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1. Introduction

The integrals can be used to derive summation formulae, representations, generating relations and other properties for the
new and known families of special functions. The Beta function [5] 8(p, ¢) is a function of two complex variables p and ¢,

defined by the Eulerian integral of the first kind
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A general class of polynomials with essentially arbitrary coefficients is defined and represented in the following form [11]:
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where m is an arbitary positive integer, the coefficients A, r(n,k > 0) are arbitrary constant, real or complex and (\),
denote the pochhammer symbol. By suitably specializing the coeffients A, , the polynomials S;'[z] can be reduce to the

classical orthogonal polynomials including for example the Laguerre polynomials [12]:
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The Jacobi polynomials [12]:
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The polynomial S;'[z] defined in (2) can be further reduced to the Hermite polynomials H,[z], (see [12]) Gegenbauer
polynomials Cj, (z), Legendre polynomials P,[z], and Chebyshev polynomials T, [z] and U,[z] of the first and second kind
(see [6]). A general class of polynomials S;;'[z] also includes the hypergeometric polynomials as the Bessel polynomials [4],
Gould-Hopper polynomials [2], Brafman polynomials [1], extended Jacobi polynomials [10] and their generalization studied

in the literature [9]. We consider the known integrals defined as [3] as:
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where a > 0, b >0, ¢ > —4ab, p> S and S(p, q) is Beta function given by (1).
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2. Main Results

Theorem 2.1.
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where a >0, b >0, ¢ > —4ab, p > %1 and,B(pfrJr%,%)
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is Beta function.

Proof.  Using series expansion of exponential function, the Lh.s of equation (7) becomes

™ o) r 2 - A\ [es] 2
(_l{) / ((ax+ 9)2 +c> (am—i— é) +c ( ({) / (aac—i— 9) +ec
r! o T T r! 0 x
Now, by using the integral (6) and after simplification, we get the required result. (I
Theorem 2.2. The following integral involving Srivastava polynomials holds true:
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Proof.  Using (7), the L.h.s of equation (8) becomes
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Now using (2) in (9), after simplification we get
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Now, using (6) in (10), after simplification we get the result (8). O

3. Applications

(1).
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In order to prove the main integral (11), we consider the left hand side of (11) by I;. Taking m = 1 and A, =

n+a«a 1

W in (8) and U.Sing (2) and (6), we get
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Now, using (3) in (12), after simplification, we get the result (11).
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In order to prove the main integral (13), we consider the left hand side of (13) by I,. Taking m = 1, A, =
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Now, using (5) in (14) after simplification, we get the result (13).
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In order to prove the main integral (15), we consider the left hand side of (15) by I3. Taking m =2, A, = 7(4(1(,??;165

and y = 4— in (8) and using (2) and (6), we get
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Now, after simplification we get the result (15).
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In order to prove the main integral (18), we consider the left hand side of (18) by Is. Taking m = 2, A,; =
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Now, after simplification we get the result (18).
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In order to prove the main integral (20), we consider the left hand side of (20) by I5. Takingm =2, A, = @b Tt (Ox
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and y = 152 in (8) and using (2) and (6), we get
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Now, after simplification we get the result (20).
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In order to prove the main integral (22), we consider the left hand side of (22) by Is. Takingm =2, A, = b (3
a c bl

and y = 15 in (8) and using (2) and (6), we get
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Now, after simplification we get the result (22).
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