ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Regularly Closed Sets via Hereditary Classes

Research Article

S.Abinaya¹ and N.Rajesh²*

- 1 Department of Mathematics, Star Lion College of Engineering, Thanjavur, Tamilnadu, India.
- 2 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamilnadu, India.

Abstract: In this paper, we introduce and study the notion of regular H-closed sets in hereditary generalized topological space.

MSC: 54A05, 54A10, 54C08, 54C10.

Keywords: Generalized topology, hereditary class, $\mathcal{H}(r)$ -open sets.

© JS Publication.

1. Introduction and Preliminaries

In 2002, Csaszar [1] introduced the notions of generalized topology and generalized continuity. A nonempty family \mathcal{H} of subsets of X is said to be hereditary class [2], if $A \in \mathcal{H}$ and $B \subset A$, then $B \in \mathcal{H}$. A generalized topological space (X, μ) with a hereditary class \mathcal{H} is called hereditary generalized topological space and is denoted by (X, μ, \mathcal{H}) . \mathcal{H} is said to be μ -codense if $\mu \cap \mathcal{H} = \emptyset$. A generalized topological space (X, μ) with a hereditary class \mathcal{H} , for each $A \subset X$, $A^*(\mathcal{H}, \mu) = \{x \in X : A \cap V \notin \mathcal{H} \}$ for every $V \in \mu$, such that $x \in V$ [2]. If $c^*(A) = A \cup A^*(\mathcal{H}, \mu)$ for every subset A of X, then $\mu^* = \{A \subset X : X \setminus A = c^*(X \setminus A)\}$ is a GT, μ^* is finer than μ [2]. A subset A of (X, μ, \mathcal{H}) is said to be *-perfect [2] (resp. *-closed [2], *-dense-in-itself [2], $f_{\mathcal{H}}$ -set [4]) if $A = A^*$ (resp. $A^* \subset A$, $A \subset A^*$, $A \subset (i_{\mu}(A))^*$). A subset A is said to be \mathcal{H} -locally closed if $A = B \cap C$, where B is μ -open and C is *-perfect. A subset A of (X, μ) is said to be μ -semiopen [3] (resp. μ -regular closed [3]) if $A \subset ci(A)$ (resp. A = ci(A)). The collection of μ -semiopen (resp. μ -regular closed) subsets of (X, μ) is denoted by $\sigma(\mu)$ (resp. $rc(\mu)$). we introduce and study the notion of regular \mathcal{H} -closed sets in hereditary generalized topological space.

Lemma 1.1. If A is a subset of (X, μ, \mathcal{H}) such that $A \subset A^*$, then $A^* = c(A^*) = c^*(A) = c(A)$.

Lemma 1.2. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A, B be subsets of X. If $U \in \mu$, then $U \cap A^* \subset (U \cap A)^*$.

2. Properties of Regular \mathcal{H} -closed Sets

Definition 2.1. A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is called a regular \mathcal{H} -closed set if $A = (i(A))^*$.

^{*} E-mail: nrajesh_topology@yahoo.co.in

Proposition 2.2. Every regular \mathcal{H} -closed set is an $f_{\mathcal{H}}$ -set.

Proof. The proof is clear. \Box

Proposition 2.3. Every regular \mathcal{H} -closed set is \star -perfect.

Proof. Let $A \in rc(\mu)$. Then we have $A = (i(A))^*$. Since $i(A) \subset A$, $i(A)^* \subset A^*$. Hence $A = i(A)^* \subset A^*$. By Lemma 1, $A = i(A)^* \Rightarrow A^* = i(A)^{**} \subset i(A)^* = A$. Therefore, $A = A^*$; hence A is *-perfect.

Corollary 2.4. Every regular \mathcal{H} -closed set is \star -closed and \star -dense-in-itself.

Proof. The proof follows from Proposition 2.3. \Box

Proposition 2.5. $rc(\mathcal{H}, \mu) \subset rc(\mu)$.

Proof. Let $A \in rc(\mathcal{H}, \mu)$. Then we have $A = (i(A))^*$. Thus we obtain that $c(A) = c(i(A))^* = (i(A))^* = A$. Also, $(i(A))^* \subset ci(A)$; hence $A = (i(A))^* \subset ci(A) \subset ci(A) = A$. Then we have A = ci(A). Consequently, $A \in rc(\mu)$.

We will denote the family of all regular \mathcal{H} -closed sets in (X, μ, \mathcal{H}) by $rc(\mathcal{H}, \mu)$. If the hereditary class \mathcal{H} is not μ -codense, then X is μ -regular closed in (X, μ, \mathcal{H}) but not regular \mathcal{H} -closed and so μ -regular closed sets need not be regular \mathcal{H} -closed. But every μ -regular \mathcal{H} -closed set is a μ -regular closed set. The easy proof of the following Theorems are omitted. Theorem 2.7 below gives a characterization of μ -codense ideals.

Theorem 2.6. If (X, μ, \mathcal{H}) is a hereditary generalized topological space, then $rc(\mathcal{H}, \mu) \cap \mathcal{H} = \{\emptyset\}$.

Theorem 2.7. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then \mathcal{H} is μ -codense if and only if X is regular \mathcal{H} -closed.

Theorem 2.8. If (X, μ, \mathcal{H}) is a hereditary generalized topological space where \mathcal{H} is μ -codense, then $rc(\mathcal{H}, \mu) = rc(\mu)$.

Proof. $A \in rc(\mathcal{H}, \mu), A = (i(A))^*, A = ci(A), \text{ since } \mathcal{H} \text{ is } \mu\text{-codense}, A \in rc(\mu).$

Corollary 2.9. If (X, μ, \mathcal{H}) is a hereditary generalized topological space where \mathcal{H} is μ -codense, then the following are equivalent:

- (1). $A \in rc(\mu)$.
- (2). $A \in rc(\mathcal{H}, \mu)$.
- (3). $A \in f_{\mathcal{H}}$ and A is \star -closed.
- (4). $A \in \sigma(\mu)$ and A is *-closed.

Proof. Proof follows from their respective definitions.

The following Theorem 2.10 gives some properties of regular \mathcal{H} -closed sets. Also, it is established that every regular \mathcal{H} -closed set is \mathcal{H} -locally closed.

Theorem 2.10. If A is a regular \mathcal{H} -closed set of a hereditary generalized topological space (X, μ, \mathcal{H}) , then

- (1). A and i(A) are \star -dense-in-itself.
- (2). $A^* = (i(A))^* = (i(A))^*)^* = A$.

- (3). A is \star -perfect and \mathcal{H} -locally closed.
- (4). $(i(A))^*$ is *-perfect and H-locally closed.

Proof.

- (1). Since $i(A) \subset A = (i(A))^* \subset A^*$, i(A) and A are *-dense in itself.
- (2). Since $A = (i(A))^* \subset A^*$, $A^* = (i(A))^{**} \subset (i(A))^* = A \subset A^*$ and so $A^* = (i(A))^{**} = (i(A))^* = A$.
- (3). Since $A = A^*$, A is *-perfect and so is \mathcal{H} -locally closed.
- (4). By (2), $(i(A))^*$ is *-perfect and so \mathcal{H} -locally closed.

We end this section with the following characterization of regular \mathcal{H} -closed sets in terms of μ -open sets.

Theorem 2.11. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then A is a regular \mathcal{H} -closed subset of X if and only if there exists a μ -open set G such that $G \subset A = G^*$.

Proof. Suppose A is a regular \mathcal{H} -closed subset of X. Let G = i(A). Then G is the required μ -open set such that $G \subset A = G^*$. Conversely, suppose that there is a μ -open set G such that $G \subset A = G^*$. Now $G \subset A$, $G \subset G(A)$,

Theorem 2.12. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then \mathcal{H} is μ -codense if and only if X is regular \mathcal{H} -closed.

Proof. Proof follows from their respective definitions.

Theorem 2.13. If (X, μ, \mathcal{H}) be a hereditary generalized topological space where \mathcal{H} is μ -codense, then $rc(\mathcal{H}, \mu) = rc(\mu)$.

Proof. $A \in rc(\mathcal{H}, \mu)$ if and only if $A = (i(A))^*$ if and only if A = ci(A), since \mathcal{H} is μ -codense if and only if $A \in rc(\mu)$. \square

Theorem 2.14. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then \mathcal{H} is μ -codense if and only if $rc(\mathcal{H}, \mu) = rc(\mu)$.

Proof. Suppose \mathcal{H} is μ -codense. Then $A \in rc(\mathcal{H}, \mu)$ if and only if $A = (i(A))^*$ if and only if A = ci(A), if and only if $A \in rc(\mu)$. Conversely, suppose $rc(\mathcal{H}, \mu) = rc(\mu)$. Since X is μ -regular closed, X is regular \mathcal{H} -closed and so $X = (i(X))^* = X^*$ which implies that \mathcal{H} is μ -codense.

References

- [1] A.Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96(4)(2002), 351-357.
- [2] A.Csaszar, Modifications of generalized topologies via hereditary classes, Acta Math. Hungar., 115(2007), 29-36.
- [3] A.Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(2005), 351-357.
- [4] K.Karuppayi, Some subsets of GTS with hereditary classes, J. Adv. Studies in Topology, 5(1)(2013), 25-33.
- [5] Y.K.Kim and W.K.Min, H(θ)-open sets induced by hereditary classes on generalized topological spaces, Inter. J. Pure Appl. Math., 93(3)(2014), 307-315.
- [6] R.Ramesh and R.Mariapppan, Generalized open sets in hereditary generalized topological spaces, J. Math. Compute. Sci., 5(2)(2015), 149-159.
- [7] Sheena Scaris and V.Renukadevi, On hereditary classes in generalized topological spaces, J. Adv. Res. Pure Math., 3(2)(2011), 21-30.