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1. Introduction

The Banach contraction principle [2] is the first important result on fixed points for contractive-type mappings, which states

that each Banach contraction T : X → X (that is., there exists λ ∈ (0, 1) such that d(Tx, Ty) ≤ λd(x, y) for each x, y ∈ X)

has a unique fixed point, provided that (X, d) is a complete metric space. The main purpose of this paper is to show that

the results concerned in metric spaces with JSC-contraction in [6] are consequences of Theorem 1.3. Before going to the

main results. Let us recall the basic definitions and theorems. The concepts of Ciric contraction and JS-contraction have

been introduced, respectively, by Ciric [4] and Hussain et al. [1] as follows.

Definition 1.1 ([4]). Let (X, d) be a metric space. A mapping T : X → X is said to be a ciric contraction if there exist

non-negative numbers q, r, s, t with q + r + s+ 2t < 1 such that

d(Tx, Ty) ≤ qd(x, y) + rd(x, Tx) + sd(y, Ty) + t[d(x, Ty) + d(y, Tx)], ∀ x, y ∈ X. (1)

Definition 1.2 ([1]). Let (X, d) be a metric space. A mapping T : X → X is said to be a JS-contraction if there exist

ψ ∈ Ψ and non-negative numbers q, r, s, t with q + r + s+ 2t < 1 such that

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))qψ(d(x, Tx))rψ(d(y, Ty))sψ(d(x, Ty) + d(y, Tx))t, ∀ x, y ∈ X. (2)

where Ψ is the set of all functions ψ : [0,+∞)→ [1,+∞) satisfying conditions:
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(ψ1) ψ is non-decreasing and ψ(t) = 1 if and only if t = 0;

(ψ2) for each sequence {tn} ⊂ (0,+∞), lim
n→∞

ψ(tn) = 1 if and only if lim
n→∞

tn = 0;

(ψ3) there exist r ∈ (0, 1) and l ∈ (0,+∞] such that lim
t→0+

ψ(t)− 1

tr
= l;

(ψ4) ψ(a+ b) ≤ ψ(a)ψ(b) for all a, b > 0.

For convenience, we denote by Ψ1, the set of all non-decreasing functions ψ:(0,+∞) → (1,+∞) satisfying (ψ2) and (ψ3)

and by Ψ2, the set of all functions ψ:[0,+∞)→ [1,+∞) satisfying (ψ1), (ψ2) and (ψ4).

Theorem 1.3 ([4]). Let (X, d) be a complete metric space, and T : X → X be a Ciric contraction. Then T has a unique

fixed point in X.

Theorem 1.4 ([5]). Let (X, d) be a complete metric space, and T : X → X,Assume that there exist ψ ∈ Ψ1 and k ∈ (0, 1)

such that ∀ x, y ∈ X, d(Tx, Ty) 6= 0 =⇒ ψ(d(Tx, Ty)) ≤ ψ(d(x, y))k. Then T has a unique fixed point in X.

Definition 1.5 ([6]). For ψ ∈ Ψ2 and t ∈ [0,+∞), set η(t) = ln(ψ(t)). Then it is easy to check that η : [0,+∞)→ [0,+∞)

has the following properties:

(η1) η is non-decreasing, and η(t) = 0 if and only if t = 0;

(η2) for each sequence {tn} ⊂ (0,+∞), lim
n→∞

η(tn) = 0 if and only if lim
n→∞

(tn) = 0;

(η3) η(a+ b) ≤ η(a) + η(b) for all a, b > 0.

Since (η1) and (η2) are clear, we only show (η3), we have

η(a+ b) = ln(ψ(a+ b)) ≤ ln(ψ(a)ψ(b)) = ln(ψ(a)) + ln(ψ(b)) = η(a) + η(b).

Lemma 1.6 ([6]). Let (X, d) be a metric space, and ψ ∈ Ψ2. Then (X,D) is a metric space, where D(x, y) = η(d(x, y)) =

ln(ψ(d(x, y))).

Lemma 1.7 ([6]). Let(X, d) be a metric space, and ψ ∈ Ψ2. Then (X,D) is complete if and only if (X, d) is complete,

where D(x, y) = η(d(x, y)) = ln(ψ(d(x, y))).

Lemma 1.8 ([6]). Let (X, d) be a metric space, and T : X → be a JS-contraction with ψ ∈ Ψ2. Then T is a Ciric contraction

in (X,D), where D(x, y) = η(d(x, y)) = ln(ψ(d(x, y))).

2. Main results

In this section, we introduce a new metric D in a given metric space (X, d) induced by the metric d, and then we prove

that (X,D) is complete if and only if (X, d) is complete. Then we show that each JSC-contraction with ψ ∈ Ψ2 in (X, d) is

certainly a Ciric contraction in (X,D).

Definition 2.1. Let (X, d) be a metric space. A mapping T : X → X is said to be a JSC-contraction if there exist ψ ∈ Ψ

and non-negative numbers q, r, s, t with q + r + s+ 2t < 1 such that

ψ(d(Tx, Ty)) ≤ qψ(d(x, y)) + rψ(d(x, Tx)) + sψ(d(y, Ty)) + tψ(d(x, Ty) + d(y, Tx)), ∀ x, y ∈ X. (3)

where Ψ is the set of all functions ψ : [0,+∞)→ [0,+∞) satisfying conditions:
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(ψ1) ψ is non-decreasing and ψ(t) = 0 if and only if t = 0;

(ψ2) for each sequence {tn} ⊂ (0,+∞), lim
n→∞

ψ(tn) = 0 if and only if lim
n→∞

tn = 0;

(ψ3) there exist r ∈ (0, 1) and l ∈ (0,+∞] such that lim
t→0+

ψ(t)

tr
= l;

(ψ4) ψ(a+ b) ≤ ψ(a) + ψ(b) for all a, b > 0.

For convenience, we denote by Ψ1, the set of all non-decreasing functions ψ:(0,+∞) → (0,+∞) satisfying (ψ2) and (ψ3)

and by Ψ2, the set of all functions ψ:[0,+∞)→ [0,+∞) satisfying (ψ1), (ψ2) and (ψ4).

Remark 2.2.

(1). If f(t)=
√
t, t ≥ 0. then f ∈ Ψ ∩Ψ1 ∩Ψ2.

(2). If g(t) = t for t ≥ 0, then g ∈ Ψ2, but g /∈ Ψ ∪Ψ1. Since
t

tr
= 0 for each r ∈ (0, 1), that is, (ψ3) is not satisfied.

(3). Clearly Ψ ⊆ Ψ1 and Ψ ⊆ Ψ2.

Theorem 2.3. Let (X, d) be a complete metric space, and T : X → X. Assume that there exist ψ ∈ Ψ1 and k ∈ (0, 1) such

that ∀x, y ∈ X,

d(Tx, Ty) 6= 0 =⇒ ψ(d(Tx, Ty)) ≤ kψ(d(x, y)). (4)

Then T has a unique fixed point in X.

The Banach contraction principle follows immediately from this theorem. Indeed, let T : X → X and k ∈ (0, 1) be such

that (4) holds. Then if we choose ψ(t) =
√
t ∈ Ψ1 and k =

√
λ in (4), then we get

√
d(Tx, Ty) ≤

√
λ
√
d(x, y), that is,

d(Tx, Ty) ≤ λd(x, y), ∀ x, y ∈ X, which means that T is a Banach contraction.

Definition 2.4. For ψ ∈ Ψ2 and t ∈ [0,+∞), set η(t) =‖ ψ(t) ‖. Then it is easy to check that η : [0,+∞) → [0,+∞) has

the following properties:

(η1) η is non-decreasing, and η(t) = 0 if and only if t = 0;

(η2) for each sequence {tn} ⊂ (0,+∞), lim
n→∞

η(tn) = 0 if and only if lim
n→∞

(tn) = 0;

(η3) η(a+ b) ≤ η(a) + η(b) for all a, b > 0.

Since (η1) and (η2) are clear, we only show (η3), we have

η(a+ b) =‖ ψ(a+ b) ‖≤‖ ψ(a) + ψ(b) ‖≤‖ ψ(a) ‖ + ‖ ψ(b) ‖= η(a) + η(b).

Lemma 2.5. Let(X, d) be a metric space, and ψ ∈ Ψ2. Then (X,D) is a metric space, where D(x, y) = η(d(x, y)) =‖

ψ(d(x, y)) ‖.

Proof. For each x ∈ X, we have D(x, x) = η(d(x, x)) = 0 by (η1). For all x, y ∈ X, D(x, y) = 0,we have η(d(x, y)) = 0.

Hence d(x, y) = 0 by (η1). Hence D(x, y) = 0 if and only if x = y for all x, y ∈ X, we have D(x, y) = η(d(x, y)) = η(d(y, x)) =

D(y, x) for all x, y ∈ X. For all x, y, z ∈ X with z 6= x and z 6= y, by (η1) and (η3) we have,

D(x, y) = η(d(x, y))

≤ η(d(x, z) + d(z, y))

≤ η(d(x, z)) + η(d(z, y))

= D(x, z) +D(z, y)

181



Some Fixed Point Theorems for JSC Contraction in Complete Metric Space

we have D(x, y) = D(x, z) = D(x, z) + D(y, z), for all x ∈ X and y = z ∈ X by (η1). Also we have D(x, y) = D(z, y) =

D(x, z) +D(z, y), for all x = z ∈ X and y ∈ X by (η1). For all x = y = z ∈ X, we have D(x, y) = 0 = D(x, z) +D(y, z) by

(η1). Hence, for all x, y, z ∈ X, we always have D(x, y) ≤ D(x, z) +D(z, y)). This shows that (X,D) is a metric space.

Lemma 2.6. Let(X, d) be a metric space, and ψ ∈ Ψ2. Then (X,D) is complete if and only if (X, d) is complete, where

D(x, y) = η(d(x, y)) =‖ ψ(d(x, y)) ‖.

Proof. Suppose that (X, d) is complete. Let {xn} be a Cauchy sequence of (X,D), that is lim
m,n→∞

D(xn, xm) = 0. Then

we have lim
m,n→∞

η(d(xn, xm)) = 0, hence lim
m,n→∞

d(xn, xm) = 0 by (η2). Moreover, by the completeness of (X, d) there exists

x ∈ X such that lim
n→∞

d(xn, x) = 0. So we have lim
n→∞

D(xn, x) = lim
n→∞

η(d(xn, x)) = 0 by (η2). Hence (X,D) is complete.

Similarly, we can show that if (X,D) is complete, then (X, d) is complete.

Lemma 2.7. Let (X, d) be a metric space, and T : X → be a JSC-contraction with ψ ∈ Ψ2. Then T is a Ciric contraction

in (X,D), where D(x, y) = η(d(x, y)) =‖ ψ(d(x, y)) ‖.

Proof. It follows from (3) that, for all x, y ∈ X,

D(Tx, Ty) = η(d(Tx, Ty)) =‖ ψ(d(Tx, Ty)) ‖

≤‖ qψ(d(x, y)) + rψ(d(x, Tx)) + sψ(d(y, Ty)) + tψ(d(x, Ty) + d(y, Tx)) ‖

≤‖ qψ(d(x, y)) ‖ + ‖ rψ(d(x, Tx)) ‖ + ‖ sψ(d(y, Ty)) ‖ + ‖ t(ψ(d(x, Ty) + d(y, Tx)) ‖

=| q |‖ ψ(d(x, y)) ‖ + | r |‖ ψ(d(x, Tx)) ‖ + | s |‖ ψ(d(y, Ty)) ‖ + | t |‖ ψ(d(x, Ty) + d(y, Tx)) ‖

= qD(x, y) + rD(x, Tx) + sD(y, Ty) + t[D(x, Ty) +D(y, Tx)]

Therefore (1) is satisfied with respect to metric D. Hence T is a Ciric contraction in (X,D).

Theorem 2.8. Let (X, d) be a complete metric space, T : X → X be a JSC-contraction with ψ ∈ Ψ2.Then T has a unique

fixed point in X.

Proof. Since (X, d) is a complete metric space, (X,D) is also a complete metric space by Lemma 2.6, we know that T is

a Ciric contraction in (X,D) by Lemma 2.7. Therefore T has a unique fixed point in X by Theorem 1.3.

Theorem 2.9. Theorem 2.8 implies Theorem 1.3.

Proof. Let ψ(t) = t for t ≥ 0. Clearly, t ∈ Ψ2 by Remark 2.2 (2). By (3) we have,

ψ(d(Tx, Ty)) ≤ qψ(d(x, y)) + rψ(d(x, Tx)) + sψ(d(y, Ty)) + tψ(d(x, Ty) + d(y, Tx)).

d(Tx, Ty) ≤ qd(x, y) + rd(x, Tx) + sd(y, Ty) + t[d(x, Ty) + d(y, Tx)],

for all x, y ∈ X. Which implies that a Ciric contraction T : X → X is certainly a JSC-contraction with ψ(t) = t. Thus

Theorem 1.3 immediately follows from Theorem 2.8.
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