International Journal of Mathematics And its Applications

Some Theorems on Anti T-Fuzzy Ideal of ℓ-Ring

J.Prakashmanimaran ${ }^{1 *}$, B.Chellappa ${ }^{2}$ and M.Jeyakumar ${ }^{3}$
1 Research Scholar (Part Time-Mathematics), Manonmaniam Sundharanar University, Tirunelveli, Tamilnadu, India.
2 Principal, Nachiappa Swamical Arts and Science College, Koviloor, Tamilnadu, India.
3 Assistant Professor, Department of Mathematics, Alagappa University Evening College, Rameswaram, Tamilnadu, India.

[^0]
1. Introduction

The concept of fuzzy sets was initiated by L.A.Zadeh [9] in 1965. After the introduction of fuzzy sets several researchers explored on the generalization of the concept of fuzzy sets. In this paper we define, characterize and study the anti $T-$ fuzzy right and left ideals. Z. D. Wang introduced the basic concepts of TL-ideals. We introduced anti T-fuzzy right ideals of ℓ-ring. We compare fuzzy ideal introduced by Liu to anti T-fuzzy ideals. We have shown that ring is regular if and only if union of any anti T - fuzzy right ideal with anti T-fuzzy left ideal is equal to its product. We discuss some theorems. We have shown that the product of anti T-fuzzy ideal of ℓ-ring.

2. Main Results

Definition 2.1. A non-empty set R is called lattice ordered ring or $\ell-\operatorname{ring}$ if it has four binary operations $+, \cdot, \vee, \wedge$ defined on it and satisfy the following
(1). $(R,+, \cdot)$ is a ring
(2). (R, \vee, \wedge) is a lattice
(3). $x+(y \vee z)=(x+y) \vee(x+z) ; x+(y \wedge z)=(x+y) \wedge(x+z)$
$(y \vee z)+x=(y+x) \vee(z+x) ;(y \wedge z)+x=(y+x) \wedge(z+x)$
(4). $x \cdot(y \vee z)=(x y) \vee(x z) ; \quad x \cdot(y \wedge z)=(x y) \wedge(x z)$
$(y \vee z) \cdot x=(y x) \vee(z x) ; \quad(y \wedge z) \cdot x=(y x) \wedge(z x)$,

[^1]for all x, y, z in R and $x \geq 0$.

Example 2.2. $(\mathbb{Z},+, \cdot, \vee, \wedge)$ is a $\ell-$ ring, where \mathbb{Z} is the set of all integers.

Example 2.3. ($n \mathbb{Z},+, \cdot, \vee, \wedge$) is a ℓ-ring, where \mathbb{Z} is the set of all integers and $n \in \mathbb{Z}$.

Definition 2.4. A mapping $T:[0,1] \times[0,1] \rightarrow[0,1]$ is called a triangular norm [t-norm] if and only if it satisfies the following conditions:
(1). $T(x, 1)=T(1, x)=x$, for all $x \in[0,1]$.
(2). $T(x, y)=T(y, x)$, for all $x, y \in[0,1]$.
(3). $T(x, T(y, z))=T(T(x, y), z)$ for all $x, y, z \in[0,1]$.
(4). $T(x, y) \leq T(x, z)$, whenever $y \leq z$, for all $x, y, z \in[0,1]$.

Definition 2.5. A mapping from a nonempty set X to $[0,1] ; \mu: X \rightarrow[0,1]$ is called a fuzzy subset of X.

Definition 2.6. A fuzzy subset μ of a ring R is called anti T-fuzzy right ideal if
(1). $\mu(x-y) \leq T(\mu(x), \mu(y))$
(2). $\mu(x y) \leq \mu(x)$, for all x, y in R

Definition 2.7. A fuzzy subset μ of a ring R is called anti $T-f u z z y$ left ideal if
(1). $\mu(x-y) \leq T(\mu(x), \mu(y))$
(2). $\mu(x y) \leq \mu(y)$, for all x, y in R

Theorem 2.8. Every fuzzy right ideal of a ring R is an anti T-fuzzy right ideal.

Proof. Let μ be a fuzzy right ideal of R . Then $\mu(x-y) \leq T(\mu(x), \mu(y))$ and $\mu(x y) \leq \mu(x)$, for all $x, y \in R$. Hence μ is an anti T-fuzzy ideal.

Definition 2.9. A fuzzy subset μ of a lattice ordered ring (or ℓ-ring) R is called an anti fuzzy sub ℓ-ring of R, if the following conditions are satisfied
(1). $\mu(x-y) \leq \max \{\mu(x), \mu(y)\}$
(2). $\mu(x y) \leq \max \{\mu(x), \mu(y)\}$
(3). $\mu(x \vee y) \leq \max \{\mu(x), \mu(y)\}$
(4). $\mu(x \wedge y) \leq \max \{\mu(x), \mu(y)\}$, for all x, y in R

Example 2.10. Consider an anti-fuzzy subset μ of the $\ell-\operatorname{ring}(Z,+, \cdot, \vee, \wedge)$

$$
\mu_{1}(x)= \begin{cases}0.4, & \text { if } x \in\langle 2\rangle \\ 0.7, & \text { if } Z-\langle 2\rangle\end{cases}
$$

Then μ_{1} is an anti-fuzzy sub ℓ-ring.

Definition 2.11. A fuzzy subset μ of an $\ell-\operatorname{ring} R$ is called an anti fuzzy $\ell-$ ring ideal (or) fuzzy ℓ-ideal of R, if for all x, y in R the following conditions are satisfied
(1). $\mu(x-y) \leq \max \{\mu(x), \mu(y)\}$
(2). $\mu(x y) \leq \min \{\mu(x), \mu(y)\}$
(3). $\mu(x \vee y) \leq \max \{\mu(x), \mu(y)\}$
(4). $\mu(x \wedge y) \leq \min \{\mu(x), \mu(y)\}$, for all x, y in R

Definition 2.12. A fuzzy subset μ of a ring R is called an anti T-fuzzy ideal, if the following conditions are satisfied,
(1). $\mu(x-y) \leq T(\mu(x), \mu(y))$
(2). $\mu(x y) \leq \mu(x) ; \quad \mu(x y) \leq \mu(y)$, for all $x, y \in R$.

Definition 2.13. A fuzzy subset μ of $a \ell-$ ring R is called an anti T-fuzzy ideal, if the following conditions are satisfied,
(1). $\mu(x-y) \leq T(\mu(x), \mu(y))$
(2). $\mu(x y) \leq \mu(x) ; \quad \mu(x y) \leq \mu(y)$
(3). $m u(x \vee y) \leq T(\mu(x), \mu(y)$
(4). $\mu(x \wedge y) \leq T(\mu(x), \mu(y))$, for all x, y in R.

Definition 2.14. Now $(R=\{a, b, c\},+, \cdot, \vee, \wedge)$ is a $\ell-$ ring. The operations $+, \cdot, \vee$ and \wedge defined by the following. Consider an anti-fuzzy subset μ_{A} of the $\ell-\operatorname{ring} R$.

$$
\mu(x)= \begin{cases}0.2, & \text { if } x=a \\ 0.5, & \text { if } x=b \\ 0.8, & \text { if } x=c\end{cases}
$$

Then μ is an anti T-fuzzy ideal of $\ell-\operatorname{ring} R$.

Theorem 2.15. If μ and λ are any two anti T-fuzzy ideal of ℓ-rings R_{1} and R_{2} then the product of $\mu \times \lambda$ is also anti T-fuzzy ideal of $\ell-\operatorname{ring} R_{1} \times R_{2}$.

Proof. Given μ and λ are any two anti T-fuzzy ideal of ℓ-rings R_{1} and R_{2} respectively. Let $x, y \in R$.
(1). $(\mu \times \lambda)(x-y)=T(\mu(x-y), \lambda(x-y))$

$$
\begin{aligned}
& \leq T(T(\mu(x), \mu(y)), T(\lambda(x), \lambda(y))) \\
& =T(T(T(\mu(x), \mu(y)), \lambda(x)), \lambda(y)) \\
& =T(T(T(\mu \times \lambda)(x)), \mu(y)), \lambda(y)) \\
& =T(T(\mu \times \lambda)(x)), T(\mu \times \lambda)(y))) \\
& =T((\mu \times \lambda)(x),(\mu \times \lambda)(y))
\end{aligned}
$$

Therefore, $(\mu \times \lambda)(x-y) \leq T((\mu \times \lambda)(x),(\mu \times \lambda)(y))$ for all $x, y \in R$.
(2). Since $\mu(x y) \leq \mu(x)$ and $\lambda(x y) \leq(x)$. Now $(\mu \times \lambda)(x y) \leq T(\mu(x y), \lambda(x y)) \leq T(\mu(x), \lambda(x)) \leq(\mu \times \lambda)(x)$. Therefore $(\mu \times \lambda)(x y) \leq(\mu \times \lambda)(x)$, for all $x, y \in R$.
(3). $(\mu \times \lambda)(x \vee y)=T(\mu(x \vee y), \lambda(x \vee y))$

$$
\begin{aligned}
& \leq T(T(\mu(x), \mu(y)), T(\lambda(x), \lambda(y))) \\
& =T(T(T(\mu(x), \mu(y)), \lambda(x)), \lambda(y)) \\
& =T(T(T(\mu \times \lambda)(x)), \mu(y)), \lambda(y)) \\
& =T(T(\mu \times \lambda)(x)), T(\mu \times \lambda)(y))) \\
& =T((\mu \times \lambda)(x),(\mu \times \lambda)(y))
\end{aligned}
$$

Therefore, $(\mu \times \lambda)(x \vee y) \leq T((\mu \times \lambda)(x),(\mu \times \lambda)(y))$ for all $x, y \in R$.
(4). $(\mu \times \lambda)(x \wedge y)=T(\mu(x \wedge y), \lambda(x \wedge y))$

$$
\begin{aligned}
& \leq T(T(\mu(x), \mu(y)), T(\lambda(x), \lambda(y))) \\
& =T(T(T(\mu(x), \mu(y)), \lambda(x)), \lambda(y)) \\
& =T(T(T(\mu \times \lambda)(x)), \mu(y)), \lambda(y)) \\
& =T(T(\mu \times \lambda)(x)), T(\mu \times \lambda)(y))) \\
& =T((\mu \times \lambda)(x),(\mu \times \lambda)(y))
\end{aligned}
$$

Therefore, $(\mu \times \lambda)(x \wedge y) \leq T((\mu \times \lambda)(x),(\mu \times \lambda)(y))$ for all $x, y \in R$. Thus, $\mu \times \lambda$ is an anti T-fuzzy right ideal of ℓ-ring $R_{1} \times R_{2}$.

Theorem 2.16. If μ_{i} are anti T-fuzzy ideal of ℓ-rings R_{i}, then $\Pi \mu_{i}$ is an anti T-fuzzy ideal of $\ell-$ ring ΠR_{i}.
Proof. If μ_{i} are anti T-fuzzy ideal of $\ell-$ rings R_{i}. Let $x, y \in R$ and let $\mu_{i}=\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}$
(1). $\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x-y)=T\left(\mu_{1}(x-y), \mu_{2}(x-y), \ldots, \mu_{n}(x-y)\right)$

$$
\begin{aligned}
& \leq T\left(T\left(\mu_{1}(x), \mu_{1}(y)\right), T\left(\mu_{2}(x), \mu_{2}(y)\right), \ldots, T\left(\mu_{n}(x), \mu_{n}(y)\right)\right) \\
& =T\left(T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x)\right), T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \ldots \times \mu_{n}\right)(y)\right)\right) \\
& =T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x),\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(y)\right)
\end{aligned}
$$

Therefore, $\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x-y) \leq T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x),\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(y)\right)$, for all $x, y \in R$.
(2). Since $\mu_{i}(x y) \leq \mu_{i}(x)$ and $\lambda_{i}(x y) \leq \lambda_{i}(x)$. Now,

$$
\begin{aligned}
\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x y) & =T\left(\mu_{1}(x y), \mu_{2}(x y), \ldots, \mu_{n}(x y)\right) \\
& \leq T\left(\mu_{1}(x), \mu_{2}(x), \ldots, \mu_{n}(x)\right) \\
& \leq\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x)
\end{aligned}
$$

Therefore, $\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x y) \leq\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x)$, for all $x, y \in R$.
(3). $\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x \vee y)=T\left(\mu_{1}(x \vee y), \mu_{2}(x \vee y), \ldots, \mu_{n}(x \vee y)\right)$

$$
\begin{aligned}
& \leq T\left(T\left(\mu_{1}(x), \mu_{1}(y)\right), T\left(\mu_{2}(x), \mu_{2}(y)\right), \ldots, T\left(\mu_{n}(x), \mu_{n}(y)\right)\right) \\
& =T\left(T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x)\right), T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(y)\right)\right) \\
& =T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x),\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(y)\right)
\end{aligned}
$$

Therefore, $\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x \vee y) \leq T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x),\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(y)\right)$ for all $x, y \in R$.
(4). $\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x \wedge y)=T\left(\mu_{1}(x \wedge y), \mu_{2}(x \wedge y), \ldots, \mu_{n}(x \wedge y)\right)$

$$
\begin{aligned}
& \leq T\left(T\left(\mu_{1}(x), \mu_{1}(y)\right), T\left(\mu_{2}(x), \mu_{2}(y)\right), \ldots, T\left(\mu_{n}(x), \mu_{n}(y)\right)\right) \\
& =T\left(T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x)\right), T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(y)\right)\right) \\
& =T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x),\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(y)\right)
\end{aligned}
$$

Therefore, $\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x \wedge y) \leq T\left(\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(x),\left(\mu_{1} \times \mu_{2} \times \ldots \times \mu_{n}\right)(y)\right)$, for all $x, y \in R$.
Thus $\mu_{1} \times \mu_{2} \times \cdots \times \mu_{n}$ is an anti T-fuzzy ideal of ℓ-ring R_{i}. Hence $\prod \mu_{i}$ is an anti T-fuzzy ideal of ℓ-ring R_{i}.
Theorem 2.17. Let R_{1} and R_{2} be ℓ-rings. If μ_{1} and μ_{2} are any two anti $T-$ fuzzy ideal of $\ell-$ ring R_{1} and R_{2} respectively, then $\mu=\mu_{1 \times} \mu_{2}$ is an anti T-fuzzy ideal of the direct product of $R_{1} \times R_{2}$.

Proof. Let μ_{1} and μ_{2}, are any two anti T-fuzzy ideal of ℓ-rings R_{1} and R_{2} respectively. Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right) \in$ $R_{1} \times R_{2}$,
(1). $\mu\left(\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)\right)=\mu\left(x_{1}-y_{1}, x_{2}-y_{2}\right)$

$$
\begin{aligned}
& =\left(\mu_{1 \times} \mu_{2}\right)\left(x_{1}-y_{1}, x_{2}-y_{2}\right) \\
& =T\left(\mu_{1}\left(x_{1}-y_{1}\right), \mu_{1}\left(x_{2}-y_{2}\right)\right) \\
& \leq T\left(T\left(\mu_{1}\left(x_{1}\right), \mu_{1}\left(y_{1}\right)\right), T\left(\mu_{1}\left(x_{2}\right), \mu_{1}\left(y_{2}\right)\right)\right) \\
& \geq T\left(T\left(\mu_{1}\left(x_{1}\right), \mu_{1}\left(x_{2}\right)\right), T\left(\mu_{1}\left(y_{1}\right), \mu_{1}\left(y_{2}\right)\right)\right) \\
& =T\left(\left(\mu_{1 \times} \mu_{2}\right)\left(x_{1}, x_{2}\right),\left(\mu_{1 \times} \mu_{2}\right)\left(y_{1}, y_{2}\right)\right) \\
& =T\left(\mu\left(x_{1}, x_{2}\right), \mu\left(y_{1}, y_{2}\right)\right)
\end{aligned}
$$

Therefore, $\mu\left(\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)\right) \leq T\left(\mu\left(x_{1}, x_{2}\right), \mu\left(y_{1}, y_{2}\right)\right)$, for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in R_{1} \times R_{2}$.
(2). Since $\mu_{i}(x y) \leq \mu_{i}(x)$ and $\lambda_{i}(x y) \leq \lambda_{i}(x)$

$$
\begin{aligned}
\mu\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right) & =\mu\left(x_{1} y_{1}, x_{2} y_{2}\right) \\
& =\left(\mu_{1 \times} \mu_{2}\right)\left(x_{1} y_{1}, x_{2} y_{2}\right) \\
& \leq T\left(\mu_{1}\left(x_{1}, y_{1}\right), \mu_{2}\left(x_{2}, y_{2}\right)\right. \\
& =\left(\mu_{1 \times} \mu_{2}\right)\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Therefore, $\mu\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right) \leq\left(\mu_{1 \times} \mu_{2}\right)\left(x_{1}, x_{2}\right)$, for all $x, y \in R$.
(3). $\mu\left(\left(x_{1}, x_{2}\right) \vee\left(y_{1}, y_{2}\right)\right)=\mu\left(x_{1} \vee y_{1}, x_{2} \vee y_{2}\right)$

$$
\begin{aligned}
& =\left(\mu_{1 \times} \mu_{2}\right)\left(x_{1} \vee y_{1}, x_{2} \vee y_{2}\right) \\
& =T\left(\mu_{1}\left(x_{1} \vee y_{1}\right), \mu_{1}\left(x_{2} \vee y_{2}\right)\right) \\
& \leq T\left(T\left(\mu_{1}\left(x_{1}\right), \mu_{1}\left(y_{1}\right)\right), T\left(\mu_{1}\left(x_{2}\right), \mu_{1}\left(y_{2}\right)\right)\right) \\
& \geq T\left(T\left(\mu_{1}\left(x_{1}\right), \mu_{1}\left(x_{2}\right)\right), T\left(\mu_{1}\left(y_{1}\right), \mu_{1}\left(y_{2}\right)\right)\right) \\
& =T\left(\left(\mu_{1 \times} \mu_{2}\right)\left(x_{1}, x_{2}\right),\left(\mu_{1 \times} \mu_{2}\right)\left(y_{1}, y_{2}\right)\right) \\
& =T\left(\mu\left(x_{1}, x_{2}\right), \mu\left(y_{1}, y_{2}\right)\right)
\end{aligned}
$$

Therefore $\mu\left(\left(x_{1}, x_{2}\right) \vee\left(y_{1}, y_{2}\right)\right) \leq T\left(\mu\left(x_{1}, x_{2}\right), \mu\left(y_{1}, y_{2}\right)\right)$, for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in R_{1} \times R_{2}$.
(4). $\mu\left(\left(x_{1}, x_{2}\right) \wedge\left(y_{1}, y_{2}\right)\right)=\mu\left(x_{1} \wedge y_{1}, x_{2} \wedge y_{2}\right)$

$$
\begin{aligned}
& =\left(\mu_{1 \times} \mu_{2}\right)\left(x_{1} \wedge y_{1}, x_{2} \wedge y_{2}\right) \\
& =T\left(\mu_{1}\left(x_{1} \wedge y_{1}\right), \mu_{1}\left(x_{2} \wedge y_{2}\right)\right) \\
& \leq T\left(T\left(\mu_{1}\left(x_{1}\right), \mu_{1}\left(y_{1}\right)\right), T\left(\mu_{1}\left(x_{2}\right), \mu_{1}\left(y_{2}\right)\right)\right) \\
& \geq T\left(T\left(\mu_{1}\left(x_{1}\right), \mu_{1}\left(x_{2}\right)\right), T\left(\mu_{1}\left(y_{1}\right), \mu_{1}\left(y_{2}\right)\right)\right) \\
& =T\left(\left(\mu_{1 \times} \mu_{2}\right)\left(x_{1}, x_{2}\right),\left(\mu_{1 \times} \mu_{2}\right)\left(y_{1}, y_{2}\right)\right) \\
& =T\left(\mu\left(x_{1}, x_{2}\right), \mu\left(y_{1}, y_{2}\right)\right)
\end{aligned}
$$

Therefore $\mu_{A}\left(\left(x_{1}, x_{2}\right) \wedge\left(y_{1}, y_{2}\right)\right) \leq T\left(\mu\left(x_{1}, x_{2}\right), \mu\left(y_{1}, y_{2}\right)\right)$, for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in R_{1} \times R_{2}$.

Thus $\mu=\mu_{1} \times \mu_{2}$ is an anti T-fuzzy ideal of the direct product of $R_{1} \times R_{2}$.

References

[1] W.Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 59(1993), 205-210.
[2] Y.-D.Yu and Z.-D.Wang, TL-subrings and TL-ideals part 1: basic concepts, Fuzzy Sets and Systems, 68(1994), 93-103.
[3] M.T.Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems, 24(1987), 79-86.
[4] W.E.Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18(1966), 411-422.
[5] W.E.Coppage and J.Luh, Radicals of gamma-rings, J. Math. Soc. Japan, 23(1971), 40-52.
[6] N.Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1(1964), 81-89.
[7] B.Schweizer and A.Sklar, Statistical metric spaces, Pacific Journal of Mathematics, 10(1)(1963), 313-334.
[8] Y.Yu, J.N.Mordeson and S.C.Cheng, Elements of L-algebra, Lecture Notes in Fuzzy Math. and Computer Sciences, Creighton Univ., Omaha, Nebraska 68178, USA, (1994).
[9] L.A.Zadeh, Fuzzy sets, Inform. and Control, 8(1965), 338-353.

[^0]: Abstract: In this paper, we made an attempt to study the properties of anti T-fuzzy ideal of ℓ-ring and we introduce some definitions and theorems of product of anti T-fuzzy ideal of ℓ-ring.

 Keywords: Fuzzy subset, T-fuzzy ideal, anti T-fuzzy ideal, join of anti T-fuzzy ideal, union of anti T-fuzzy ideal and product of anti T-fuzzy ideal.
 (C) JS Publication.

[^1]: * E-mail: prakashmani1982@gmail.com

