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1. Introduction

In 1956 Aronszajn and Panitchpakdi [2] proved that a hyperconvex space is a nonexpansive retract of any metric space

in which it is isometrically embedded. Isbell [14] showed that every metric space is isometric to a subspace of a unique

hyperconvex space called the injective envelope. Dress [8] rediscovered the notion “injective envelope” as the tight span in

the context of optimal networks and phylogenetic analysis. Sine [23] and Soardi [24] proved independently that nonexpansive

mappings which satisfy d (Fz, Fu) ≤ d (z, u), z, u ∈ M defined on a bounded hyperconvex space has fixed points. Since

then, a number of fixed-point results in hyperconvex spaces were obtained of both topological and metric character. Baillon

[3] proved that any intersection of hyperconvex spaces with a certain finite intersection property is a nonempty hyperconvex

space also proved that the set of unique fixed points of a commuting family of nonexpansive mappings acting on a bounded

hyperconvex space is a nonexpansive retract of M.

In this present paper focus is made on the properties and uniqueness of fixed-point sets of uniformly k−Lipschitzian

mappings on hyperconvex spaces. Uniformly Lipschitzian mappings [11], are natural generalization of nonexpansive

mappings. We define a mapping F : M → M is uniformly k−Lipschitzian if d(Fmz, Fmu) ≤ Kd (z, u) for each z, u ∈ M

and n ∈ N, e.g. Lipschitzian periodic mappings. Lifschitz [20] proved that if C is a convex, closed and bounded subset of a

Hilbert space and k < 2, then every uniformly k−Lipschitzian mapping F : S → S has a fixed point.

Hilbert and hyperconvex spaces are two extremes and yet there are some similarities between them from the geometrical

point of view. Lang [21] proved that every uniformly k−Lipschitzian mapping with k <
√

2 in a bounded hyperconvex
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space with the property (P) has a fixed point. This result was later generalized in [5]. Deeper discussion of hyperconvex

spaces can be seen [8, 9, 10].

The simplest examples of hyperconvex spaces are the set of real numbers R, or a finite-dimensional real banach spaces

endowed with the maximum norm. while the Hilbert space l2 fails to be hyperconvex, the spaces L∞ and l∞ are

hyperconvex. We show that a general linking construction yielding hyperconvex spaces.

Moreover, in this spaces paths between points are restricted, they must pass through certain unique points. The Theorem

3.1. if {Fp : p ∈ H} is a mappings of uniformly k−Lipschitzian mappings on a hyperconvex space M with K <
√

2 and the

orbits are bounded, then unique Fixed point of H is a Holder continuous retract of M .

In Theorem 3.2 and 3.3, We will study convex subsets of convex metric spaces and will show that the collection of all

convex subsets of a hyperconvex metric space is uniformly normal and will prove under suitable conditions two fixed point

theorems for uniformly k−lipschitzian mappings in hyperconvex metric spaces, also we will prove the uniqueness of the fixed

points in these theorems. It should be mentioned that the maps, even though they are not intrinsically continuous, they are

asymptotically continuous.

2. Basic Properties and Definitions

since a hyper-convex (M,d) is a metric space in which there is only one path between two points z and u, this would imply

that if w is a point between z and u, by which we mean if d (z, w) + d (w, u) = d(z, u) then we know that w is actually on

the path between z and u, this will motivate the next concept of a metric interval.

Definition 2.1. Let (M,d) be a metric space and let z, u ∈M . An arc from z to u is the image of a topological embedding

α : [p, q]→M of a closed interval [p, q] of R such that α (p) = z and α (q) = u. A geodesic segment from z to u is the image

of an isometric embedding α : [p, q] → M such that α (p) = z and α (q) = u. The geodesic segment will be called metric

segment and denoted by [z, u] throughout this work.

Definition 2.2. A metric space (M,d) be a hyperconvex metric space if

⋂
α∈Γ

B (zα, tα) 6= ∅

for any collection of closed balls {B (zα, tα)}α ∈ Γ such that d (zα, zβ) ≤ tα + tβ, α, β ∈ Γ. It is not difficult to see that

hyperconvex metric spaces are complete. We will use this fact several times. In hyperconvex metric spaces, t (z) = δ(z)
2

,

whenever the orbits are bounded. The sets S (z) , SS(z) are nonempty since diam S(z) ≤ 2t (z). Furthermore,

S (z) =
⋂
α∈G

B (Fpz, t (z)) .

Definition 2.3. the centre of the orbit of z ∈ M is the set S (z) = {u ∈M : r (u, z) = r (z)} and the centre of S(z) is

defined by

SS (z) =
⋂

u∈s(z)

B(u, r(z)) ∩ S(z)
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Definition 2.4. Let M be a hyperconvex space. A mapping F : S → S of a subset S of M is said to be lipschitzizn if

there exists a non-negative number R such that d(Fz, Fu) ≤ Rd(z, u) for all z and u ∈ S. The smallest such R is called

k−lipschitz constant and will be denoted by (K). Same mapping is called uniformly k−lipschitzian if sup
m≥1

K(Fm) < ∞

respectively sup
m≥m0

K(Fm) < ∞ for some m0 ≥ 1. Note that uniformly k−lipshitzian mappings need not be continuous. If

K(F ) ≤ 1, then F is called nonexpansive and eventually nonexpansive if sup
m≥m0

K(Fm) ≤ 1 for some m0 ≥ 1. It is well known

fact that if map is uniformly k−lipshitzian, then one may find an equivalent distance for which the map is non-expansive.

Indeed, let F : S → S be uniformly k−lipshitzian. Setting τ (z, u) = sup{Kd (Fmz, Fmu) : m = 0, 1, 2, 3 . . . , } for z, u ∈ S.

Theorem 2.5. let M be a bounded metric space and let {Hβ}β ∈ Γ be a decreasing family of nonempty hyperconvex subsets

of M . Then
⋂
β∈Γ

Hβ 6= ∅ and is hyperconvex.

3. Main Results

Definition 3.1. Let (M,d) be a hyperconvex metric space with k <
√

2 and the orbits O(z) are bounded and if {Fp : pεH}

is a mapping of uniformly k−lipshitzian mappings, then the set of fixed point H is nonempty.

Proof. Assume that k ∈
(
1,
√

2
)

without loss of generality. For fixed point z1 ∈M choose z2 ∈ CC(z1). Such that for all

p, q ∈ H

d (Fpz2, Fqz1) ≤ sup
p,q∈H

{Fpz2, Fpz1) + d(Fpz1, Fqz1) + d(Fqz1, Fqz2)}

≤ K [d (z2, Fqz1) + d (Fpz2, z1)]

≤ r (z1) + (k − 1) r (z1) = kr (z1)

From hyper-convexity for every p ∈ H ∃ Tp ∈M such that

Tp ∈
⋂
qεH

B (Fqz1, r (z1))
⋂
B (Fpz2, (K − 1) r (z1))⇒ Tp ∈ C (z1)

then d (Tp,Fpz2) ≤ (k − 1) r (z1) which in turn implies d (Fpz2, Fqz2) ≤ Kd (z2, Fqz2) ≤ K2r (z1). For every p, q ∈ H. Hence

ϕ (z2) ≤ K2

2
ϕ (z1) .

Next select z3CC(z2) and estimate ϕ (z3) in a similar way. Continuing in the same way, we have a sequence {zn} such that

ϕ(zn+1) ≤ K2

2
ϕ(zn) and ϕ (zn+1, zn) =

ϕ(zn)

2
.

It follows that {zn} is a Cauchy sequence converging to a fixed point z0 ∈ H. Since ϕ (z0) ≤ 2Kd (z0, zn) + ϕ (zn)→ 0.

Theorem 3.2. Let (M,d) be a hyperconvex metric space and N be a closed, bounded, nonempty, convex subset of M with

diam N > 0. Let L : N → N be eventually uniformly k−lipschitzian such that

τ (F ) = lim
s→∞

supK(F s) <
3

2

Then F has a fixed point.
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Proof. Let r > 0 such that τ(F ) < r < 3
2
. By the definition of τ(F ), there exists s0 ≥ 1 such that K(F s) ≤ r for s ≥ s0.

Next let z ∈ R and set

d (z) = lim
s→∞

sup d (z, F s (z))

And

t (z) = inf

% > 0 : ∃ s ≥ 1 such that R ∩

⋂
ı≥s

B (F ız, %)

 6= ∅


Since the diameter of the set R is finite, which implies t(z) ≤ diam (R) is finite. Next, for each ε > 0, we define

Sε (z) =
⋃
m≥0

⋂
ı≥m

B (F ı, t (z) + ε)

 .

Then for each ε > 0 the set Sε (z) is nonempty (Sε (z) ∩R 6= ∅) and convex. Compactness of S(M) implies that

S (z) =
⋂
ε>0

S̃ε ∩R 6= ∅.

Let w∗ ∈ S (z), then w∗ and t(z) have the properties of unique fixed point:

(1). for any ε > 0, ∃ m0 ≥ 1 such that for any m ≥ m0 we have Fm(z) ∈ B (w∗, t (z) + ε).

(2). for any w∗ ∈ R and 0 < t < t (z), then set {ı : d (F ı (z) , w∗) > t} is infinite.

Observe that if t(z) = 0 or if d(w∗) = 0, then lim
m→∞

Fm (z) = w∗. Let us prove in this case we have Fw∗ = w∗ indeed, let

m0 ≥ 1 such that Fm is k−lipschitzian for any m ≥ m0. In particular, Fm will be continuous for (m ≥ m0). So for M ≥ 1,

we have lim
m→∞

Fm+M (z) = FM (w∗). But

lim
m→∞

Fm+M (z) = lim
m→∞

Fm (z) = w∗.

So for M ≥ m0, we have FM (w∗) = w∗. This clearly implies FM+1(w∗) = w∗. Combining the two, we get F (w∗) = w∗.

Assume that t(z) > 0 and d(w∗) > 0. Let ∈> 0, ∈≤ d (w∗) and select  big enough so that d (w∗, F w∗) ≥ d (w∗) − ε.

By using property, there exists m0 ≥ 1 such that if ı ≥ m0, then d (w∗, F ız) ≤ t (z) + ε ≤ R (t (z) + ε) if  ≤ m0 then

d (w∗, F z) ≥ t (z)− ε ≥ R(t (z)− ε) were m0 is chosen so that K(Fm) ≤ R for m ≥ m0. Thus if ı−  ≥ m0, we have

d (F  (z) , F ı (z)) ≤ Rd
(
w∗, F ı− (z)

)
≤ R (t (z) + ε) .

Considering the midpoint p of the interval [w∗, F  (z)] and using the property of uniformly convexity, we have

d (p, F ı (z)) +
1

2
d (w∗, F  (z)) ≤ R (t (z) + ε) .

Equivalently,

d (p, F ı (z)) ≤ R (t (z) + ε)− 1

2
d (w∗, F  (z)) ≤ R (t (z) + ε)− 1

2
(d (w∗)− ε)

Therefore, we have

t (z) ≤ R (t (z) + ε)− 1

2
(d (w∗)− ε)

From the definition of t(z). Since ε was arbitrary we get

t (z) ≤ Rt (z)− 1

2
d (w∗)
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Or equivalently

d (w∗) ≤ 2 (R− 1) t (z)

d(w∗) ≤ bt(z) ≤ bd (z)

Where b = 2(R− 1) < 1 and

d (w∗, z) ≤ d (z) + t (z) ≤ 2d (z) .

To complete the proof, fix z ∈ R and a sequence {zm}, construct by induction with z0 = z, such that d(zm+1) ≤ bd (zm)

and d (zm+1, zm) ≤ 2d (zm). For m = 1, . . . , if we have d (zm) = 0 for some m, then a fixed point of F . Otherwise, we have

d(zm+1, zm) ≤ 2d(zm) ≤ 2bmd (z)

Which implies that the sequence {zm} is Cauchy, therefore lim
m→∞

zm = w∗ ∈ R exists. Also

d (w∗, F ı (w∗)) ≤ d (w∗, zm) + d (zm, F
ı (zm)) + d (F ı (zm) , F ı (w∗))

For any ı ≥ 1. If we chose ı large enough to assume that K (F ı) ≤ R, then

d (w∗, F ı (w∗)) ≤ (R+ 1) d (w∗, zm) + d (zm, F
ı (zm)) .

This implies

d (w∗) ≤ (R+ 1) d (w∗, zm) + d (zm)

Hence d (w∗) = 0 which implies Fw∗ = w∗. Let w∗∗ be the another fixed point of F thus we have

d (w∗, w∗∗) ≤ (R+ 1) d ((w∗, zm) + d (zm)) + d ((w∗∗, zm) + d (zm))

Thus implies d (w∗, w∗∗) = 0⇒ w∗ = w∗∗ ∈ F (w∗). Thus have a unique fixed point.

Theorem 3.3. let (M,d) be a hyperconvex metric space and N be a nonempty closed, convex subset of M with dim(N) > 0.

Let F : N → N be eventually uniformly K−lipschitzian mapping such that

τ (F ) = lim
m→∞

supK(Fm) < 2

Then F has a fixed point provided that F has bounded orbits.

Proof. Let r > 0 such that τ(F ) < r < 2. By definition of τ(F ), therexists m0 ≥ 1 such that K(Fm) ≤ R for any m ≥ m0.

Let u ∈ N and set T (u) = inf{d > 0 : ∃ z ∈ S such that for any m ≥ 1 d(Fm (z) , u) ≤ d}. Since the orbit of u is bounded,

we get T (u) <∞. Assume that T (u) = 0. Then for all ε > 0, there exists zε ∈ S such that d (Fm (zε) , u) < ε for any m ≥ 1.

If we choose i ≥ m0, then we get

d
(
Fm+i (zε) , F

i (u)
)
< Rε

Which implies d
(
u, F i (u)

)
< ε (1 +R), for any i ≥ m0. Since ε was arbitrary, we get F i (u) = u, for any i ≥ m0. So

Fm0 (u) = Fm0+1 (u) = u implies F (u) = u. Now let T (u) > 0. Since r < 2. Let R < q < 2 and p > 1 such that ∀ z, u ∈ S,

∀ t > 0 with d (z, u) > t, there exists w∗ ∈ [z, u] such that

{d (z, l) ≤ qt⇒ d (l, w∗) ≤ t
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Similarly {d (u, l) ≤ pt ⇒ d(l, w∗) ≤ t. By Letting λ < 0 such that ϕ = min {pλ, qλ/2}, we construct a sequence {um} ∈ S

by induction such that T (um+1) ≤ λT (um). And d (um, um+1) ≤ (λ+ ϕ)T (um). Let u1 ∈ S and assume u1 . . . um are

known. Again if T (um) = 0 we are done. Assuming that T (um) > 0, then there exists j ≥ m0 such that

λT (um) ≤ d
(
F j (um) , um

)

And z ∈ S with d (Fn (z) , um) ≤ ϕT (um) ∀ n ≥ 1. Let z∗ = F j (z) . Then for i ≥ 1 we have

F i(z∗) = F i+j(z) ∈ B (um, ϕT (um)) ⊂ B (um, xϕT (um))

Which implies

d
(
F i (z∗) , F j (um)

)
= d

(
F i+j (z) , F j (um)

)
≤ Rd

(
F iz, um

)
≤ RϕT (um) ≤ qλt (um) ,

Hence

F i(z∗) ∈ B (um, pλT (um)) ∩B
(
F j (um) , qλT (um)

)
= D

Since q < 2, ∃ L ∈ [um, F
j(um)] ⊂ S such that D ⊂ B (l, λT (um)) yielding F i(z∗) ∈ B (L, λT (um)) for all i ≥ 1. Thus

T (l) ≤ λT (um). Set um+1 = l, then T (um+1) ≤ λT (um) and d (um+1, um) ≤ d
(
um+1, F

i (z∗)
)

+ d
(
F i (z∗) , um

)
≤

λT (um) + ϕT (um) ≤ (λ+ ϕ)T (um).

Clearly shows that {um} is a Cauchy sequence ∴ lim
m→∞

um = w∗ ∈ S exists. Let ∈> 0, so that there exists m1 ≥ m0 such

that ∀ m ≥ m1, d (w∗, um) < ε. And hence

d
(
F i (z) , w∗

)
≤ d (w∗, um) + T (um) + ε.

Thus T (w∗) ≤ d (w∗, um) + T (um) + ε yielding T (w∗) = 0. This will imply F (w∗) = w∗. Let w∗∗ be the another fixed

point such that

d (w∗, w∗∗) ≤ d (Fw∗, Fw∗∗) ≤ d
(
F i (z) , w∗

)
+ d

(
w∗∗, F i (z)

)
≤ d (w∗, um) + d (w∗∗, um) + T (um) + ε

Thus T (w) ≤ d (w∗, w∗∗) + T (um) + ε yielding T (w) = 0⇒ d (w∗, w∗∗) = 0. This implies w∗ = w∗∗ ∈ F (W ∗). Thus there

exists a unique fixed point w∗ = w∗∗ ∈ F (w∗).

Corollary 3.4. Every uniformly k−lipschitzian mappings in a hyperconvex space with k < 2 has a unique fixed point.
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[8] R.Esṕinola and A.Fernández-Léon, Fixed point theory in hyperconvex metric spaces, in: Topics in Fixed Point Theory,

S. Almezel at al. (eds.), Springer, Cham, (2014), 101-158.

[9] R.Espinola and M.A.Khamsi, Introduction to Hyperconvex Spaces, Handbook of Metric Fixed Point Theory, Editors:

W.A. Kirk and B. Sims, Kluwer Academic Publishers, Dordrecht, (2001).

[10] R. Esṕinola and P.Lorenzo, Metric fixed point theory on hyperconvex spaces: recent progress, Arab. J. Math., 1(2012),

439-463.

[11] K.Goebel and W.A.Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant,

Studia Math., 47(1973), 135-140.

[12] K.Goebel and E.Zl otkiewicz, Some fixed point theorems in Banach spaces, Colloq. Math., 23(1971), 103-106.

[13] J.Gornicki and K.Pupka, Fixed point theorems for n-periodic mappings in Banach spaces, Comment. Math. Univ.

Carolin., 46(1)(2005), 33-42.

[14] J.R.Isbell, Six theorems about injective metric spaces, Comment. Math. Helv., 39(1964), 65-76.

[15] M.A.Khamsi, W.A.Kirk and C.Martinez Yanez, Fixed point and selection theorems in hyperconvex spaces, Proc. Amer.

Math. Soc., 128(2000), 3275-3283.

[16] M.A.Khamsi and W.A.Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Math.,

Wiley, New York, (2001).

[17] M.A.Khamsi, On Asymptotically Nonexpansive Mappings in Hyperconvex Metric Spaces, Proc. Amer. Math. Soc.,

132(2004), 365-373.

[18] W.A.Kirk, A fixed point theorem for mappings with a nonexpansive iterate, Proc. Amer. Math. Soc., 29(1971), 294-298.

[19] W.A.Kirk and B.Sims, Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, (2001).

[20] U.Lang, Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal., 5(2013), 297-331.

[21] E.A.Lifsic, A fixed point theorem for operators in strongly convex spaces, Voronez. Gos. Univ. Trudy Mat. Fak., 16(1975),

23-28.

[22] T.-C.Lim and H.K.Xu, Uniformly Lipschitzian mappings in metric spaces with uniform normal structure, Nonlinear

Anal., 25(1995), 1231-1235.

[23] W.O.Ray and R.C.Sine, Nonexpansive mappings with precompact orbits, in: Fixed Point Theory, E. Fadell, G. Fournier

(eds.), Lecture Notes in Math. 886, Springer, Berlin-New York, (1981), 409-416.

[24] R.C.Sine, On nonlinear contraction semigroups in sup norm spaces, Nonlinear Anal., 3(1979), 885-890.

[25] P.M.Soardi, Existence of fixed points of nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc.,

73(1979), 25-29.

177


	Introduction
	Basic Properties and Definitions
	Main Results
	References

