(1,2,3,4,5,6)$ and $(1,2,3,4,5,6,7)$ are the generating sets.

MSC: 05 c 78 . Keywords: Labeling, Graceful labeling, Odd-graceful labeling, Edge graceful labeling, Edge-odd graceful labeling, Circulant graph. (c) JS Publication.

1. Introduction

Throughout this paper, $G=(V, E)$ denotes a simple, finite connected and undirected graph. Let p and q denote the order and size respectively of the graph G. A graph labeling is an assignment of integers to the vertices or edge or both, subject to certain conditions. In 1967, Rosa introduced a lebeling of G called graceful labeling which is an injective function f from $V(G)$ to the set $\{0,1,2 \ldots q\}$ such that each edge $x y$ is assigned with the label $|f(x)-f(y)|$. S.Lo introduced the concept of edge-graceful labeling in 1985. A.Solairaju and K. Chithra introduced a new type of labeling of a graph G with q edges called an edge - odd graceful labeling if there is a bijection f from the edges of the graph to the set $\{1,3,5 \ldots 2 q-1\}$ such that each vertex is assigned, the sum of all the edges incident to it $(\bmod 2 q)$ and the resulting vertex labels are distinct for basic definitions, we can refer [5] and [11].

2. Edge-odd Graceful Labeling on Circulant Graph with Generating Set (1,2,3,4,5,6)

Theorem 2.1. For odd $n \geq 13$, the circulant graph $G=C_{n}(1,2,3,4,5,6)$ admits edge - odd graceful labeling. Here $(1,2,3,4,5,6)$ are the generators of G.

Proof. Let $G=C_{n}(1,2,3,4,5,6)$ be the 12 -regular graph with $n \geq 13$. Let $V(G)=\left\{V_{i} / i=0,1, \ldots, n-1\right\}$. Here $q=6 n$. Define the function $f: E(G)\{1,3,5, \ldots, 2 q-1\}$ by

[^0]\[

$$
\begin{aligned}
& f\left(V_{i} V_{i+1}\right)= \begin{cases}i+1, & \text { for } i=0,2,4, \ldots, n-1 ; \\
n+1+i, & \text { for } i=1,3,5, \ldots, n-2 .\end{cases} \\
& f\left(V_{i} V_{i+2}\right)=4 n-1-2 i \text { for } i=0,1 . \\
& f\left(V_{i} V_{i+3}\right)=5 n+2 i+10 \text { for } i=0,1 . \\
& f\left(V_{i} V_{i+3}\right)=3 n+2 i+10 \text { for } i=2,3, \ldots, n-1 . \\
& f\left(V_{i} V_{i+4}\right)=6 n+1+2 i \text { for } i=0 . \\
& f\left(V_{i} V_{i+4}\right)=8 n-2 i+1 \text { for } i=1,2, \ldots, n-1 . \\
& f\left(V_{i} V_{i+5}\right)=9 n+i+12 \text { for } i=0 \\
& f\left(V_{i} V_{i+5}\right)=8 n+2 i-1 \text { for } i=1,2, \ldots, n-1 . \\
& f\left(V_{i} V_{i+6}\right)=11 n-i+12 \text { for } i=0,1, \ldots, n-1 .
\end{aligned}
$$
\]

It can be verified that the edge label under the labeling f is a bijection from the set $E\left(C_{n}(1,2,3,4,5,6)\right)$ onto the set $\{1,3,5 \ldots, 2(6 n)-1\}$. For every vertex $v \in V(G)$, the vertex weight $f^{+}(v)$ of $C_{n}(1,2,3,4,5,6)$ are defined as follows, Case (i) For $i=0,1,2,3,4$.

For $i=0$

$$
\begin{aligned}
\sum_{e \in N\left(V_{0}\right)} f(e)= & 0+1+4 n-1-0+5 n+0+10+6 n+1+0+9 n+0+12+11 n-0+12+11 n-(-n-2)+12 \\
& +9 n+(n-1)+12+6 n+1+2(n)+5 n+2(-(n+2))+10+4 n-1-2(n+1)-2 n-1+1 \\
= & 68 n+64
\end{aligned}
$$

For $i=1$

$$
\begin{aligned}
\sum_{e \in N\left(V_{1}\right)} f(e)=n & +1+1+4 n-1-2+5 n+2+10+8 n-2+1+8 n+2-1+11 n-1+12+11 n-(n-6)+1+12+8 n \\
& +2(-(n-5))-1+8 n-2(n-4)+1+5 n+2(-(n-3))+10+4 n-1-2(n-2)+n+1+2 n-3
\end{aligned}
$$

$$
=67 n+75
$$

For $i=2$

$$
\begin{aligned}
\sum_{e \in N\left(V_{2}\right)} f(e)= & 2+1+4 n-1-4+3 n+4+10+8 n-4+1+8 n+4-1+11 n-2+12+11 n-(n-4)+12 \\
& +8 n+2(n-3)-1+8 n-2(n-2)+1+3 n+2(n-1)+10+4 n-1-2(n)+(2 n+3)+1 . \\
= & 69 n+47
\end{aligned}
$$

For $i=3$

$$
\begin{aligned}
\sum_{e \in N\left(V_{3}\right)} f(e)= & n+1+3+4 n-1-6+3 n+6+10+8 n-6+1+8 n+6-1+11 n-3+12+11 n-(n+2)+12+8 n \\
& +2(n+1)-1+8 n-2(n)+1+3 n+2(n-2)+10+4 n-1-2(n-1)+n+1+3 \\
= & 69 n+45 .
\end{aligned}
$$

For $i=4$

$$
\begin{aligned}
\sum_{e \in N\left(V_{4}\right)} f(e)= & 4+1+4 n-1-8+3 n+8+10+8 n-8+1+8 n-1+11 n-4+12+11 n-(n+2)+12+8 n \\
& +2(n+1)-1+8 n-2(n)+1+3 n+2(n-2)+10+4 n-1-2(n-1)+2 n+1+1 . \\
= & 69 n+43 .
\end{aligned}
$$

Case (ii): For $i=5,7,9, \ldots, n-2$.

$$
\begin{aligned}
\sum_{e \in N\left(V_{i}\right)} f(e)= & n+1+i+4 n-1-2 i+3 n+2 i+10+8 n-2 i+1+8 n+2 i-1+11 n-i+12+11 n-(i-4)+12+8 n \\
& \quad+2(i-3)-1+8 n-2(i-2)+1+3 n+2(i-1)+10+4 n-1-2(i)+n+1-i-6 . \\
= & 70 n-2 i+38
\end{aligned}
$$

Case (iii) : For $i=6,8,10, \ldots, n-1$.

$$
\begin{aligned}
\sum_{e \in N\left(V_{i}\right)} f(e)= & i+1+4 n-1-2 i+3 n+2 i+10+8 n-2 i+1+8 n+2 i-1+11 n-i+12+11 n-(i-4)+12+8 n \\
& +2(i-3)-1+8 n-2(i-2)+1+5 n+2(i-1)+10+4 n-1-2(i)-i-6+1 . \\
= & 70 n-2 i+38
\end{aligned}
$$

Thus, we obtain that the sum of values - assigned to all edges incident to a given vertex $v \in V$ are $68 n+64,67 n+75$, $69 n+47,69 n+45,69 n+43$. The above integers are distinct.Hence the taking modulo $6 n$ for the integers, we have the vertex- weights induced f^{+}from V to $\{0,1,2 \ldots, 6 n-1\}$.

3. Edge-odd Graceful Labeling on Circulant Graph with Generating Set (1,2,3,4,5,6,7)

Theorem 3.1. For odd $n \geq 15$, the circulant graph $G=C_{n}(1,2,3,4,5,6,7)$ admits edge-odd graceful labeling. Here $(1,2,3,4,5,6,7)$ are the generators of G.

Proof. Let $G=C_{n}(1,2,3,4,5,6,7)$ be the 14-regular graph with $n \geq 13$. Let $V(G)=\left\{V_{i} / i=0,1, \ldots, n-1\right\}$. Here $q=7 n$. Define the function $f: E(G) \rightarrow\{1,3,5 \ldots, 2 q-1\}$ by

$$
\begin{aligned}
& f\left(V_{i} V_{i+1}\right)= \begin{cases}i+1, & \text { for } i=0,2,4, \ldots, n-1 \\
n+1+i, & \text { for } i=1,3,5, \ldots, n-2\end{cases} \\
& f\left(V_{i} V_{i+2}\right)=4 n-1-2 i \text { for } i=0,1 . \\
& f\left(V_{i} V_{i+3}\right)=5 n+2 i+12 \text { for } i=0,1 . \\
& f\left(V_{i} V_{i+3}\right)=3 n+2 i+12 \text { for } i=2,3, \ldots, n-1 . \\
& f\left(V_{i} V_{i+4}\right)=6 n+1+2 i \text { for } i=0 . \\
& f\left(V_{i} V_{i+4}\right)=8 n-2 i+1 \text { for } i=1,2, \ldots, n-1 .
\end{aligned}
$$

$$
\begin{aligned}
& f\left(V_{i} V_{i+5}\right)=9 n+i+14 \text { for } i=0 \\
& f\left(V_{i} V_{i+5}\right)=8 n+2 i-1 \text { for } i=1,2, \ldots, n-1 . \\
& f\left(V_{i} V_{i+6}\right)=11 n-2 i+14 \text { for } i=0,1, \ldots, n-1 . \\
& f\left(V_{i} V_{i+7}\right)=12 n+2 i+1 \text { for } i=0,1,2,3,4,5 .
\end{aligned}
$$

It can be verified that the edge label under the labeling f is a bijection from the set $E\left(C_{n}(1,2,3,4,5,6,7)\right)$ onto the set $\{1,3,5, \ldots, 2(7 n)-1\}$. For every vertex $v \in V(G)$, the vertex-weight $f^{+}(v)$ of $C_{n}(1,2,3,4,5,6,7)$ are defined as follows,

Case(i): For $i=0,1,2,3,4,5,6$.
For $\mathrm{i}=0$

$$
\begin{aligned}
\sum_{e \in N\left(V_{0}\right)} f(e)= & 1+4 n-1+5 n+12+6 n+1+9 n+14+11 n+14+12 n+1+12 n+2(n-5)+1+11 n-2(n+4)+14 \\
& +9 n+(n-3)+14+6 n+1+2(n+2)+5 n+2(n-1)+12+4 n-1-2(n)+(-2 n-17) . \\
= & 95 n+47 .
\end{aligned}
$$

For $i=1$

$$
\begin{aligned}
\sum_{e \in N\left(V_{1}\right)} f(e)= & n+1+1+4 n-1-2+5 n+2+12+8 n-2+1+9 n+1+14+11 n-2+14+12+2+1+12 n+2(n-7) \\
& +1+11 n-2(n+6)+14+9 n+(n-5)+14+8 n-2(n+4)+1+5 n+2(n-3)+12+4 n-1-2(n+2) \\
& +n+1+(8 n+2) . \\
= & 95 n+49 .
\end{aligned}
$$

For $i=2$

$$
\begin{aligned}
\sum_{e \in N\left(V_{2}\right)} f(e)= & 2+1+4 n-1-4 n+3 n+4+12+8 n-4+1+8 n+4-1+11 n-4+14+12 n+4+1+12 n+2(n-7) \\
& +1+11 n-2(n-6)+14+8 n+2(n-5)-1+8 n-2(n-4)+1+3 n+2(n-3)+12+4 n-1-2(n-2) \\
& +n+1+2 n+1 \\
= & 95 n+51 .
\end{aligned}
$$

For $i=3$

$$
\begin{aligned}
\sum_{e \in N\left(V_{3}\right)} f(e)= & n+1+3+4 n-1-6+3 n+6+12+8 n-6+1+8 n+6-1+11 n-6+14+12 n+6+1+12 n+2(n-6) \\
& +1+11 n-2(n-5)+14+8 n+2(n-4)-1+8 n-2(n-3)+1+3 n+2(n-2)+12+4 n-1-2(n-1) \\
& +n+1+(n+2) \\
= & 95 n+53 .
\end{aligned}
$$

For $i=4$

$$
\begin{aligned}
\sum_{e \in N\left(V_{4}\right)} f(e)=4 & +1+4 n-1-8+3 n+8+12+8 n-8+1+8 n+8-1+11 n-8+14+12 n+8+1+12 n+2(n-5) \\
& +1+11 n-2(n-4)+14+8 n+2(n-3)-1+8 n-2(n-2)+1+5 n+2(n-1)+12+4 n-1 \\
& -2(n)+(n+3)+1
\end{aligned}
$$

$$
=95 n+55 .
$$

For $i=5$

$$
\begin{aligned}
\sum_{e \in N\left(V_{5}\right)} f(e)= & n+1+5+4 n-1-10+3 n+10+12+8 n-10+1+8 n-10-1+11 n-10+14+12 n+10+1+12 n \\
& +2(n-4)+1+11 n-(n-3)+14+9 n+(n-2)+14+8 n-2(n-1)+1+3 n+2(n)+12+4 n-1 \\
& -2(n+1)+n+1-(n-13) . \\
= & 95 n+57 .
\end{aligned}
$$

For $i=6$

$$
\begin{aligned}
\sum_{e \in N\left(V_{6}\right)} f(e)=6 & +1+4 n-1-12+3 n+12+12+8 n-12+1+8 n+12-1+11 n-12+14+12 n+12+1+12 n \\
& +2(n-5)+1+11 n-2(n-4)+14+9 n+(n-3)+14+8 n-2(n-2)+1+5 n+2(n-1)+12 \\
& +4 n-1-2(n)+(n-13)+1 .
\end{aligned}
$$

$$
=95 n+59 .
$$

Case(ii) For $i=O d d$

$$
\begin{aligned}
\sum_{e \in N\left(V_{i}\right)} f(e)=n & +1+i+4 n-1-2 i+3 n+2 i+12+8 n-2 i+1+8 n+2 i-1+11 n-2 i+14+12 n+2 i+1+12 n \\
& +2(i-5)+1+11 n-2(i+4)+14+8 n+2(i-3)-1+8 n-2(i+2)+1+5 n+2(i-1)+12 \\
& +4 n-1-2(i)+(i-7)+1 . \\
= & 95 n+2 i+17 .
\end{aligned}
$$

Case(iii): For $i=$ Even

$$
\begin{aligned}
\sum_{e \in N\left(V_{6}\right)} f(e)= & i+1+4 n-1-2 i+3 n+2 i+12+8 n-2 i+1+8 n+2 i-1+11 n-2 i+14+12 n+2 i+1+12 n \\
& +2(i-5)+1+11 n-2(i+4)+14+8 n+2(i-3)-1+8 n-2(i+2)+1+5 n+2(i-1)+12 \\
& +4 n-1-2(i)+(i-7)+1+n . \\
= & 95 n+2 i+17 .
\end{aligned}
$$

Thus, we obtain that the sum of valuesassigned to all edges incident to a given vertex $v \in V$ are $95 n+47,95 n+49,96 n+32$, $95 n+51,95 n+53,95 n+55,95 n+57,95 n+59$. The above integers are distinct. Hence the taking modulo 7 n for the integers, we have the vertex- weight induced f^{+}from V to $\{0,1,2 \ldots, 7 n-1\}$.

4. Conclusion

We concluded that the circulant graph with generating sets $(1,2,3,4,5,6)$ and ($1,2,3,4,5,6,7$) admits edge - odd graceful labeling.

References

[1] J.Baskar Babujee, On edge bimagic labeling, J. Combin. Inf.Syst.Sci., 28(2004), 239-244.
[2] M.Baskaro, M.Miller, Slamin and W.D.Wallis, Edge-magic total labeling, Austral. J. Combin., 22(2000), 177-190.
[3] J.A.Gallian, A Dynamic Survey of Graph labeling, The Electronic Journal of Combinatorics, 16(2013), \#DS6.
[4] R.B.Gnanajothi, Topics in Graph theory ph.D Thesis, Maduraikamaraj-University, (1991).
[5] G.Kalaimurugan, On Edge Odd graceful labeling on circulant graphs, Journal of Computer and Mathematical Sciences, 6(3)(2015), 155-158.
[6] A.Kotzig and A.Rosa, Magic Valuations of finite graphs, Canad. Math Bull., 13(1970), 451-461.
[7] S.Lo, On edge graceful labeling of graphs, Congress Number, 50(1985), 231-241.
[8] MacDougall, J.A.Miller, M.Slamin and W.Wallis, Vertex-magic total labelings of graphs, Utilitas Math., 61(2002), 68-76.
[9] Mahalakshmi Senthil Kumar, T.Abama Parthiban and T.Vanadhi, Even graceful labeling of the Union of Paths and Cycles, International Journal of Mathematics Research.
[10] Peter Kovar, Magic labeling of regular graphs, AKCE. Inter. J. Graphs and Combin., 4(2007), 261-275.
[11] S.Solairaju and K.Chithra, Edge-odd graceful labeling of some graphs, Electronics Notes in Discrete Mathematics, $33(2009), 15-20$.
[12] D.B.West, Introduction to graph theory, Prentice-Hall Inc, (2000).

[^0]: * E-mail: ranjanikarthik85@gmail.com

