ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On a Problem Of Maximization of Some Indicators in the Discrete Time Models of Economic Dynamics

Research Article

Sabir Isa Hamidov¹*

MSC:

1 Department of Mathematical Cybernetics, Baku State University, Baku, Azerbaican.

Abstract: We consider n single-product models, each of which is given by the production function and the safety coefficient. The total workforce is also given which is distributed between these models in such a way that to maximize the total consumption

workforce is also given which is distributed between these models in such a way that to maximize the total consumption, total production and total national wealth. As the production functions of the models is considered the Cobb-Douglas function with constant elasticity substitution (CES). The conditions are given under which the total consumption, total

production and total national wealth reaches maximum.

Keywords: Consumption, Cobb-Douglas function, maximization.

© JS Publication.

97N70, 91B55.

1. Introduction

Let n single-product models be given, each of which is given by the production function F_i and safety coefficient v_i . The following denotations are used: K_i -basic foundations, W_i -consumption, $\eta_i = \frac{K_i}{l_i}$ -capital-labor ratio, $0 \le l_i \le L$, $\sum_{i=1}^n l_i = L$, ω_i -specific consumption (rate of wages paid) of the i-th model, respectively, $i = \overline{1,n}$. $f_i(n) = F_i(\eta_i, 1)$. [1, 4–7] The total number of the labor-force L is given which is distributed between these models in such a way that to maximize the total consumption, total production and total national wealth:

$$\sum_{i=1}^{n} W_i(l_i) \to \max,\tag{1}$$

$$\sum_{i=1}^{n} F_i(k_i l_i) \to \max, \tag{2}$$

$$\sum v_i K_i + F_i(K_i, l_i) \to \max \tag{3}$$

Under the condition $0 \le l_i \le L$, $\sum l_i = L$. Here $W_i(l_i)$ – consumption foundation, F_i –production, $v_iK_i + F_i(K_i, l_i)$ –national wealth in the i-th, $i = \overline{1, n}$ model under the assumption that the specific consumption ω is chosen by the following formulas

$$\omega = \frac{f(\eta) - \eta f'(\eta)}{v + f'(\eta)},$$

[1]

^{*} E-mail: sabir818@yahoo.com

where $\eta = \eta(L)$ is a root of the equation

$$\eta = \frac{M}{L} - \frac{f(\eta) - \eta \, f'(\eta)}{v + f'(\eta)}.$$

The situation arises: if in one of the models of the production function "much better" than the other, the entire workforce should be directed to this model [2]. However, it does not always happen.

2. Main Result

Let the vector $\bar{l} = (\bar{l}_1, \dots, \bar{l}_n)$ be a solution of the problem

$$\sum_{i=1}^{n} \tilde{f}_i(l_i) \to \max,$$

with the condition $l_i \geq 0$, $\sum_{i=1}^n l_i = L$. Here $\tilde{f}_i(l_i)$ is twice continuously differentiable function, $i = \overline{1, n}$. Denote

$$I_1 = \{i | \bar{l}_i = 0\},\,$$

$$I_2 = \{i|\bar{l}_i > 0\}.$$

Then [3] there exists a number $\lambda > 0$, such that

$$\tilde{f}'_i(\bar{l}_i) = \lambda, \quad i \in I_2,$$

$$\tilde{f}_i(\tilde{l}_i) \le \lambda, \quad i \in I_1.$$
(4)

Theorem 2.1. Let F_i be Cobb-Douglas function, $i = \overline{1, n}$. [1, 3-5] Then in the problem (1)-(3) the vector \overline{l} belongs to the inside of the cone R_+^n ($\overline{l} >> 0$).

Proof. Using the formula

$$W'(L) = M\left(\frac{\delta}{u}\right)' = \frac{\delta' u - u'\delta}{u^2} \eta'(L) = \frac{u'\delta - u\delta'}{\beta^2 - uv},\tag{5}$$

It is not difficult to check that in the case when F is Cobb-Douglas production function, then the production function is infinite at zero [9, 10]. Really, as follows from (5)

$$\begin{split} W'(L) &= \frac{(v + Ar\eta^{r-1})A\eta^r(1-r) - (1-r)Ar\eta^{r-1}\eta^r(v\eta^{1-r} + A)}{(v + Ar\eta^{r-1})^2 - \eta^r(v\eta^{1-r} + A)Ar(r-1)\eta^{r-2}} \\ &= \frac{A(1-r)\eta^2 \left[v + Ar\eta^{r-1} - vr\eta^{r-1}\eta^{1-r} - Ar\eta r - 1 \right]}{(v + Ar\eta^{r-1})^2 + Ar(1-r)(v\eta^{r-1} + Ar\eta^{2r-2})} \\ &= \frac{vA(1-r)\eta^r}{\left(v + Ar\frac{1}{\eta^{1-r}} \right)^2 + Ar(1-r)\left(v\frac{1}{\eta^{1-r}} + \frac{A}{\eta^{2-2r}} \right)}. \end{split}$$

Therefore considering 0 < r < 1, we get

$$W'(0) = \lim_{n \to \infty} W'(\eta) = \infty.$$

Besides, $F_2'(0) = +\infty$. Therefore the second relation in (4) does not take place. It gives $I_1 = \emptyset$.

Note 2.2. For the any production function with $F'(0) = +\infty$ the problems (2), (3) have a solution $\bar{l} >> 0$.

Theorem 2.3. Consider the models (F_1, v_1) and (F_2, v_2) , where F_i is a function with constant elasticity of substitution [1, 4, 5, 8]

$$F_i(K, L) = (A_i K^{-\rho_i} + \beta_i L^{-\rho_i})^{\frac{1}{\rho_i}}, \quad i = \overline{1, 2},$$

and $\rho_i > 0$. Then the total consumption $\sum_{i=1}^{2} W_i(l_i)$ reaches its maximum on the interval [0, L] in the point $l_j = L$, if and only if when $L \leq \bar{L}_j$ and $W'_j(L) \geq \frac{1}{v_i} B_i^{-\frac{1}{\rho_i}}$, and total production reaches maximum in the point L if and only if when $F'_j(L) \geq B_i^{-\frac{1}{\rho_i}}$, $i \neq j$. Here \bar{L}_j is the only maximum point for the function W_j on the positive semi-axis.

Proof. It follows from (4) that the set I in the problems (1), (2) is not empty, if there exists i such that

$$W_i'(0) \le W_j'(\bar{l}_j) = \lambda_W,$$

$$F_i'(0) \le F_i'(\bar{l}_j) = \lambda_F.$$

 $j \in I_2$, $\lambda_W > 0$, $\lambda_F > 0$, respectively. It should be noted that \bar{l}_j must be less than \bar{L}_j , since $W'_j(l) \leq 0$ for all $l \leq \bar{L}_j$. Let the set I_2 consists of one number j. Then $W_j(L) \geq W'_j(0)$; $F'_j(L) \geq F'_j(0)$ for all $i \neq j$. To finish the proof we show that

$$W_i'(0) = \frac{1}{v_i} B_i^{-\frac{1}{\rho_i}}$$

$$F_i'(0) = B_i^{-\frac{1}{\rho_i}}.$$

Since

$$W' = \frac{B\eta^{\rho+1}y^{\frac{1}{\rho}}\left(vB\eta^{\rho} - vA\rho - A\rho\,y^{-\frac{1}{\rho}}\right)}{vy^{\frac{1}{\rho}+2v}Ay^{\frac{1}{\rho}+1} + A^2 + A(\rho+1)\left(vy^{\frac{1}{\rho}+1}\right)B\eta^{\rho}},$$

then dividing to dividing the numerator and denominator of the last expression by $\eta^{2\rho+2}$, we get

$$W' = \frac{vB^2 \left(\frac{A}{\eta^{\rho}} + B\right)^{\frac{1}{\rho}} - \left(\frac{A}{\eta^{\rho(\rho+1)}} + \frac{B}{\eta^{\rho}}\right)^{\frac{1}{\rho}} - \frac{A\rho}{\eta^{\rho+1}}}{v^2 \left(\frac{A}{\eta^{\rho}} + B\right)^{\frac{2\rho+2}{\rho}} + \rho vA \left(\frac{A}{\eta^{2\rho}} + \frac{B}{\eta^{\rho}}\right)^{\frac{1}{\rho}+1} + \frac{A^2}{\eta^{2\rho+2}} + vA(\rho+1) \left(\frac{A}{\eta^{(\rho+2)\rho}} + \frac{B}{\eta^{\rho^2+\rho}}\right)^{\frac{1}{\rho}}}.$$

From this

$$\lim_{L \to +0} W'(L) = \lim_{\eta \to +\infty} W'(\eta) = \frac{vB^2 B^{\frac{1}{\rho}}}{v^2 B^{2+\frac{2}{\rho}}} = \frac{1}{vB^{\frac{1}{\rho}}}.$$

As

$$F'(L) = \left(\frac{A}{K^{\rho}} + \frac{B}{L^{\rho}}\right)^{-\frac{1}{\rho} - 1} BL^{-\rho - 1} = B\left(A\frac{L^s}{K^{\rho}} + B\right)^{-\frac{1}{\rho} + \rho},$$

then

$$F'_i(0) = B_i^{1 - \frac{1}{\rho_i} - 1} = B_i^{-\frac{1}{\rho_i}}.$$

Theorem 2.4. For the arbitrary production function F in the problem (3) is valid $\bar{l}_i < 1$.

Proof. The maximum in (3) is reached at $\bar{l}_i < 1$ if and only if, when

$$v_j K_j + F_j(K_j, L) \ge \sum_{i=1}^n v_i K_i + F_i(K_i, l_i), \ 0 \le l_i \le L, \quad \sum_{i=1}^n l_i = L.$$

From this

$$F_j(K_j, L) - F_j(K_j, l_j) \ge \sum_{i \ne j} v_i K_i + F_i(K_i, l_i), \quad 0 \le l_i \le L, \quad \sum_{i=1}^n l_i = L.$$

201

Introduce the function

$$F(l_j) = F_j(K_j, L) - F_j(K_0, l_j).$$

Let $l_j \to L$. Then $F(l_j) \to 0$ and $l_i \to 0$, $\forall i \neq j$. Therefore

$$\sum_{i=1}^{n} (v_i K_i + F_i(K_i, l_i)) \to \sum_{i=1}^{n} v_i K^i > 0.$$

Thus there exists the points l_j which provide

$$F(l_j) \le \sum_{i \ne j} \left(v_i K_i + F_i(K_i, l_i) \right).$$

References

- [1] A.M.Rubinov, Mathematical Models of the Expanded Reproduction, L., Science, (1983).
- [2] S.I.Hamidov, Dependence of consumption volume on the labor-force in one-productive models of economic dynamics, Journal of Mathematics and System Science, 5(2015), 113-117.
- [3] T-P.Rockafellar, Convex Analysis, Moscow, Mir, (1973).
- [4] G.B.Kleiner, Production Functions, Moscow, Statistics, (1987).
- [5] I.A.Krass, The Models of Economic Dynamics, Moskow, (1976).
- [6] A.M.Rubinov, Superlinear Multivalued Mappings and Their Applications to Economical-Mathematical Problems, Leningrad, Nauka, (1980).
- [7] A.M.Rubinov, Equilibrium Mechanisms for Effective and Development of Dynamic Models of Production and Exchange, Technical Cybernetics, (1968).
- [8] R.M.Romer, Mathiness in the Theory of Economic Growth, The American Economic Review, 105(5)(2015).
- [9] V.F.Demyanov and L.V.Vasilyev, Non differentiable Optimization, Moskow, Nauka, (1981).
- [10] V.F.Demyanov and A.M.Rubinov, Approximate Methods of Solving Extremal Problems, LSU, (1968).