

International Journal of Mathematics And its Applications

General Results on Odd-Even Sum Labeling of Graphs

Research Article

V.J.Kaneria¹ and Pritesh Andharia^{1*}

1 Department of Mathematics, Saurashtra University, Rajkot, Gujarat. India.

Abstract: This paper is aimed to focus on some general results on odd-even sum labeling of graphs. We proved that every graceful graph with α -labeling is an odd-even sum graph. Odd-even sum labeling is defined by Monika and Murugan [3].

MSC: 05C78.

Keywords: Odd-even sum labeling, graceful labeling, α -labeling. © JS Publication.

1. Introduction

In 1966, Rosa [4] defined α -labeling and graceful labeling. α -labeling is a graceful labeling with an additional property that there is an integer k ($0 \leq k < q$) such that for every edge e = uv, $\min\{f(u), f(v)\} \leq k < \max\{f(u), f(v)\}$. A graph which admits an α -graceful labeling is necessarily bipartite graph with partition $V_1 = \{w \in V(G)/f(w) \leq k\}$ and $V_2 = \{w \in V(G)/f(w) > k\}$. Monika and Murgun [3] have introduced a new concept odd-even sum labeling, which is an injective labeling function $f : V(G) \rightarrow \{\pm 1, \pm 3, \dots, \pm (2p - 1)\}$ such that the edge induced labeling function $f^* : E(G) \rightarrow$ $\{2, 4, \dots, 2q\}$ defined by $f^*(uv) = f(u) + f(v), \forall uv \in E(G)$ is bijective function. In same paper, they have proved that every path $P_n(n \geq 2)$, star $K_{1,n}$, bistar $B_{m,n}$, coconut tree CT(m,n), spliting graph of star $S(K_{1,n})$ and caterpillar $S(X_1, X_2, \dots, X_n)$ are odd-even sum graphs.

2. Main Results

Theorem 2.1. Cycle $C_n (n \equiv 0 \pmod{4})$ is an odd-even sum graph.

Proof. Let $V(C_n) = \{v_1, v_2, \dots, v_n\}$ and $E(C_n) = \{v_i v_{i+1}/1 \le i \le n-1\} \cup \{v_1 v_n\}$. It is obvious that p = q = n in C_n . Define $f: V(C_n) \to \{\pm 1, \pm 3, \dots, \pm (2n-1)\}$ as follows

$$f(v_i) = 2 - i, \quad \forall \ i = 1, 3, \dots, n - 1;$$

= $2n + 1 - i, \ \forall \ i = 2, 4, \dots, \frac{n}{2};$
= $2n - 1 - i, \ \forall \ i = \frac{n}{2} + 2, \frac{n}{2} + 4, \dots, n.$

^{*} E-mail: priteshandharia@yahoo.in

Note that the induced edge labeling function f^* is bijective, $f^*(v_1v_n) = n$ and

$$f^*(v_i v_{i+1}) = f(v_i) + f(v_{i+1})$$

= 2(n + 1 - i), when $1 \le i \le \frac{n}{2}$
= 2(n - i), when $\frac{n}{2} \le i$.

Hence, cycle $C_n (n \equiv 0 \pmod{4})$ is an odd-even sum graph.

Theorem 2.2. Every α -graceful tree T is an odd-even sum graph.

Proof. Let $V(T) = \{v_1, v_2, \dots, v_p\}$. It is obvious that q = |E(T)| = p - 1. Let $f : V(T) \to \{0, 1, \dots, p - 1\}$ is an α -graceful labeling for T. Since, T is α -graceful, \exists an integer $k \ (0 \le k < q) \ni$ for any $uv \in E(T), \min\{f(u), f(v)\} \le k < \max\{f(u), f(v)\}$. Without loss of generality, we assume here the vertex v is not a pendent vertex in T, where f(v) = 0. Otherwise q - f is also an α -graceful labeling for T and the vertices w, v (with f(w) = q, f(v) = 0) both can't be pendent vertices in T unless |V(T)| = 2. Let $V_1 = \{w \in V(T)/|f(w) \le k\}$ and $V_2 = \{w \in V(T)/|f(w) > k\}$. Define $g : V(T) \to \{\pm 1, \pm 3, \dots, \pm 2(p-1)\}$ as follows

$$g(v) = 1,$$
 where $f(v) = 0.$
 $g(u) = -2f(u) + 1, \text{ if } u \in V_1 - \{v\}$
 $= 2f(u) - 1, \text{ if } u \in V_2.$

Note that g is an injective function and its induced edge labeling function g^* is bijective with $g^*(uv) = -2f(u) + 1 + 2f(v) - 1$ assuming

$$f(u) < f(v)$$

= 2(f(u) - f(v))
= 2f^*(uv).

Thus, above defined labeling pattern give rise odd-even sum labeling to the tree T and so, T is an odd-even sum graph. For a tree T, p = |V(T)| = q + 1 = |E(T)| + 1 (q < p). But in multicycle graph G, q >> p. So, we revise odd-even sum labeling as follows: A(p,q) graph G is said to be an odd-even sum graph if it admits an injective vertex labeling function $f : V(G) \rightarrow \{\pm 1, \pm 3, \dots, \pm (2q - 1)\}$ with its induced edge labeling function $f^* : E(G) \rightarrow \{2, 4, \dots, 2q\}$ defined by $f^*(uv) = f(u) + f(v), \forall uv \in E(G)$ is bijective.

Proof. Every α -graceful connected graph G is also an odd-even sum graph.

Proof. Let $V(G) = \{v_1, v_2, \dots, v_p\}$ and $f: V(T) \to \{0, 1, 2, \dots, q\}$ is an α -graceful labeling for T. We assume here $p \leq q$. Otherwise G is a connected graph with p > q and in this case G is a minimal connected graph with q = p - 1. Particularly G is a tree in this case. Since, G is an α -graceful graph, \exists an integer $k(0 \leq k < q) \ni$ for any $uv \in E(G)$, either $f(u) \leq k < f(v)$ or $f(v) \leq k < f(u)$. Let $V_1 = \{w \in V(G) / f(w) \leq k\}$ and $V_2 = V(G) - V_1$. Define $g: V(G) \to \{\pm 1, \pm 3, \dots, \pm (2q - 1)\}$ as follows

$$g(v) = 1,$$
 where $f(v) = 0.$
 $g(u) = -2f(u) + 1,$ when $u \in V_1 - \{v\}$
 $= 2f(u) - 1,$ when $u \in V_2.$

186

Note that g is an injective function and its induced edge labeling function g^* is bijective with

$$g^*(uv) = -2f(u) + 1 + 2f(v) - 1$$
, assuming $u \in V_1$
= $2(f(u) - f(v))$
= $2f^*(uv)$.

Thus, the above labeling pattern give rise an odd-even sum labeling to the α -graceful graph G and so, it is an odd-even sum graph.

Acknowledgment

The authors are very much thankful to the anonymous referee and editorial board of this journal for the valuable comments, suggestions or any kind of support.

References

- [1] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 18(2015), #DS6.
- [2] F.Harary, Graph Theory, Narosa Publishing House, New Delhi, (2001).
- [3] K.Monika and K.Murugan, Odd-even sum labeling of some graphs, Int. J. of Math. and Soft Computing, 7(1)(2017), 57-63.
- [4] A.Rosa, On Certain Valuation of Graph, Theory of Graphs (Rome, July, Goden and Breach, N.Y. and Paris), (1967), 349-355.