ISSN: 2347-1557 Available Online: http://ijmaa.in/ #### International Journal of Mathematics And its Applications # Regularly Closed Sets via Hereditary Classes Research Article ## S.Abinaya¹ and N.Rajesh²* - 1 Department of Mathematics, Star Lion College of Engineering, Thanjavur, Tamilnadu, India. - 2 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamilnadu, India. Abstract: In this paper, we introduce and study the notion of regular H-closed sets in hereditary generalized topological space. **MSC:** 54A05, 54A10, 54C08, 54C10. **Keywords:** Generalized topology, hereditary class, $\mathcal{H}(r)$ -open sets. © JS Publication. ### 1. Introduction and Preliminaries In 2002, Csaszar [1] introduced the notions of generalized topology and generalized continuity. A nonempty family \mathcal{H} of subsets of X is said to be hereditary class [2], if $A \in \mathcal{H}$ and $B \subset A$, then $B \in \mathcal{H}$. A generalized topological space (X, μ) with a hereditary class \mathcal{H} is called hereditary generalized topological space and is denoted by (X, μ, \mathcal{H}) . \mathcal{H} is said to be μ -codense if $\mu \cap \mathcal{H} = \emptyset$. A generalized topological space (X, μ) with a hereditary class \mathcal{H} , for each $A \subset X$, $A^*(\mathcal{H}, \mu) = \{x \in X : A \cap V \notin \mathcal{H} \}$ for every $V \in \mu$, such that $x \in V$ [2]. If $c^*(A) = A \cup A^*(\mathcal{H}, \mu)$ for every subset A of X, then $\mu^* = \{A \subset X : X \setminus A = c^*(X \setminus A)\}$ is a GT, μ^* is finer than μ [2]. A subset A of (X, μ, \mathcal{H}) is said to be *-perfect [2] (resp. *-closed [2], *-dense-in-itself [2], $f_{\mathcal{H}}$ -set [4]) if $A = A^*$ (resp. $A^* \subset A$, $A \subset A^*$, $A \subset (i_{\mu}(A))^*$). A subset A is said to be \mathcal{H} -locally closed if $A = B \cap C$, where B is μ -open and C is *-perfect. A subset A of (X, μ) is said to be μ -semiopen [3] (resp. μ -regular closed [3]) if $A \subset ci(A)$ (resp. A = ci(A)). The collection of μ -semiopen (resp. μ -regular closed) subsets of (X, μ) is denoted by $\sigma(\mu)$ (resp. $rc(\mu)$). we introduce and study the notion of regular \mathcal{H} -closed sets in hereditary generalized topological space. **Lemma 1.1.** If A is a subset of (X, μ, \mathcal{H}) such that $A \subset A^*$, then $A^* = c(A^*) = c^*(A) = c(A)$. **Lemma 1.2.** Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A, B be subsets of X. If $U \in \mu$, then $U \cap A^* \subset (U \cap A)^*$. ## 2. Properties of Regular \mathcal{H} -closed Sets **Definition 2.1.** A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is called a regular \mathcal{H} -closed set if $A = (i(A))^*$. ^{*} E-mail: nrajesh_topology@yahoo.co.in **Proposition 2.2.** Every regular \mathcal{H} -closed set is an $f_{\mathcal{H}}$ -set. *Proof.* The proof is clear. \Box **Proposition 2.3.** Every regular \mathcal{H} -closed set is \star -perfect. *Proof.* Let $A \in rc(\mu)$. Then we have $A = (i(A))^*$. Since $i(A) \subset A$, $i(A)^* \subset A^*$. Hence $A = i(A)^* \subset A^*$. By Lemma 1, $A = i(A)^* \Rightarrow A^* = i(A)^{**} \subset i(A)^* = A$. Therefore, $A = A^*$; hence A is *-perfect. Corollary 2.4. Every regular \mathcal{H} -closed set is \star -closed and \star -dense-in-itself. *Proof.* The proof follows from Proposition 2.3. \Box **Proposition 2.5.** $rc(\mathcal{H}, \mu) \subset rc(\mu)$. Proof. Let $A \in rc(\mathcal{H}, \mu)$. Then we have $A = (i(A))^*$. Thus we obtain that $c(A) = c(i(A))^* = (i(A))^* = A$. Also, $(i(A))^* \subset ci(A)$; hence $A = (i(A))^* \subset ci(A) \subset ci(A) = A$. Then we have A = ci(A). Consequently, $A \in rc(\mu)$. We will denote the family of all regular \mathcal{H} -closed sets in (X, μ, \mathcal{H}) by $rc(\mathcal{H}, \mu)$. If the hereditary class \mathcal{H} is not μ -codense, then X is μ -regular closed in (X, μ, \mathcal{H}) but not regular \mathcal{H} -closed and so μ -regular closed sets need not be regular \mathcal{H} -closed. But every μ -regular \mathcal{H} -closed set is a μ -regular closed set. The easy proof of the following Theorems are omitted. Theorem 2.7 below gives a characterization of μ -codense ideals. **Theorem 2.6.** If (X, μ, \mathcal{H}) is a hereditary generalized topological space, then $rc(\mathcal{H}, \mu) \cap \mathcal{H} = \{\emptyset\}$. **Theorem 2.7.** Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then \mathcal{H} is μ -codense if and only if X is regular \mathcal{H} -closed. **Theorem 2.8.** If (X, μ, \mathcal{H}) is a hereditary generalized topological space where \mathcal{H} is μ -codense, then $rc(\mathcal{H}, \mu) = rc(\mu)$. *Proof.* $A \in rc(\mathcal{H}, \mu), A = (i(A))^*, A = ci(A), \text{ since } \mathcal{H} \text{ is } \mu\text{-codense}, A \in rc(\mu).$ Corollary 2.9. If (X, μ, \mathcal{H}) is a hereditary generalized topological space where \mathcal{H} is μ -codense, then the following are equivalent: - (1). $A \in rc(\mu)$. - (2). $A \in rc(\mathcal{H}, \mu)$. - (3). $A \in f_{\mathcal{H}}$ and A is \star -closed. - (4). $A \in \sigma(\mu)$ and A is *-closed. *Proof.* Proof follows from their respective definitions. The following Theorem 2.10 gives some properties of regular \mathcal{H} -closed sets. Also, it is established that every regular \mathcal{H} -closed set is \mathcal{H} -locally closed. **Theorem 2.10.** If A is a regular \mathcal{H} -closed set of a hereditary generalized topological space (X, μ, \mathcal{H}) , then - (1). A and i(A) are \star -dense-in-itself. - (2). $A^* = (i(A))^* = (i(A))^*)^* = A$. - (3). A is \star -perfect and \mathcal{H} -locally closed. - (4). $(i(A))^*$ is *-perfect and H-locally closed. Proof. - (1). Since $i(A) \subset A = (i(A))^* \subset A^*$, i(A) and A are *-dense in itself. - (2). Since $A = (i(A))^* \subset A^*$, $A^* = (i(A))^{**} \subset (i(A))^* = A \subset A^*$ and so $A^* = (i(A))^{**} = (i(A))^* = A$. - (3). Since $A = A^*$, A is *-perfect and so is \mathcal{H} -locally closed. - (4). By (2), $(i(A))^*$ is *-perfect and so \mathcal{H} -locally closed. We end this section with the following characterization of regular \mathcal{H} -closed sets in terms of μ -open sets. **Theorem 2.11.** Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then A is a regular \mathcal{H} -closed subset of X if and only if there exists a μ -open set G such that $G \subset A = G^*$. *Proof.* Suppose A is a regular \mathcal{H} -closed subset of X. Let G = i(A). Then G is the required μ -open set such that $G \subset A = G^*$. Conversely, suppose that there is a μ -open set G such that $G \subset A = G^*$. Now $G \subset A$, $G \subset G(A)$ **Theorem 2.12.** Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then \mathcal{H} is μ -codense if and only if X is regular \mathcal{H} -closed. *Proof.* Proof follows from their respective definitions. **Theorem 2.13.** If (X, μ, \mathcal{H}) be a hereditary generalized topological space where \mathcal{H} is μ -codense, then $rc(\mathcal{H}, \mu) = rc(\mu)$. *Proof.* $A \in rc(\mathcal{H}, \mu)$ if and only if $A = (i(A))^*$ if and only if A = ci(A), since \mathcal{H} is μ -codense if and only if $A \in rc(\mu)$. \square **Theorem 2.14.** Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then \mathcal{H} is μ -codense if and only if $rc(\mathcal{H}, \mu) = rc(\mu)$. Proof. Suppose \mathcal{H} is μ -codense. Then $A \in rc(\mathcal{H}, \mu)$ if and only if $A = (i(A))^*$ if and only if A = ci(A), if and only if $A \in rc(\mu)$. Conversely, suppose $rc(\mathcal{H}, \mu) = rc(\mu)$. Since X is μ -regular closed, X is regular \mathcal{H} -closed and so $X = (i(X))^* = X^*$ which implies that \mathcal{H} is μ -codense. #### References - [1] A.Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96(4)(2002), 351-357. - [2] A.Csaszar, Modifications of generalized topologies via hereditary classes, Acta Math. Hungar., 115(2007), 29-36. - [3] A.Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(2005), 351-357. - [4] K.Karuppayi, Some subsets of GTS with hereditary classes, J. Adv. Studies in Topology, 5(1)(2013), 25-33. - [5] Y.K.Kim and W.K.Min, H(θ)-open sets induced by hereditary classes on generalized topological spaces, Inter. J. Pure Appl. Math., 93(3)(2014), 307-315. - [6] R.Ramesh and R.Mariapppan, Generalized open sets in hereditary generalized topological spaces, J. Math. Compute. Sci., 5(2)(2015), 149-159. - [7] Sheena Scaris and V.Renukadevi, On hereditary classes in generalized topological spaces, J. Adv. Res. Pure Math., 3(2)(2011), 21-30.