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Abstract

For graph parameters f1, f2, . . . , fk and positive integers n1, n2, . . . , nk, the graph parameters

Ramsey number ( f1, f2, . . . , fk)(n1, n2, . . . , nk) is the minimum positive integer n such that for any

factorization of complete graph Kn =
k⋃

i=1
Gi, Kn contains at least one subgraph Gi satisfying

fi(Gi) ≥ ni, 1 ≤ i ≤ k. In this paper, we focus on a conjecture of graph parameters Ramsey number

(a1, χ1)(m, n), where a1(G) is edge arboricity of graph G and χ1(G) is edge chromatic number of

graph G. We prove that this conjecture is true in some special cases and discuss a possible way to

solve this conjecture.
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1. Introduction

Let G be a finite, simple and undirected graph, V(G), E(G), δ(G), ∆(G) be the vertex set, edge set,

minimum degree, maximum degree of G, respectively. For v ∈ V(G), let dG(v) be the degree of v in

G. Let A ⊆ V(G). Denote E(A) be an edge subset of E(G) such that endpoints of each edge in E(A)

are in A. For v ∈ V(G), we use G \ v to denote the subgraph of G obtained by removing the vertex

v and the edges incident with v. Edge arboricity a1(G) is the minimum number of edge set partition

of E(G) such that each edge subset induces an acyclic graph. Edge chromatic number χ1(G) is the

minimum number of colors such that each adjacent edge of E(G) does not have the same color. For

the terminology and notations not defined in this paper, please refer to [1].

For k graph parameters f1, f2, . . . , fk and positive integers n1, n2, . . . , nk, the graph parameters Ramsey

number ( f1, f2, . . . , fk)(n1, n2, . . . , nk) is the minimum positive integer n such that for any factorization

of complete graph Kn =
k⋃

i=1
Gi, Kn contains at least one subgraph Gi satisfying fi(Gi) ≥ ni, 1 ≤ i ≤ k.

If f1 = f2 = . . . = fk = f , then we write ( f1, f2, . . . , fk)(n1, n2, . . . , nk) as f (n1, n2, . . . , nk) briefly.

In 1977, Lesniak-Foster and Roberts studied Ramsey theory on vertex partition parameters and edge

partition parameters with co-hereditary property (that is, if H is a subgraph of G, then f (H) ≤ f (G))
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and limn→∞ f (Kn) = ∞. They proposed a conjecture of (a1, χ1)(m, n) and proved that the upper bound

is true for all integers m ≥ 2 and n ≥ 2, and the lower bound is true for all integer m ≥ 2 and odd

integer n ≥ 3. For more details, please refer to [3].

Conjecture 1.1. [3] For integers m ≥ 2 and n ≥ 2,

(a1, χ1)(m, n) = 2m + n − 2.

In this paper, we focus on the case of integer m ≥ 2 and even integer n ≥ 2 of (a1, χ1)(m, n), and we

prove that the conjecture is true when integer m = 2 or n = 2, and it is also true when integer m = 3

and even integer n ≥ 2.

2. Preliminary

Our proof will use the following results.

Theorem 2.1. [4] A graph G has k edge disjoint forests decomposition if and only if for any A ⊆ V(G),

|E(A)| ≤ k(|A| − 1).

Theorem 2.2. [2] Let G be an even order regular graph and degree d(G) equal to |V(G)| − 3, |V(G)| − 4

or |V(G)| − 5. If d(G) ≥ 1
2 |V(G)|, then χ1(G) = ∆(G). In particular, if G is an even order regular graph

with |V(G)| < 10 and d(G) = |V(G)| − 5, then χ1(G) = ∆(G).

Lemma 2.1. [2] Let G be an even order regular graph and G is not a complete graph. For w ∈ V(G),

χ1(G) = ∆(G) if and only if χ1(G \ w) = ∆(G \ w).

3. Main Results

For integer m ≥ 2 and even integer n ≥ 2, based on the work of Lesniak-Foster and Roberts [3], we

only need to prove that the lower bound of the conjecture holds.

Theorem 3.1. For even integer n ≥ 2,

(a1, χ1)(2, n) = n + 2.

Proof. Since Kn+1 = K1,n ∪ Kn and n is even, it follows that a1(K1,n) = 1 and χ1(Kn) = n − 1.

Theorem 3.2. For even integer n ≥ 4,

(a1, χ1)(3, n) = n + 4.

Proof. Let V(Kn+3) = {v1, v2, . . . , vn+3} and consider the factorization Kn+3 = G1 ∪ G2 with

G1 = P1 ∪ P2 where P1 = v1v2 . . . vn+3 and P2 = vn/2+1vn/2−1 . . . v1vn+2 . . . vn/2+4vn/2+2 . . . vn+3vn+1
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. . . vn/2+5vn/2+3, as shown in Figure 1. Since P1 and P2 are spanning paths of Kn+3, it follows that

a1(G1) ≤ 2.

Figure 1: G1 = P1 ∪ P2

Obviously, only dG2(vn/2+1) = dG2(vn/2+3) = dG2(v1) = dG2(vn+3) = n − 1 and the other vertices

in V(G2) have degree n − 2. Denote V ′ = {v′ ∈ V(G2)|dG2(v
′) = n − 2}. We add a vertex w to

G2 to construct n − 1 regular graph G′
2, that is w /∈ V(G2), E(G′

2) = E(G2) ∪ {wv′|v′ ∈ V ′} and

V(G′
2) = V(G2) ∪ {w}. Since d(G′) = n − 1 = |V(G′)| − 5 and |V(G′)| is even, it follows from

Theorem 2.2 and Lemma 2.1 that χ1(G′
2) = ∆(G′

2) = n − 1 and χ1(G2) = ∆(G2) = n − 1.

Theorem 3.3. For integer m ≥ 2,

(a1, χ1)(m, 2) = 2m.

Proof. Let K2m−1 = G1 ∪ G2, where V(G1) = V(G2) = V(K2m−1) and E(G2) contains m − 1 matching

edges. Since G2 has no adjacent edge, it follows that χ1(G2) = 1. Therefore, we only need to prove

that a1(G1) ≤ m − 1, that is, G2 has m − 1 edge disjoint forests decomposition. According to Theorem

2.1 of Nash-Williams, we know that the necessary and sufficient condition is for all V ⊆ V(G1),

|E(A)| ≤ (m − 1)(|A| − 1).

Since E(G1) ∩ E(G2) = ∅, only one vertex v ∈ V(G1) has degree 2m − 2 and the other vertices in G1

have degree 2m − 3. Suppose that dG1(v) = 2m − 2 and v /∈ A ⊆ V(G1), then |E(A)| ≤ |A|(|A|−1)
2 ≤

(m − 1)(|A| − 1). Suppose that dG1(v) = 2m − 2 and v ∈ A ⊆ V(G1). Denote A = A′ ∪ {v} ⊆ V(G1)

where v /∈ A′, then we only need to prove that |E(A′)| ≤ (m − 2)|A′|. Let c be the number of edges of

E(G2) which contained in the induced subgraph of A′. Thus this problem is equivalent to proving that
|A′|(|A′|−1)

2 − c ≤ (m − 2)|A′| for all A′ ⊆ V(G1). Note that |A′| ≥ 2c ≥ 0, then we have 0 ≤ 2c
|A′| ≤ 1. If

|A′| = 0, then 0 = |E(A′)| = (m − 2)|A′| = 0 and if |A′| = 1, then 0 = |E(A′)| ≤ (m − 2)|A′| = m − 2.

Let function g(|A′|) = 1
2 (|A′| − 2c

|A′| − 1). Since g(|A′|) strictly monotonically increases in interval

2 ≤ |A′| ≤ 2m − 2, it follows that we only consider the case |A′| = 2m − 2. If |A′| = 2m − 2, then

c = m − 1 and |A′|(|A′|−1)
2 − c = |E(A′)| = (m − 2)|A′| = 2(m − 1)(m − 2), the proof is done.

We use the same method to generalize the special case of Conjecture 1.1.
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Theorem 3.4. Let integers ni ≥ 2 for all 1 ≤ i ≤ t and odd integers ni ≥ 3 for all t + 1 ≤ i ≤ k, where

1 ≤ t < k. If f1 = f2 = . . . = ft = a1 and ft+1 = ft+2 = . . . = fk = χ1, then

( f1, f2, . . . , fk)(n1, n2, . . . , nk) = 2
t

∑
i=1

ni +
k

∑
i=t+1

ni − k − t + 1.

Proof. Let n = 2
t

∑
i=1

ni +
k
∑

i=t+1
ni − k − t. If ( f1, f2, . . . , fk)(n1, n2, . . . , nk) ≤ n + 1 does not hold, then

there exists a factorization Kn+1 =
k⋃

i=1
Gi such that a1(Gi) ≤ ni − 1 for all 1 ≤ i ≤ t and χ1(Gi) ≤ ni − 1

for all t + 1 ≤ i ≤ k. This implies that
t⋃

i=1
Gi has at most n

t
∑

i=1
(ni − 1) edges and

k⋃
i=t+1

Gi has at most

n+1
2

k
∑

i=t+1
(ni − 1) edges. Note that

|E(Kn+1)| = |E(
k⋃

i=1

Gi)|

≤ n
t

∑
i=1

(ni − 1) +
n + 1

2

k

∑
i=t+1

(ni − 1)

=
1
2

(
n2 +

k

∑
i=t+1

ni − k + t
)

=
1
2

(
n2 + n + 2

(
t −

t

∑
i=1

ni
))

<
1
2
(n2 + n) = |E(Kn+1)|,

which is a contradiction. Therefore, ( f1, f2, . . . , fk)(n1, n2, . . . , nk) ≤ 2
t

∑
i=1

ni +
k
∑

i=t+1
ni − k − t + 1. Next,

we consider the lower bound. Since ni is odd for every t + 1 ≤ i ≤ k, k − t and k + t have the same

parity, it follows that
k
∑

i=t+1
ni − k − t is even, thus n is even. Therefore, there exists a factorization

Kn =

n
2⋃

i=1
Pi where Pi is a spanning path (see [1] p. 342). For 1 ≤ i ≤ t, let Gi be the union of ni − 1 edge

disjoint spanning paths of Kn. For t + 1 ≤ i ≤ k, let Gi be the union of 1
2 (ni − 1) edge disjoint spanning

paths of Kn, that is

G1 =
n1−1⋃
i=1

Pi, G2 =
n1+n2−2⋃

i=n1

Pi, . . . , Gt =

t
∑

j=1
(nj−1)⋃

i=
t−1
∑

j=1
(nj−1)+1

Pi and

Gt+1 =

t
∑

j=1
(nj−1)+ 1

2 (nt+1−1)⋃
i=

t
∑

j=1
(nj−1)+1

Pi, Gt+2 =

t
∑

j=1
(nj−1)+ 1

2 (nt+1+nt+2−2)⋃
i=

t
∑

j=1
(nj−1)+ 1

2 (nt+1−1)+1

Pi, . . . , Gk =

t
∑

j=1
(nj−1)+ 1

2

k
∑

j=t+1
(nj−1)⋃

i=
t

∑
j=1

(nj−1)+ 1
2

k−1
∑

j=t+1
(nj−1)+1

Pi.

We can see that a1(Gi) ≤ ni − 1 for all 1 ≤ i ≤ t and χ1(Gi) ≤ ni − 1 for all t + 1 ≤ i ≤ k.
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Similarly, the generalized form of Conjecture 1.1 is given below.

Conjecture 3.1. Let integers ni ≥ 2 for all 1 ≤ i ≤ k and integer 1 ≤ t < k. If f1 = f2 = . . . = ft = a1 and

ft+1 = ft+2 = . . . = fk = χ1, then

( f1, f2, . . . , fk)(n1, n2, . . . , nk) = 2
t

∑
i=1

ni +
k

∑
i=t+1

ni − k − t + 1.

4. Further Discussion

For integer m ≥ 3 and even integer n ≥ 4, we consider constructing a factorization K2m+n−3 = G1 ∪ G2

to satisfy a1(G1) ≤ m − 1 and χ1(G2) ≤ n − 1. One idea is to make G1 =
m−1⋃
i=1

Pi, and for every i ̸= j,

Pi and Pj are edge disjoint spanning paths of K2m+n−3, which can ensure that a1(G1) ≤ m − 1. So if

we can prove χ1(G2) ≤ n − 1, then Conjecture 1.1 is true. We should pay attention to the fact that the

choice of m − 1 edge disjoint spanning paths of K2m+n−3 is not arbitrary, the following example will

illustrate this fact.

Example 4.1. (a1, χ1)(4, 4) = 10. Recall that we only need to prove the lower bound. Let

V(K9) = {v1, v2, . . . , v9}. Consider a factorization K9 = G1 ∪ G2 with G1 = P1 ∪ P2 ∪ P3 where

P1 = v1v2v3v4v5v6v7v8v9, P2 = v4v2v9v7v5v3v1v8v6 and P3 = v3v7v2v6v1v5v9v4v8, as shown in Figure 2.

One can easy to check that a1(G1) ≤ 3 and χ1(G2) = ∆(G2) = 3. But if we choose G′
1 = P1 ∪ P′

2 ∪ P′
3 and

consider a factorization K9 = G′
1 ∪ G′

2 where P′
2 = v1v4v7v2v5v8v3v6v9 and P′

3 = v1v3v5v7v9v2v8v4v6, as

shown in Figure 3. One can easy to check that a1(G′
1) ≤ 3 and χ1(G′

2) ≥ ∆(G′
2) = 5.

Figure 2: G1 = P1 ∪ P2 ∪ P3 Figure 3: G′
1 = P1 ∪ P′

2 ∪ P′
3

Based on the above discussion, we would better choose m − 1 edge disjoint spanning paths of K2m+n−3

(see [1] p. 341) to make ∆(G2)− δ(G2) minimum.

Problem 4.1. For integer m ≥ 3 and even integer n ≥ 4, consider a factorization K2m+n−3 = G1 ∪ G2 where

G1 is the union of m − 1 edge disjoint spanning paths of K2m+n−3.
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(1). How to choose m − 1 edge disjoint spanning paths to minimize ∆(G2)− δ(G2)?

(2). If ∆(G2)− δ(G2) reaches the minimum value, whether χ1(G2) ≤ n − 1?
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