

International Journal of Mathematics And its Applications

Some Theorems on Anti T-Fuzzy Ideal of ℓ -Ring

Research Article

J.Prakashmanimaran^{1*}, B.Chellappa² and M.Jeyakumar³

1 Research Scholar (Part Time-Mathematics), Manonmaniam Sundharanar University, Tirunelveli, Tamilnadu, India.

- 2 Principal, Nachiappa Swamical Arts and Science College, Koviloor, Tamilnadu, India.
- 3 Assistant Professor, Department of Mathematics, Alagappa University Evening College, Rameswaram, Tamilnadu, India.
- **Abstract:** In this paper, we made an attempt to study the properties of anti T-fuzzy ideal of ℓ -ring and we introduce some definitions and theorems of product of anti T-fuzzy ideal of ℓ -ring.
- Keywords: Fuzzy subset, T-fuzzy ideal, anti T-fuzzy ideal, join of anti T-fuzzy ideal, union of anti T-fuzzy ideal and product of anti T-fuzzy ideal.

© JS Publication.

1. Introduction

The concept of fuzzy sets was initiated by L.A.Zadeh [9] in 1965. After the introduction of fuzzy sets several researchers explored on the generalization of the concept of fuzzy sets. In this paper we define, characterize and study the anti T-fuzzy right and left ideals. Z. D. Wang introduced the basic concepts of TL-ideals. We introduced anti T-fuzzy right ideals of ℓ -ring. We compare fuzzy ideal introduced by Liu to anti T-fuzzy ideals. We have shown that ring is regular if and only if union of any anti T- fuzzy right ideal with anti T-fuzzy left ideal is equal to its product. We discuss some theorems. We have shown that the product of anti T-fuzzy ideal of ℓ -ring.

2. Main Results

Definition 2.1. A non-empty set R is called lattice ordered ring or ℓ -ring if it has four binary operations $+, \cdot, \vee, \wedge$ defined on it and satisfy the following

- (1). $(R, +, \cdot)$ is a ring
- (2). (R, \lor, \land) is a lattice

(3).
$$x + (y \lor z) = (x + y) \lor (x + z); \quad x + (y \land z) = (x + y) \land (x + z)$$

 $(y \lor z) + x = (y + x) \lor (z + x); \quad (y \land z) + x = (y + x) \land (z + x)$

$$\begin{array}{ll} (4). & x \cdot (y \lor z) = (xy) \lor (xz) \, ; & x \cdot (y \land z) = (xy) \land (xz) \\ \\ & (y \lor z) \cdot x = (yx) \lor (zx) \, ; & (y \land z) \cdot x = (yx) \land (zx) \end{array}$$

 $^{^{\}circ}$ E-mail: prakashmani1982@gmail.com

for all x, y, z in R and $x \ge 0$.

Example 2.2. $(\mathbb{Z}, +, \cdot, \vee, \wedge)$ is a ℓ -ring, where \mathbb{Z} is the set of all integers.

Example 2.3. $(n\mathbb{Z}, +, \cdot, \vee, \wedge)$ is a ℓ -ring, where \mathbb{Z} is the set of all integers and $n \in \mathbb{Z}$.

Definition 2.4. A mapping $T : [0,1] \times [0,1] \rightarrow [0,1]$ is called a triangular norm [t-norm] if and only if it satisfies the following conditions:

(1). T(x, 1) = T(1, x) = x, for all $x \in [0, 1]$.

(2). T(x, y) = T(y, x), for all $x, y \in [0, 1]$.

(3). T(x, T(y, z)) = T(T(x, y), z) for all $x, y, z \in [0, 1]$.

(4). $T(x,y) \leq T(x,z)$, whenever $y \leq z$, for all $x, y, z \in [0,1]$.

Definition 2.5. A mapping from a nonempty set X to [0,1]; $\mu: X \to [0,1]$ is called a fuzzy subset of X.

Definition 2.6. A fuzzy subset μ of a ring R is called anti T-fuzzy right ideal if

(1).
$$\mu(x-y) \leq T(\mu(x), \mu(y))$$

(2). $\mu(xy) \leq \mu(x)$, for all x, y in R

Definition 2.7. A fuzzy subset μ of a ring R is called anti T-fuzzy left ideal if

(1).
$$\mu(x-y) \leq T(\mu(x), \mu(y))$$

(2). $\mu(xy) \leq \mu(y)$, for all x, y in R

Theorem 2.8. Every fuzzy right ideal of a ring R is an anti T-fuzzy right ideal.

Proof. Let μ be a fuzzy right ideal of R. Then $\mu(x-y) \leq T(\mu(x), \mu(y))$ and $\mu(xy) \leq \mu(x)$, for all $x, y \in R$. Hence μ is an anti T-fuzzy ideal.

Definition 2.9. A fuzzy subset μ of a lattice ordered ring (or ℓ -ring) R is called an anti fuzzy sub ℓ -ring of R, if the following conditions are satisfied

- (1). $\mu(x-y) \le \max\{\mu(x), \mu(y)\}\$
- (2). $\mu(xy) \le \max\{\mu(x), \mu(y)\}$
- (3). $\mu(x \lor y) \le \max\{\mu(x), \mu(y)\}\$
- (4). $\mu(x \wedge y) \leq \max\{\mu(x), \mu(y)\}, \text{ for all } x, y \text{ in } R$

Example 2.10. Consider an anti-fuzzy subset μ of the ℓ -ring $(Z, +, \cdot, \lor, \land)$

$$\mu_1(x) = \begin{cases} 0.4, & \text{if } x \in \langle 2 \rangle; \\ 0.7, & \text{if } Z - \langle 2 \rangle. \end{cases}$$

Then μ_1 is an anti-fuzzy sub ℓ -ring.

Definition 2.11. A fuzzy subset μ of an ℓ -ring R is called an anti fuzzy ℓ -ring ideal (or) fuzzy ℓ -ideal of R, if for all x, y in R the following conditions are satisfied

- (1). $\mu(x-y) \le \max\{\mu(x), \mu(y)\}\$
- (2). $\mu(xy) \le \min\{\mu(x), \mu(y)\}$
- (3). $\mu(x \lor y) \le \max\{\mu(x), \mu(y)\}\$
- (4). $\mu(x \wedge y) \leq \min\{\mu(x), \mu(y)\}, \text{ for all } x, y \text{ in } R$

Definition 2.12. A fuzzy subset μ of a ring R is called an anti T-fuzzy ideal, if the following conditions are satisfied,

- (1). $\mu(x-y) \le T(\mu(x), \mu(y))$
- (2). $\mu(xy) \le \mu(x); \ \mu(xy) \le \mu(y), \text{ for all } x, y \in R.$

Definition 2.13. A fuzzy subset μ of a ℓ -ring R is called an anti T-fuzzy ideal, if the following conditions are satisfied,

- (1). $\mu(x-y) \le T(\mu(x), \mu(y))$
- (2). $\mu(xy) \le \mu(x); \ \mu(xy) \le \mu(y)$
- (3). $mu(x \lor y) \le T(\mu(x), \mu(y))$
- (4). $\mu(x \wedge y) \leq T(\mu(x), \mu(y))$, for all x, y in R.

Definition 2.14. Now $(R = \{a, b, c\}, +, \cdot, \lor, \land)$ is a ℓ -ring. The operations $+, \cdot, \lor$ and \land defined by the following. Consider an anti-fuzzy subset μ_A of the ℓ -ring R.

$$\mu(x) = \begin{cases} 0.2, & \text{if } x = a; \\ 0.5, & \text{if } x = b; \\ 0.8, & \text{if } x = c. \end{cases}$$

Then μ is an anti T-fuzzy ideal of ℓ -ring R.

Theorem 2.15. If μ and λ are any two anti T-fuzzy ideal of ℓ -rings R_1 and R_2 then the product of $\mu \times \lambda$ is also anti T-fuzzy ideal of ℓ -ring $R_1 \times R_2$.

Proof. Given μ and λ are any two anti T-fuzzy ideal of ℓ -rings R_1 and R_2 respectively. Let $x, y \in R$.

$$(1). \quad (\mu \times \lambda)(x - y) = T(\mu(x - y), \lambda(x - y))$$

$$\leq T(T(\mu(x), \mu(y)), T(\lambda(x), \lambda(y)))$$

$$= T(T(T(\mu(x), \mu(y)), \lambda(x)), \lambda(y))$$

$$= T(T(T(\mu \times \lambda)(x)), \mu(y)), \lambda(y))$$

$$= T(T(\mu \times \lambda)(x)), T(\mu \times \lambda)(y))$$

$$= T((\mu \times \lambda)(x), (\mu \times \lambda)(y))$$

Therefore, $(\mu \times \lambda)(x - y) \leq T((\mu \times \lambda)(x), (\mu \times \lambda)(y))$ for all $x, y \in R$.

(2). Since $\mu(xy) \le \mu(x)$ and $\lambda(xy) \le (x)$. Now $(\mu \times \lambda)(xy) \le T(\mu(xy), \lambda(xy)) \le T(\mu(x), \lambda(x)) \le (\mu \times \lambda)(x)$. Therefore $(\mu \times \lambda)(xy) \le (\mu \times \lambda)(x)$, for all $x, y \in R$.

(3). $(\mu \times \lambda)(x \lor y) = T(\mu(x \lor y), \lambda(x \lor y))$

 $\leq T(T(\mu(x), \mu(y)), T(\lambda(x), \lambda(y)))$ $= T(T(T(\mu(x), \mu(y)), \lambda(x)), \lambda(y))$ $= T(T(T(\mu \times \lambda)(x)), \mu(y)), \lambda(y))$ $= T(T(\mu \times \lambda)(x)), T(\mu \times \lambda)(y))$ $= T((\mu \times \lambda)(x), (\mu \times \lambda)(y))$ Therefore, $(\mu \times \lambda)(x \lor y) \leq T((\mu \times \lambda)(x), (\mu \times \lambda)(y))$ for all $x, y \in R$.

(4).
$$(\mu \times \lambda)(x \wedge y) = T(\mu(x \wedge y), \lambda(x \wedge y))$$

 $\leq T(T(\mu(x), \mu(y)), T(\lambda(x), \lambda(y)))$ $= T(T(T(\mu(x), \mu(y)), \lambda(x)), \lambda(y))$ $= T(T(T(\mu \times \lambda)(x)), \mu(y)), \lambda(y))$ $= T(T(\mu \times \lambda)(x)), T(\mu \times \lambda)(y)))$ $= T((\mu \times \lambda)(x), (\mu \times \lambda)(y))$

Therefore, $(\mu \times \lambda)(x \wedge y) \leq T((\mu \times \lambda)(x), (\mu \times \lambda)(y))$ for all $x, y \in R$. Thus, $\mu \times \lambda$ is an anti T-fuzzy right ideal of ℓ -ring $R_1 \times R_2$.

Theorem 2.16. If μ_i are anti T-fuzzy ideal of ℓ -rings R_i , then $\prod \mu_i$ is an anti T-fuzzy ideal of ℓ -ring ΠR_i .

Proof. If μ_i are anti T-fuzzy ideal of ℓ -rings R_i . Let $x, y \in R$ and let $\mu_i = \mu_1 \times \mu_2 \times \ldots \times \mu_n$

 $(1). \ (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x-y) = T(\mu_1(x-y), \mu_2(x-y), \ldots, \mu_n(x-y)) \\ \leq T(T(\mu_1(x), \mu_1(y)), T(\mu_2(x), \mu_2(y)), \ldots, T(\mu_n(x), \mu_n(y))) \\ = T(T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x)), T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y))) \\ = T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y)) \\ \text{Therefore, } (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x-y) \leq T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y)), \text{ for all } x, y \in R.$

(2). Since $\mu_i(xy) \leq \mu_i(x)$ and $\lambda_i(xy) \leq \lambda_i(x)$. Now,

$$(\mu_1 \times \mu_2 \times \ldots \times \mu_n)(xy) = T(\mu_1(xy), \mu_2(xy), \dots, \mu_n(xy))$$
$$\leq T(\mu_1(x), \mu_2(x), \dots, \mu_n(x))$$
$$\leq (\mu_1 \times \mu_2 \times \dots \times \mu_n)(x)$$

Therefore, $(\mu_1 \times \mu_2 \times \ldots \times \mu_n)(xy) \le (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x)$, for all $x, y \in R$.

(3). $(\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x \vee y) = T(\mu_1(x \vee y), \mu_2(x \vee y), \ldots, \mu_n(x \vee y))$

 $\leq T(T(\mu_1(x), \mu_1(y)), T(\mu_2(x), \mu_2(y)), \dots, T(\mu_n(x), \mu_n(y)))$

 $= T(T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x)), T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y)))$

 $= T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y))$

Therefore, $(\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x \vee y) \leq T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y))$ for all $x, y \in R$.

(4). $(\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x \wedge y) = T(\mu_1(x \wedge y), \mu_2(x \wedge y), \ldots, \mu_n(x \wedge y))$

$$\leq T(T(\mu_1(x), \mu_1(y)), T(\mu_2(x), \mu_2(y)), \dots, T(\mu_n(x), \mu_n(y)))$$
$$= T(T((\mu_1 \times \mu_2 \times \dots \times \mu_n)(x)), T((\mu_1 \times \mu_2 \times \dots \times \mu_n)(y)))$$
$$= T((\mu_1 \times \mu_2 \times \dots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \dots \times \mu_n)(y))$$

Therefore, $(\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x \wedge y) \leq T((\mu_1 \times \mu_2 \times \ldots \times \mu_n)(x), (\mu_1 \times \mu_2 \times \ldots \times \mu_n)(y))$, for all $x, y \in R$.

Thus $\mu_1 \times \mu_2 \times \cdots \times \mu_n$ is an anti T-fuzzy ideal of ℓ -ring R_i . Hence $\prod \mu_i$ is an anti T-fuzzy ideal of ℓ -ring R_i .

Theorem 2.17. Let R_1 and R_2 be ℓ -rings. If μ_1 and μ_2 are any two anti T-fuzzy ideal of ℓ -ring R_1 and R_2 respectively, then $\mu = \mu_1 \times \mu_2$ is an anti T-fuzzy ideal of the direct product of $R_1 \times R_2$.

Proof. Let μ_1 and μ_2 , are any two anti T-fuzzy ideal of ℓ -rings R_1 and R_2 respectively. Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in R_1 \times R_2$,

$$\begin{aligned} (1). \ \mu((x_1, x_2) - (y_1, y_2)) &= \mu(x_1 - y_1, x_2 - y_2) \\ &= (\mu_{1 \times} \mu_2)(x_1 - y_1, x_2 - y_2) \\ &= T(\mu_1(x_1 - y_1), \mu_1(x_2 - y_2)) \\ &\leq T(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_1(x_2), \mu_1(y_2))) \\ &\geq T(T(\mu_1(x_1), \mu_1(x_2)), T(\mu_1(y_1), \mu_1(y_2))) \\ &= T((\mu_{1 \times} \mu_2)(x_1, x_2), (\mu_{1 \times} \mu_2)(y_1, y_2)) \\ &= T(\mu(x_1, x_2), \mu(y_1, y_2)) \\ &\text{Therefore, } \mu((x_1, x_2) - (y_1, y_2)) \leq T(\mu(x_1, x_2), \mu(y_1, y_2)), \text{ for all } (x_1, x_2), (y_1, y_2) \in R_1 \times R_2. \end{aligned}$$

(2). Since $\mu_i(xy) \leq \mu_i(x)$ and $\lambda_i(xy) \leq \lambda_i(x)$

$$\mu((x_1, x_2)(y_1, y_2)) = \mu(x_1y_1, x_2y_2)$$
$$= (\mu_{1 \times} \mu_2)(x_1y_1, x_2y_2)$$
$$\leq T(\mu_1(x_1, y_1), \mu_2(x_2, y_2))$$
$$= (\mu_{1 \times} \mu_2)(x_1, x_2)$$

Therefore, $\mu((x_1, x_2)(y_1, y_2)) \le (\mu_{1 \times} \mu_2)(x_1, x_2)$, for all $x, y \in R$.

(3). $\mu((x_1, x_2) \lor (y_1, y_2)) = \mu(x_1 \lor y_1, x_2 \lor y_2)$

$$= (\mu_{1\times}\mu_{2})(x_{1} \lor y_{1}, x_{2} \lor y_{2})$$

$$= T(\mu_{1}(x_{1} \lor y_{1}), \mu_{1}(x_{2} \lor y_{2}))$$

$$\leq T(T(\mu_{1}(x_{1}), \mu_{1}(y_{1})), T(\mu_{1}(x_{2}), \mu_{1}(y_{2})))$$

$$\geq T(T(\mu_{1}(x_{1}), \mu_{1}(x_{2})), T(\mu_{1}(y_{1}), \mu_{1}(y_{2})))$$

$$= T((\mu_{1\times}\mu_{2})(x_{1}, x_{2}), (\mu_{1\times}\mu_{2})(y_{1}, y_{2}))$$

$$= T(\mu(x_{1}, x_{2}), \mu(y_{1}, y_{2}))$$

$$= T(\mu(x_{1}, x_{2}), \mu(y_{1}, y_{2}))$$

Therefore $\mu((x_1, x_2) \lor (y_1, y_2)) \le T(\mu(x_1, x_2), \mu(y_1, y_2))$, for all $(x_1, x_2), (y_1, y_2) \in R_1 \times R_2$.

(4). $\mu((x_1, x_2) \land (y_1, y_2)) = \mu(x_1 \land y_1, x_2 \land y_2)$

 $= (\mu_{1\times}\mu_{2})(x_{1} \wedge y_{1}, x_{2} \wedge y_{2})$ $= T(\mu_{1}(x_{1} \wedge y_{1}), \mu_{1}(x_{2} \wedge y_{2}))$ $\leq T(T(\mu_{1}(x_{1}), \mu_{1}(y_{1})), T(\mu_{1}(x_{2}), \mu_{1}(y_{2})))$ $\geq T(T(\mu_{1}(x_{1}), \mu_{1}(x_{2})), T(\mu_{1}(y_{1}), \mu_{1}(y_{2})))$ $= T((\mu_{1\times}\mu_{2})(x_{1}, x_{2}), (\mu_{1\times}\mu_{2})(y_{1}, y_{2}))$ $= T(\mu(x_{1}, x_{2}), \mu(y_{1}, y_{2}))$

Therefore $\mu_A((x_1, x_2) \land (y_1, y_2)) \le T(\mu(x_1, x_2), \mu(y_1, y_2))$, for all $(x_1, x_2), (y_1, y_2) \in R_1 \times R_2$.

Thus $\mu = \mu_1 \times \mu_2$ is an anti T-fuzzy ideal of the direct product of $R_1 \times R_2$.

References

- [1] W.Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 59(1993), 205-210.
- [2] Y.-D.Yu and Z.-D.Wang, TL-subrings and TL-ideals part 1: basic concepts, Fuzzy Sets and Systems, 68(1994), 93-103.
- [3] M.T.Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems, 24(1987), 79-86.
- [4] W.E.Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18(1966), 411-422.
- [5] W.E.Coppage and J.Luh, Radicals of gamma-rings, J. Math. Soc. Japan, 23(1971), 40-52.
- [6] N.Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1(1964), 81-89.
- [7] B.Schweizer and A.Sklar, Statistical metric spaces, Pacific Journal of Mathematics, 10(1)(1963), 313-334.
- [8] Y.Yu, J.N.Mordeson and S.C.Cheng, *Elements of L-algebra*, Lecture Notes in Fuzzy Math. and Computer Sciences, Creighton Univ., Omaha, Nebraska 68178, USA, (1994).
- [9] L.A.Zadeh, Fuzzy sets, Inform. and Control, 8(1965), 338-353.