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Abstract

The difference sequence spaces c0(∆), c(∆) and ℓ∞(∆) were introduced by Kizmaz [4]. Et [8]

introduced the Cesàro difference sequence spaces Xp (∆m) (1 ≤ p < ∞), X∞ (∆m) and determine

their generalized Köthe-Toeplitz duals and some of the related matrix transformations. In this

paper, we compute η-duals of C1(∆), C1
(
∆2) and X∞

(
∆2), the matrix classes

(C1(∆), ℓ∞) , (C1(∆), c; p) , (C1(∆), C0) ,
(
C1
(
∆2) , ℓ∞

)
,
(
C1
(
∆2) , c

)
, and

(
C1
(
∆2) , c0

)
are also

characterized.

Keywords: Schauder basis; matrix map; BK space.

2020 Mathematics Subject Classification: 40C05, 40A05, 46A45.

1. Introduction

Let ω denote the linear space of all complex sequences over C (the field of complex numbers). ℓ∞, c

and c0 denote the space of all bounded, convergent and null sequences x = (xk) with complex terms,

respectively, normed by ∥x∥∞ = sup
k

|xk|. A complete metric linear space is called a Frèchet space. Let

X be a linear subspace of ω such that X is a Frèchet space with continuous coordinate projections.

Then we say that X is a FK space. If the metric of a FK space is given by a complete norm, then we say

that X is a BK space. We say that a FK space X has AK, or has the AK property, if (ek), the sequence

of unit vectors, is a Schauder basis for X. A sequence space X is called

(i) normal (or solid) if y = (yk) ∈ X whenever |yk| ≤ |xk|, k ≥ 1, for some x = (xk) ∈ X,

(ii) monotone if it contains the canonical preimages of all its stepspaces,

(iii) sequence algebra if xy = (xkyk) ∈ X whenever x = (xk) , y = (yk) ∈ X,

(iv) convergence free when, if x = (xk) is in X and if yk = 0 whenever xk = 0, then y = (yk) is in X.
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Let X be a sequence space and define

Xα =

{
a = (ak) : ∑

k
|akxk| < ∞, ∀x ∈ X

}

Xη =

{
a = (ak) : ∑

k
|akxk|r < ∞, ∀x ∈ X

}
, where r ≥ 1.

Taking r = 1 in above definition we get α - dual of X. Then Xα, and Xη are called the α−, and η-duals

of X, respectively. A sequence space x = (xk) of complex numbers is said to be (C, 1) summable (or

Cesàro summable of order 1) to l ∈ C if lim
k→∞

σk = l, where σk = 1
k

k
∑

i=1
xi. By C1 we shall denote the

linear space of all (C, 1) summable sequences of complex numbers over C, i.e.,

C1 =

{
x = (xk) ∈ ω :

(
1
k

k

∑
i=1

xi

)
∈ c

}

It is easy to see that C1 is a BK space normed by

∥x∥ = sup
k

1
k

∣∣∣∣∣ k

∑
i=1

xi

∣∣∣∣∣ , x = (xk) ∈ C1

During the last 35 years, a large amount of work has been carried out by many mathematicians

regarding various generalizations of difference sequence spaces of Kizmaz [4]. The notion of difference

sequence space was introduced by Kizmaz [4] in 1981 as follows: X(∆) = {x = (xk) ∈ ω : (∆xk) ∈ X}

for X = ℓ∞, c, c0; where ∆xk = xk − xk+1 for all k ∈ N (the set of natural numbers). Quite recently,

Cesàro summable difference sequence space C1(∆) has been introduced by Bhardwaj and Gupta [14, 15]

as follows: C1(∆) = {x = (xk) ∈ ω : (∆xk) ∈ C1} i.e., C1(∆) =
{

x = (xk) ∈ ω :
(

1
k

k
∑

i=1
∆xi

)
∈ c
}

.

The Cesàro sequence space

cesp =

x = (xk) ∈ ω : ∥x∥p =

(
∑
n

1
n

n

∑
k=1

|xk| p

) 1
p

< ∞

 , 1 ≤ p < ∞

and

ces∞ =

{
x = (xk) ∈ ω : ∥x∥∞ = sup

n

1
n

n

∑
k=1

|xk| < ∞

}

were introduced and studied by Shiue [6] in 1970 and it was observed that ℓp ⊂ cesp(1 < p < ∞ ) is

strict, although it does not hold for p = 1. Ng and Lee [11] in 1978 defined and studied the Cesàro

sequence spaces Xp and X∞ of nonabsolute type as follows:

Xp =

x = (xk) ∈ ω : ∥x∥p =

(
∑
n

1
n

n

∑
k=1

|xk| p

) 1
p

< ∞

 , 1 ≤ p < ∞

X∞ =

{
x = (xk) ∈ ω : ∥x∥∞ = sup

n

∣∣∣∣∣ 1n n

∑
k=1

xk

∣∣∣∣∣ < ∞

}
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The inclusion cesp ⊂ Xp, (1 ≤ p < ∞) is strict. Orhan [1, 2] defined and studied the Cesàro difference

spaces Xp(∆) and X∞(∆) (in fact, Orhan used Cp instead of Xp(∆) and C∞ instead of X∞(∆)), by

replacing x = (xk) with ∆x = (∆xk) = (xk − xk+1) in the spaces Xp and X∞ of Ng and Lee [11] as

follows:

Xp(∆) =

x = (xk) ∈ ω : ∥x∥p =

(
∑
n

1
n

∣∣∣∣∣ n

∑
k=1

∆xk

∣∣∣∣∣ p

) 1
p

< ∞

 , 1 ≤ p < ∞

and

X∞(∆) =

{
x = (xk) ∈ ω : ∥x∥∞ = sup

n

∣∣∣∣∣ 1n n

∑
k=1

∆xk

∣∣∣∣∣ < ∞

}

and it was shown that for 1 ≤ p < ∞, the inclusions Xp ⊂ Xp(∆) and X∞ ⊂ X∞(∆) are strict. Using this

notion of generalized difference sequence space, Et [8], defined the Cesàro difference sequence space

Xp (∆m) and X∞ (∆m) (in fact, Et used Cp (∆m) instead of Xp (∆m) and C∞ (∆m) instead of X∞ (∆m)) as

follows:

Xp (∆m) =

x = (xk) ∈ ω : ∥x∥p =

(
∑
n

1
n

∣∣∣∣∣ n

∑
k=1

∆mxk

∣∣∣∣∣ p

) 1
p

< ∞

 , 1 ≤ p < ∞

and

X∞ (∆m) =

{
x = (xk) ∈ ω : ∥x∥∞ = sup

n

∣∣∣∣∣ 1n n

∑
k=1

∆mxk

∣∣∣∣∣ < ∞

}

If we take m = 1, Xp (∆m) and X∞ (∆m) reduce to the spaces Cp and C∞ of Orhan [1, 2], respectively.

The space X∞ (∆m) for m = 2 was independently introduced and studied by Mursaleen et al. [9].

Bhardwaj, Gupta and Karan [16] introduced the difference sequence space C1
(
∆2) as follows:

C1
(
∆2) = {x = (xk) ∈ ω :

(
1
k

k

∑
i=1

∆2xi

)
∈ c

}

The difference sequence space X∞
(
∆2) =

{
x = (xk) ∈ ω :

(
1
k

k
∑

i=1
∆2xi

)
∈ ℓ∞

}
strictly includes the

sequence space C1
(
∆2).

In this paper, we show that C1(∆) strictly includes the spaces c0(∆) and c(∆) but overlaps with ℓ∞(∆)

and the non-absolute type sequence spaces X∞
(
∆2) and C1

(
∆2) are BK spaces, none of which is

perfect. Finally the η-duals of C1(∆), C1
(
∆2) and X∞

(
∆2) are computed, the matrix classes

(C1(∆), ℓ∞) , (C1(∆), c; p) , (C1(∆), c0) ,
(
C1
(
∆2) , ℓ∞

)
,
(
C1
(
∆2) , c

)
and

(
C1
(
∆2) , c0

)
are also

characterized.

2. Topological Properties of C1(∆), C1
(
∆2) and X∞

(
∆2)

Theorem 2.1. ℓ∞ ⊂ C1(∆), the inclusion being strict.

Proof. Let x = (xk) ∈ ℓ∞. Then there exists M > 0 such that |x1 − xk+1| ≤ M for all k ≥ 1, and so
1
k ∑k

i=1 ∆xi → 0 as k → ∞. For strict inclusion, observe that (k) ∈ C1(∆) but (k) /∈ ℓ∞.
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Theorem 2.2. C1 ⊂ C1(∆), the inclusion being strict.

Proof. For x = (xk) ∈ C1, we have lim
k→∞

1
k xk = 0, and so 1

k

k
∑

i=1
∆xi → 0 as k → ∞.

Inclusion is strict in view of the example cited in Theorem 2.1.

Theorem 2.3. c(∆) ⊂ C1(∆), the inclusion being strict.

Proof. Inclusion is obvious since c ⊂ C1. To see that the inclusion is strict, consider the sequence

x = (xk) = (1, 2, 1, 2, 1, 2, . . . ).

Theorem 2.4. C1(∆) is a BK space normed by

∥x∥∆ = |x1|+ sup
k

1
k

∣∣∣∣∣ k

∑
i=1

∆xi

∣∣∣∣∣ , x = (xk) ∈ C1(∆).

Theorem 2.5. C1(∆) and X∞
(
∆2) are not separable but C1

(
∆2) is separable.

Corollary 2.6. C1(∆) and X∞
(
∆2) does not have a schauder basis.

Theorem 2.7. C1(∆) is not normal (solid) and hence neither perfect nor convergence free.

Proof. Taking x = (xk) = (k − 1) and y = (yk) =
(
(−1)k(k − 1)

)
, we see that x ∈ C1(∆) but y /∈ C1(∆)

although |yk| ≤ |xk| , k ≥ 1 and so C1(∆) is not normal. It is well known [12] that every perfect

space, and also every convergence free space, is normal and consequently C1(∆) is neither perfect nor

convergence free.

Theorem 2.8. C1
(
∆2) and X∞

(
∆2) are neither monotone nor sequence algebra.

Theorem 2.9. C1(∆) ⊂ C1
(
∆2), the inclusion being strict.

Proof. Inclusion is trivial as C1 ⊂ C1(∆). To see that the inclusion is strict, consider the sequence

x = (xk) =
(
k2). Then (∆xk) = (−3,−5,−7, . . . ) /∈ C1 but

(
∆2xk

)
= (2, 2, 2, . . . ) ∈ C1.

Theorem 2.10. [16] C1
(
∆2) ⊂ X∞

(
∆2), the inclusion being strict.

Theorem 2.11. C1
(
∆2) and X∞

(
∆2) are BK spaces normed by ∥x∥∆2 = |x1|+ |x2|+ sup

k

1
k

∣∣∣∣ k
∑

i=1
∆2xi

∣∣∣∣.
Theorem 2.12.

(a) C1
(
∆2) is a closed subspace of X∞

(
∆2).

(b) C1
(
∆2) is a nowhere dense subset of X∞

(
∆2).

Theorem 2.13. [16] C1
(
∆2) does not have the AK property.

Theorem 2.14. [16] The difference sequence spaces C1
(
∆2) and X∞

(
∆2) are not normal (solid) and hence

neither perfect nor convergence free.
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3. η - duals of C1(∆), C1
(
∆2) and X∞

(
∆2)

In this section, we compute the η-duals of C1(∆), C1
(
∆2) and X∞

(
∆2) and show that these difference

sequence spaces are not perfect. Convenience, we have used the notation C∞
(
∆2) instead of X∞

(
∆2).

Theorem 3.1. [C1(∆)]
n =

{
a = (ak) : ∑k kr |ak|r < ∞

}
= D1.

Proof. Let a = (ak) ∈ D1. For any x = (xk) ∈ C1(∆), we have
(

1
k

k
∑

i=1
∆xi

)
∈ c, i.e., 1

k (x1 − xk+1) ∈ c

and so there exists some M > 0 such that |xk| ≤ M(k − 1) + x1 for k ≥ 1 and hence sup
k

k−1 |xk| < ∞,

which implies that

∑
k
|akxk|r = ∑

k

(
kr |ak|r

) (
k−r |xk|r

)
< ∞

Thus, a = (ak) ∈ [C1(∆)]
η .

Conversely, let a = (ak) ∈ [C1(∆)]
η . Then ∑

k
|akxk|r < ∞ for all x = (xk) ∈ C1(∆). Taking xk = k for all

k ≥ 1, we have x = (xk) ∈ C1(∆) whence ∑
k

kr |ak|r < ∞.

Remark 3.2. It is well known [13] that [c0(∆)]
η = [c(∆)]η = [ℓ∞(∆)]

η = D1, so we conclude that [c0(∆)]
η =

[c(∆)]η = [ℓ∞(∆)]
η = [C1(∆)]

η , i.e. the η-duals of c0(∆), c(∆), ℓ∞(∆) and C1(∆) coincide.

Theorem 3.3. [C1(∆)]
ηη =

{
a = (ak) : supk k−r |ak|r < ∞

}
= D2.

Proof. Taking m = 1 and X = c in the Theorem 2.11 of [13], we have

[c(∆)]ηη =
{

a = (ak) : supk k−r |ak|r < ∞
}

and the result follows in view of Remark 3.2.

Corollary 3.4. C1(∆) is not perfect.

The proof follows at once when we observe that the sequence
(
(−1)k(k − 1)

)
∈ [C1(∆)]

ηη but does not

belong to C1(∆).

Theorem 3.5.
[
Cθ

(
∆2)]η

=

{
a = (ak) : ∑

k
k2r |ak|r < ∞

}
= D1, where θ ∈ {1, ∞}.

Proof. Let a = (ak) ∈ D1. For θ ∈ {1, ∞}

(i) (xk) ∈ Cθ(∆) implies xk = O(k)

(ii) (xk) ∈ Cθ

(
∆2) implies xk = O

(
k2).

We have sup
k k−2r |xk| r < ∞ for all x = (xk) ∈ Cθ

(
∆2), which implies that

∑
k
|akxk|r = ∑

k

(
k2r |ak|r

) (
k−2r |xk|r

)
< ∞.

Thus a = (ak) ∈
[
Cθ

(
∆2)]η .

Conversely, let a = (ak) ∈
[
Cθ

(
∆2)]η . Then ∑

k
|akxk| r < ∞ for all x = (xk) ∈ C1

(
∆2). Taking xk = k2

for all k ≥ 1, we have x = (xk) ∈ Cθ

(
∆2) whence ∑

k
k2r |ak|r < ∞.
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Remark 3.6. It is well known [13] that
[
c0
(
∆2)]η

=
[
c
(
∆2)]η

=
[
ℓ∞
(
∆2)]η

= D1, so we conclude that[
c0
(
∆2)]η

=
[
c
(
∆2)]η

=
[
ℓ∞
(
∆2)]η

=
[
C1
(
∆2)]η

=
[
C∞
(
∆2)]η i.e., the η-dual of

c0
(
∆2) , c

(
∆2) , ℓ∞

(
∆2) , C1

(
∆2) and C∞

(
∆2) coincide.

Theorem 3.7.
[
C1
(
∆2)]ηη

=
{

a = (ak) : sup
k k−2r |ak|r < ∞

}
= D2.

Proof. Taking m = 2 in the Theorem 2.11 of [13], we have
[
C∞
(
∆2)]ηη

=
{

a = (ak) : sup
k k−2r |ak|r < ∞

}
and the result follows in view of Remark 3.6.

Corollary 3.8. C1
(
∆2) and C∞

(
∆2) are not perfect space.

4. Matrix Maps

Finally, we characterize certain matrix classes. For any complex infinite matrix A = (ank) we shall

write An = (ank)k∈N for the sequence in the nth row of A. If X, Y are any two sets of sequences, we

denote by (X, Y) the class of all those infinite matrices A = (ank) such that the series An(x) = ∑
k

ankxk

converges for all x = (xk) ∈ X (n = 1, 2, . . .) and the sequence Ax = (ank)k∈N is in Y for all x ∈ X.

Theorem 4.1. [5] Let X and Y be BK spaces and suppose that A = (ank) is an infinite matrix such that(
∑
k

ankxk

)
n∈N

∈ Y for each x ∈ X, i.e., A ∈ (X, Y), then A : X → Y is a bounded linear operator.

Theorem 4.2. A ∈ (C1(∆), ℓ∞) if and only if sup
n

∞
∑

k=2
(k − 1) |ank| < ∞.

Remark 4.3. If x = (xk) ∈ C1(∆), then there exists some l ∈ C such that lim
k→∞

1
k

k
∑

i=1
∆xi = l. We shall call l the

C1(∆) limit of the sequence (xk) and by (C1(∆), c; P) we shall denote that subset of (C1(∆), c) for which C1(∆)

limits are preserved.

Theorem 4.4. [14] A ∈ (C1(∆), c; P) if and only if

(i) sup
n

∞
∑

k=2
(k − 1) |ank| < ∞,

(ii) lim
n→∞

∑
k
(k − 1)ank = −1,

(iii) lim
n→∞

ank = 0 for each k,

(iv) lim
n→∞

∑
n

ank = 0.

Theorem 4.5. A ∈ (C1(∆), c0) if and only if

(i) sup
n

∞
∑

k=2
(k − 1) |ank| < ∞,

(ii) lim
n→∞

∑
k
(k − 1)ank = 0,

(iii) lim
n→∞

ank = 0 for each k,

(iv) lim
n→∞

∑
n

ank = 0.
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Theorem 4.6. A = (ank) ∈
(
C1
(
∆2) , ℓ∞

)
if and only if

(i) sup
n

|∑k ank| < ∞,

(ii) ∑
k

k2ank converges for each n ∈ N and

(iii) (Rnk) ∈ C1(∆), ℓ∞) where Rnk =
∞
∑

v=k+1
anv.

Proof. Let (ank) ∈
(
C1
(
∆2) , ℓ∞

)
. Then the series ∑

k
ankxk converges for each n ∈ N and (∑

k
ankxk

)
∈ ℓ∞

for all x = (xk) ∈ C1
(
∆2). Condition (i) and (ii) follow easily since the sequences

(
k2) = (12, 22, 32, . . .

)
and (1, 1, 1, . . .) belong to C1

(
∆2). For all x = (xk) ∈ C1

(
∆2), Abel’s summation by parts yields

m
∑

k=1
ankxk = −

m−1
∑

j=1
∆xjRnj + Rnm

m−1
∑

j=1
∆xj + x1

m
∑

j=1
anj, where Rnj =

∞
∑

k=j+1
ank and m, n ∈ N. Proceeding

as in Theorem 3.9, we have

∣∣∣∣∣Rnm
m−1
∑

j=1
∆xj

∣∣∣∣∣ → 0 as m → ∞ and so ∑
k

ankxk = −∑
j

∆xjRnj + x1 ∑
j

anj

for all x = (xk) ∈ C1
(
∆2) and n ∈ N. As sup

n

∣∣∣∣∑
k

ank

∣∣∣∣ < ∞ and A = (ank) ∈
(
C1
(
∆2) , ℓ∞

)
, so(

∑
j

Rnj∆xj

)
∈ ℓ∞. Thus

(
Rnj
)
∈ (C1(∆), ℓ∞).

Conversely, using (ii), (iii), in equation ?, we have ∑
k

ankxk converges for each n ∈ N and x = (xk) ∈

C1
(
∆2). Proceeding as above, we get ∑

k
ankxk = −∑

j
∆xjRnj + x1 ∑

j
anj for all x = (xk) ∈ C1

(
∆2) and

n ∈ N and result follows.
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