

International Journal of Mathematics And its Applications

$IF\alpha^{**}g$ Closed Sets in Intuitionistic Fuzzy Topological Spaces

B. Shanmugapriya^{1,*}, K. Ramesh¹ and S. Chitra¹

1 Department of Mathematics, SVS College of Engineering, Coimbatore, Tamilnadu, India.

Keywords: Intuitionistic fuzzy topology, $IF\alpha^{**}g$ closed set in intuitionistic fuzzy topological spaces, $IF\alpha^{**}g$ open set in intuitionistic fuzzy topological spaces.

© JS Publication.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [11] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [2] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper we introduce $IF\alpha^{**}g$ closed set in intuitionistic fuzzy topological spaces and IF**g open set in intuitionistic fuzzy topological spaces.

2. Preliminaries

Definition 2.1 ([1]). Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$ where the functions $\mu_A(x) : X \to [0,1]$ and $\nu_A(x) : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. We denote the set of all intuitionistic fuzzy sets in X, by IFS (X).

Definition 2.2 ([1]). Let A and B be IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle | x \in X\}$. Then

(a). $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$.

- (b). A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- (c). $A^{c} = \{ \langle x, \nu_{A}(x), \mu_{A}(x) \rangle / x \in X \}.$
- (d). $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle / x \in X \}.$

Abstract: In this paper, we introduce and study new classes of sets called $IF\alpha^{**}g$ closed set in intuitionistic fuzzy topological spaces and $IF\alpha^{**}g$ open set in intuitionistic fuzzy topological spaces. We focus upon the some of their basic properties.

^{*} E-mail: priyashanmu06@gmail.com

(e). $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle / x \in X \}.$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$. Also for the sake of simplicity, we shall use the notation $A = \langle x, (\mu_A, \mu_B), (\nu_A, \nu_B) \rangle$ instead of $A = \langle x, (A/\mu_A, B/\mu_B), (A/\nu_A, B/\nu_B) \rangle$. The intuitionistic fuzzy sets $0_{\sim} = \{\langle x, 0, 1 \rangle / x \in X\}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle / x \in X\}$ are respectively the empty set and the whole set of X.

Definition 2.3 ([2]). An intuitionistic fuzzy topology (IFT in short) on X is a family t of IFSs in X satisfying the following axioms.

- (a). $0_{\sim}, 1_{\sim} \in \tau$.
- (b). $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$.
- (c). $\bigcup G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4. An IFS A of an IFTS (X, τ) is an

- (a). Intuitionistic fuzzy interior of A [2] if $int(A) = \bigcup \{G/G \text{ is an IFOS in } X \text{ and } G \subseteq A\}$.
- (b). Intuitionistic fuzzy closure of A [2] if $cl(A) = \bigcap \{K/K \text{ is an IFCS in } X \text{ and } A \subseteq K\}$.
- (c). Intuitionistic fuzzy semi closed set [4] (IFSCS in short) if $int(cl(A)) \subseteq A$.
- (d). Intuitionistic fuzzy pre open set [4] (IFPOS in short) if $A \subseteq int(cl(A))$.
- (e). Intuitionistic fuzzy pre closed set [4] (IFPCS in short) if $cl(int(A)) \subseteq A$.
- (f). Intuitionistic fuzzy pre open set [4] (IFPOS in short) if $A \subseteq int(cl(A))$.
- (g). Intuitionistic fuzzy a-open set [4] (IF α OS in short) if $A \subseteq int(cl(int(A)))$.
- (h). Intuitionistic fuzzy a-closed set [4] (IF α CS in short) if $cl(int(cl(A)) \subseteq A$.
- (i). Intuitionistic fuzzy γ -open set [5] (IF γ OS in short) if $A \subseteq int(cl(A)) \cup cl(int(A))$.
- (j). Intuitionistic fuzzy γ -closed set [5] (IF γ CS in short) if $cl(int(A)) \cap int(cl(A)) \subseteq A$.
- (k). Intuitionistic fuzzy semi pre open set [4] (IFSPOS in short) if there exists an IFPOS B such that $B \subseteq A \subseteq cl(B)$.
- (1). Intuitionistic fuzzy semi pre closed set [4] (IFSPCS in short) if there exists an IFPCS B such that $int(B) \subseteq A \subseteq B$.
- (m). Intuitionistic fuzzy regular open set [9] (IFROS in short) if A = int(cl(A)).
- (n). Intuitionistic fuzzy regular closed set [9] (IFRCS in short) if A = cl(int(A)).
- (o). Intuitionistic fuzzy generalized closed set [9] (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X.
- (p). Semi closure of A [7] (scl(A) in short) is defined as $scl(A) = \bigcap \{K/K \text{ is an IFSCS in } X \text{ and } A \subseteq K\}$.
- (q). Semi interior of A [7] (sint(A) in short) is defined as $sint(A) = \bigcup \{K/K \text{ is an IFSOS in } X \text{ and } K \subseteq A\}.$

- (r). Intuitionistic fuzzy generalized semi closed set [10] (IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq UR$ and U is an IFOS in X.
- (s). Regular open [7] if A = int(cl(A)).
- (t). π open [7] if A is the union of regular open sets.

Note that for any IFS A in (X, τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$.

3. $IF\alpha^{**}g$ Closed Sets in Intuitionistic Fuzzy Topological Spaces

In this section we introduce intuitionistic fuzzy a^{**}g closed sets and study some of their properties.

Definition 3.1 ([6]). An IFS A is said to be an intuitionistic fuzzy $\alpha^{**}g$ closed set (IF $\alpha^{**}g$ CS in short) in (X, τ) if $\alpha cl(A) \subseteq int(cl(U))$ whenever, $A \subseteq U$ and U is an IFOS in X. The family of all IF $\alpha^{**}g$ CSs of an IFTS (X, τ) is denoted by IF $\alpha^{**}g$ CS(X).

Example 3.2. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.7, 0.6), (0.1, 0.2) \rangle$. Here $\mu_G(a) = 0.7$, $\mu_G(b) = 0.6$, $\nu_G(a) = 0.1$ and $\nu_G(b) = 0.2$. Let us consider the IFS $A = \langle x, (0.1, 0.1), (0.7, 0.6) \rangle$ is an IF $\alpha^{**}g$ CSin (X, τ) .

Theorem 3.3. Every IFCS in (X, τ) is an $IF\alpha^{**}g$ CS (X, τ) but not conversely.

Proof. Assume that A is an IFCS in (X, τ) . Let us consider an IFS $A \subseteq U$ and U be an IFOS in (X, τ) . Since $\alpha cl(A) \subseteq cl(A)$ and A is an IFCS in X, $\alpha cl(A) \subseteq cl(A) = A \subseteq int(cl(U))$. That is $\alpha cl(A) \subseteq int(cl(U))$. Therefore, A is an $IF\alpha^{**}g$ CS in X.

Example 3.4. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ where $G = \langle x, (0.3, 0.1), (0.5, 0.6) \rangle$. Consider the IFS $A = \langle x, (0.4, 0.3), (0.4, 0.5) \rangle$. Clearly $A \subseteq 1_{\sim}$ and $\alpha cl(A) = \langle x, (0.5, 0.6), (0.3, 0.1) \rangle \subseteq 1_{\sim}$. Hence, A is an $IF\alpha^{**}g$ CS. But A is not an IFCS in X.

Theorem 3.5. Every IFRCS in (X, τ) is an $IF\alpha^{**}g$ CS in (X, τ) but not conversely.

Proof. Let A be an IFRCS in (X, τ) . By definition, A = cl(int(A)). This implies cl(A)=A. That is A is an IFCS in X. Since every IFRCS is an IFCS, A is an IFCS in X. Hence by Theorem 3.3, A is an $IF\alpha^{**}g$ CS in X.

Example 3.6. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.1, 0.2), (0.5, 0.6) \rangle$. Then the IFS $A = \langle x, (0.1, 0.1), (0.7, 0.6) \rangle$ is an $IF\alpha^{**}g$ CS in X but not an IFRCS in X.

Theorem 3.7. Every IF α CS in (X, τ) is an IF $\alpha^{**}g$ CS in (X, τ) but not conversely.

Proof. Let us consider an IFS $A \subseteq U$ and U be an IFOS in (X, τ) . Also let A is an $IF\alpha CS$ in X. By hypothesis, $cl(int(cl(A))) \subseteq A$, therefore $int(cl(A)) \subseteq A$. This implies $\alpha cl(A) \subseteq A = int(cl(A))$. Since, A is an IFRCS in X. Hence by Theorem 3.5, A is an $IF\alpha^{**}g$ CS in X.

Example 3.8. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$, where $G_1 = \langle x, (0.4, 0.2), (0.6, 0.7) \rangle$, $G_2 = \langle x, (0.8, 0.8), (0.2, 0.2) \rangle$. Then the IFS $A = \langle x, (0.4, 0.4), (0.5, 0.6) \rangle$ is an $IF\alpha^{**}g$ CS in X. But A is not an $IF\alpha CS$ in X because $cl(int(cl(A))) = \langle x, (0.6, 0.7), (0.4, 0.2) \rangle \notin A$.

Theorem 3.9. Every IFGCS in (X, τ) is an $IF\alpha^{**}g$ CS in (X, τ) but its converse may not be true in general.

Proof. Assume that A be an IFGCS in (X, τ) . Let $A \subseteq U$ and U be an IFOS in X. By hypothesis, $cl(A) \subseteq U$. Clearly $\alpha cl(A) \subseteq cl(A) = int(cl(U))$. Whenever, $A \subseteq U$ and U is an IFOS in X. Hence A is an $IF\alpha^{**}g$ CS in X.

Example 3.10. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.1, 0.7), (0.2, 0) \rangle$. Then the IFS $A = \langle x, (0.1, 0), (0.3, 0.8) \rangle$ is an $IF\alpha^{**}g$ CS but A is not an IFGCS in X, as $cl(A) \notin G$ even though $A \subseteq G$ and G is an IFOS in X.

Theorem 3.11. Every $IF\alpha^{**}g$ CS in (X, τ) is an IFGSCS in (X, τ) but its converse may not be true in general.

Proof. Assume that A is an $IF\alpha^{**}g$ CS in (X, τ) . Let an IFS $A \subseteq U$ and U be an IFOS in (X, τ) . By hypothesis, $\alpha cl(A) \subseteq int(cl(U))$. By Theorem 3.5, every IFRCS in (X, τ) is an $IF\alpha^{**}g$ CS in (X, τ) . This implies, $A \cup int(cl(A)) \subseteq U$. Therefore, $scl(A) = A \cup int(cl(A))) \subseteq U$. Hence, A is an IFGSCS in X.

Example 3.12. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.4, 0.5) \rangle$. Then the IFS $A = \langle x, (0.1, 0), (0.5, 0.6) \rangle$ is an IFGSCS in X but A is not an IF $\alpha^{**}g$ CS in X, since $\alpha cl(A) \notin int(cl(U))$ even though $A \subseteq G$ and G is an IFOS in (X, τ) .

Remark 3.13. An IFGSPCS in (X, τ) is need not be an IF $\alpha^{**}g$ CS in (X, τ) .

Example 3.14. Let $X = \{a, b\}$ and $G = \langle x, (0, 0.8), (0.4, 0.1) \rangle$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X. Then the IFS $A = \langle x, (0, 0.2), (0.6, 0.6) \rangle$ is an IFGSPCS but A is not an IF $\alpha^{**}g$ CS in X since $\alpha cl(A) \notin int(cl(U))$ even though $A \subseteq G$ and G is an IFOS in (X, τ) .

Remark 3.15. An $IF\alpha^{**}g$ CS closedness is independent of an IFP closedness.

Example 3.16. Let $X = \{a, b\}$ and $G = \langle x, (0, 0.8), (0.4, 0.1) \rangle$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X. Then the IFS $A = \langle x, (0, 0.2), (0.6, 0.6) \rangle$ is an IFPCS but not an IF $\alpha^{**}g$ CS in X, as $\alpha cl(A) \notin int(cl(U))$ even though $A \subseteq G$ and G is an IFOS in X.

Example 3.17. Let $X = \{a, b\}$ and $G = \langle x, (0.2, 0.2), (0.5, 0.7) \rangle$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X. Then the IFS $A = \langle x, (0.3, 0.2), (0.5, 0.5) \rangle$ is an $IF\alpha^{**}g$ CS but not an IFPCS in X, as $cl(int(A)) \notin A$.

Remark 3.18. An $IF\alpha^{**}g$ CS closedness is independent of an IFSP closedness.

Example 3.19. Let $X = \{a, b\}$ and $G = \langle x, (0.1, 0.9), (0.6, 0.1) \rangle$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X. Consider an IFS $A = \langle x, (0, 0.4), (0.7, 0.6) \rangle$ in X. Since $\alpha cl(A) \notin int(cl(U))$ even though $A \subseteq G$ and G is an IFOS in X, A is not an $IF\alpha^{**}g$ CS in X. But A is an IFSPCS in (X, τ) .

Example 3.20. Let $X = \{a, b\}$ and $G = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X. Then the IFS $A = \langle x, (0.7, 0.8), (0.1, 0.2) \rangle$ is an $IF\alpha^{**}g$ CS but not an IFSPCS in X since $int(cl(int(A))) = 1_{\sim} \notin A$.

Remark 3.21. An $IF\alpha^{**}g$ CS closedness is independent of $IF\gamma$ closedness.

Example 3.22. Let $X = \{a, b\}$ and $G = \langle x, (0.2, 0.3), (0.5, 0.6) \rangle$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X. Then the IFS $A = \langle x, (0.2, 0.3), (0.5, 0.6) \rangle$ is an IF γ CS but not an IF $\alpha^{**}g$ CS in X, as $\alpha cl(A) \notin int(cl(U))$ even though $A \subseteq G$ and G is an IFOS in X.

Example 3.23. Let $X = \{a, b\}$ and $G = \langle x, (0.4, 0), (0.4, 0.8) \rangle$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X. Then the IFS $A = \langle x, (0.6, 0.7), (0.1, 0) \rangle$ is an IF $\alpha^{**}g$ CS but not an IF γ CS in X, as $cl(int(A)) \cap int(cl(A)) \notin A$.

Remark 3.24. The union of two $IF\alpha^{**}g$ C sets is an $IF\alpha^{**}g$ CS in (X, τ) .

Example 3.25. Let $X = \{a, b\}$ and $G = \langle x, (0.4, 0), (0.1, 1) \rangle$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X. Then the IFS $A = \langle x, (0.6, 0), (0.2, 1) \rangle$, $B = \langle x, (0.2, 1), (0.5, 0) \rangle$ are $IF\alpha^{**}g$ CS. Now $A \cup B = \langle x, (0.6, 1), (0.2, 0) \rangle$. Since $\alpha cl(A \cup B) \subseteq int(cl(U))$, $A \cup B$ is an $IF\alpha^{**}g$ CS in X.

Theorem 3.26. Let (X, τ) be an IFTS. If A is an IFS of X then $\alpha cl(A^c) = (\alpha int(A))^c$.

Proof. By Theorem, $\alpha cl(A) = A \cup cl(int(cl(A)))$. Replacing A by A^c , we get $\alpha cl(A^c) = A^c \cup cl(int(cl(A^c)))$. $\alpha cl(A^c) = A^c \cup cl(int(int(A))^c)$. That is $\alpha cl(A^c) = A^c \cup cl(cl(int(A)))^c$. This implies $\alpha cl(A^c) = A^c \cup (int(cl(int(A))))^c$. That is $\alpha cl(A^c) = (A \cap int(cl(int(A))))^c = (\alpha int(A))^c$.

Remark 3.27. The intersection of any two $IF\alpha^{**}g$ CS is not an $IF\alpha^{**}g$ CS in general as seen from the following example.

Example 3.28. Let $X = \{a, b\}$ and $G = \langle x, (0.5, 0), (0.1, 1) \rangle$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X. Then the IFS $A = \langle x, (0.2, 1), (0.7, 0) \rangle$, $B = \langle x, (0.6, 0), (0.3, 1) \rangle$ are $IF\alpha^{**}g$ CS. Now $A \cap B = \langle x, (0.2, 0), (0.7, 1) \rangle$. Since $\alpha cl(A \cap B) \notin int(cl(U))$ even though $A \cap B \subseteq G$ and G is an IFOS in X, $A \cap B$ is not an $IF\alpha^{**}g$ CS in X.

Theorem 3.29. Let (X, τ) be an IFTS. Then for every $A \in IF\alpha^{**}g$ CS (X) and for every $B \in IFS(X)$, $A \subseteq B \subseteq \alpha cl(A)$ implies $B \in IF\alpha^{**}g$ CS.

Proof. Let an IFS $B \subseteq U$ and U be an IFOS in X. Since $A \subseteq B$, $A \subseteq U$ and A is an $IF\alpha^{**}g$ CS, $\alpha cl(A) \subseteq int(cl(U))$. By hypothesis, $B \subseteq \alpha cl(A)$, $\alpha cl(B) \subseteq \alpha cl(A) \subseteq int(cl(U))$. Therefore, $\alpha cl(B) \subseteq int(cl(U))$. Hence B is an $IF\alpha^{**}g$ CS of X.

Theorem 3.30. If A is an IFOS in (X, τ) and an IF $\alpha^{**}g$ CS in (X, τ) , then A is an IF α CS in X.

Proof. Let A be an IFOS in X. Since $A \subseteq A$, by hypothesis, $\alpha cl(A) \subseteq A = int(cl(A))$ by Theorem 3.5. But $A \subseteq \alpha cl(A)$. Therefore, $\alpha cl(A) = A$. Hence A is an $IF\alpha CS$ of X.

Theorem 3.31. The union of $IF\alpha^{**}g$ CS A and B is an $IF\alpha^{**}g$ CS in (X,τ) , if A and B are IFCS in (X,τ) .

Proof. Since A and B are IFCS in X, cl(A) = A and cl(B) = B. Assume that A and B are $IF\alpha^{**}g$ CS in (X, τ) . Let $A \cup B \subseteq U$ and U be IFOS in X. Then $cl(int(cl(A \cup B))) = cl(int(A \cup B)) \subseteq cl(A \cup B) = A \cup B \subseteq U$. That is $\alpha cl(A \cup B) \subseteq int(cl(U))$. Therefore, the union of A and B is an $IF\alpha^{**}g$ CS in (X, τ) .

Theorem 3.32. Let (X, τ) be an IFTS and A be an IFS in X. Then A is an $IF\alpha^{**}g$ CS if and only if $A\bar{q}F$ implies $\alpha cl(A)\bar{q}F$ for every IFCS F of X.

Proof. Necessity: Let F be an IFCS in X and let $A\bar{q}F$. Then $A \subseteq F^c$, where F^c is an IFOS in X. Therefore $\alpha cl(A) \subseteq F^c$, by hypothesis. Hence $\alpha cl(A)\bar{q}F$.

Sufficiency: Let F be an IFCS in X and let A be an IFS in X. Then by hypothesis, $A\overline{q}F$ implies $\alpha cl(A)\overline{q}F$. Then $\alpha cl(A) \subseteq F^c$ whenever $A \subseteq F^c$ and F^c is an IFOS in X. Hence A is an $IF\alpha^{**}g$ CS in X.

Theorem 3.33. Let (X, τ) be an IFTS. Then $IF\alpha O(X) = IF\alpha C(X)$ if and only if every IFS in (X, τ) is an $IF\alpha^{**}g$ CS in X.

Proof. Necessity: Suppose that $IF\alpha O(X) = IF\alpha C(X)$. Let $A \subseteq U$ and U be an IFOS in X. This implies $\alpha cl(A) \subseteq \alpha cl(U)$. Since U is an IFOS, U is an $IF\alpha OS$ in X. Since by hypothesis U is an $IF\alpha CS$ in X, $\alpha cl(U) = U$. This implies $\alpha cl(A) \subseteq int(cl(U))$. Therefore, A is an $IF\alpha^{**}g$ CS of X.

Sufficiency: Suppose that every IFS in (X, τ) is an $IF\alpha^{**}g$ CS in X. Let $U \in IFO(X)$, then $U \in IF\alpha O(X)$. Since $U \subseteq U$ and U is IFOS in X. By hypothesis, $\alpha cl(U) \subseteq U$. But clearly $U \subseteq \alpha cl(U)$. Hence $U = \alpha cl(U)$. That is $U \in IF\alpha C(X)$. Hence $IF\alpha O(X) \subseteq IF\alpha C(X)$. Let $A \in IF\alpha C(X)$ then A^c is an $IF\alpha OS$ in X. But $IF\alpha O(X) \subseteq IF\alpha C(X)$. Therefore, $A^c \in IF\alpha C(X)$. Hence, $A \in IF\alpha O(X)$. This implies, $IF\alpha C(X) \subseteq IF\alpha O(X)$. Thus $IF\alpha O(X) = IF\alpha C(X)$.

Theorem 3.34. If A is an IFOS and an $IF\alpha^{**}g$ CS in (X, τ) , then

- (1). A is an IFROS in X
- (2). A is an IFRCS in X.

Proof.

- (1). Let A be an IFOS and an $IF\alpha^{**}g$ CS in X. Then $\alpha cl(A) \subseteq A$. This implies, $cl(int(cl(A))) \subseteq A$. That is $int(cl(A)) \subseteq A$. Since A is an IFOS, A is an IFPOS in X. Hence $A \subseteq int(cl(A))$. Therefore A = int(cl(A)). Hence, A is an IFROS in X.
- (2). Let A be an IFOS and an $IF\alpha GCS$ in X. Then $cl(int(cl(A))) \subseteq A$. That is $cl(int(A)) \subseteq A$. Since A is an IFOS, A is an IFSOS in X. Hence, $A \subseteq cl(int(A))$. Therefore A = cl(int(A)). Hence A is an IFRCS in X.

4. $IF\alpha^{**}g$ Open Sets in Intuitionistic Fuzzy Topological Spaces

In this section, we have introduced intuitionistic fuzzy $\alpha^{**}g$ open sets and studied some of their properties.

Definition 4.1. An IFS A is said to be an intuitionistic fuzzy $\alpha^{**}g$ open set (IF $\alpha^{**}g$ OS in short) in (X, τ) , if the complement A^c is an IF $\alpha^{**}g$ CS in X. The family of all IF $\alpha^{**}g$ OS of an IFTS (X, τ) is denoted by IF $\alpha^{**}gO(X)$.

Theorem 4.2. For any IFTS (X, τ) , every IFOS is an $IF\alpha^{**}g$ OS but not conversely.

Proof. Let A be an IFOS in X. Then A^c is an IFCS in X. By Theorem 3.3, A^c is an $IF\alpha^{**}g$ CS in X. Hence, A is an $IF\alpha^{**}g$ OS in X.

Example 4.3. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.1), (0.5, 0.6) \rangle$. Then the IFS $A = \langle x, (0.4, 0.5), (0.4, 0.3) \rangle$ is an $IF\alpha^{**}g$ OS in X, but A is not an IFOS in X.

Theorem 4.4. For any IFTS (X, τ) , every IFROS is an IF $\alpha^{**}g$ OS but not conversely.

Proof. Let A be an IFROS in X. Then A^c is an IFRCS in X. By Theorem 3.5, A^c is an $IF\alpha^{**}g$ CS in X. Hence, A is an $IF\alpha^{**}g$ OS in X.

Example 4.5. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.1, 0.2), (0.5, 0.6) \rangle$. Then the IFS $A = \langle x, (0.7, 0.6), (0.1, 0.1) \rangle$ is an $IF\alpha^{**}g$ OS but not an IFROS in X.

Theorem 4.6. In any IFTS (X, τ) , every IF αOS is an IF $\alpha^{**}g$ OS but not conversely.

Proof. Let A be an $IF\alpha OS$ in X. Then A^c is an $IF\alpha CS$ in X. By Theorem 3.7, A^c is an $IF\alpha^{**}g$ CS in X. Hence, A is an $IF\alpha^{**}gOS$ in X.

Example 4.7. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.4, 0.2), (0.6, 0.7) \rangle$ and $G_2 = \langle x, (0.8, 0.8), (0.2, 0.2) \rangle$. Then the IFS $A = \langle x, (0.5, 0.6), (0.4, 0.4) \rangle$ is an IF $\alpha^{**}g$ OS in X but A is not an IF α OS in X.

Theorem 4.8. For any IFTS (X, τ) , every IFGOS is an IF $\alpha^{**}g$ OS but its converse may not be true in general.

Proof. Let A be an IFGOS in X. Then A^c is an IFGCS in X. By Theorem 3.9, A^c is an $IF\alpha^{**}g$ CS in X. Hence, A is an $IF\alpha^{**}g$ OS in X.

Example 4.9. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.1, 0.7), (0.2, 0) \rangle$. Then the IFS $A = \langle x, (0.3, 0.8), (0.1, 0) \rangle$ is an $IF\alpha^{**}g$ OS in X but A is not an IFGOS in X, as $cl(A^c) \notin G$ even though $A^c \subseteq G$ and G is an IFOS in (X, τ) .

Remark 4.10. An $IF\alpha^{**}g$ OS in (X, τ) is not an IFGSOS in (X, τ) .

Example 4.11. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.4, 0.5) \rangle$. Then the IFS $A = \langle x, (0.5, 0.6), (0.1, 0) \rangle$ is an $IF\alpha^{**}g$ OS in X but A is not an IFGSOS in X, as $scl(A^c) \notin G$ even though $A^c \subseteq G$ and G is an IFOS in X.

Theorem 4.12. For any IFTS (X, τ) , every IF $\alpha^{**}g$ OS is an IFGSPOS but its converse may not be true in general.

Proof. Let A be an $IF\alpha^{**}g$ OS in X. Then A^c is an $IF\alpha^{**}g$ CS in X. By Theorem 3.13, A^c is an IFGSPCS in X. Hence, A is an IFGSPOS in X.

Example 4.13. Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ is an IFT on X, where $G = \langle x, (0, 0.8), (0.4, 0.1) \rangle$. Then the IFS $A = \langle x, (0.6, 0.6), (0, 0.2) \rangle$ is an IFGSPOS in X but A is not an IF $\alpha^{**}g$ OS in X, as $\alpha cl(A^c) \notin G$ even though $A^c \subseteq G$ and G is an IFOS in X.

Theorem 4.14. Let (X, τ) be an IFTS. If A is an IFS of X then the following properties are equivalent:

- (i) $A \in IF\alpha^{**}gO(X)$.
- (ii) $V \subseteq int(cl(int(A)))$ whenever $V \subseteq A$ and V is an IFCS in X

(iii) There exists IFOS G_1 such that $G_1 \subseteq V \subseteq int(cl(G))$, where G = int(A), $V \subseteq A$ and V is an IFCS in X.

Proof. $(i) \Rightarrow (ii)$ Let $A \in IF\alpha^{**}gO(X)$. Then A^c is an $IF\alpha^{**}g$ CS in X. Therefore $\alpha cl(A^c) \subseteq U$ whenever $A^c \subseteq U$ and U is an IFOS in X. That is $cl(int(cl(A^c))) \subseteq U$. Taking complement on both sides, we get $(cl(int(cl(A^c))))^c = int(int(cl(A^c)))^c = int(cl(int(A^c))) = int(cl(int(A))) \supseteq U^c$. This implies $U^c \subseteq int(cl(int(A)))$ whenever $U^c \subseteq A$ and U^c is an IFCS in X. Replacing U^c by V, $V \subseteq int(cl(int(A)))$ whenever $V \subseteq A$ and V is an IFCS in X.

 $(ii) \Rightarrow (iii)$ Let $V \subseteq int(cl(int(A)))$ whenever $V \subseteq A$ and V is an IFCS in X. Hence $int(V) \subseteq V \subseteq int(cl(int(A)))$. Then there exist IFOS G_1 in X such that $G_1 \subseteq V \subseteq int(cl(G))$ where G = int(A) and $G_1 = int(V)$.

 $(iii) \Rightarrow (i)$ Suppose that there exists IFOS G_1 such that $G_1 \subseteq V \subseteq int(cl(G))$ where G = int(A), $V \subseteq A$ and V is an IFCS in X. It is clear that $(int(cl(G)))^c \subseteq V^c$. That is $(int(cl(int(A))))^c \subseteq V^c$. This implies that $cl(cl(int(A)))^c = cl(int(cl(A^c))) \subseteq V^c$, $A^c \subseteq V^c$ and V^c is IFOS in X. Hence, $\alpha cl(A^c) \subseteq V^c$. That is A^c is an $IF\alpha^{**}g$ CS in X. Which implies $A \in IF\alpha^{**}gO(X)$.

Theorem 4.15. Let (X, τ) be an IFTS. Then for every $A \in IF\alpha^{**}gO(X)$ and for every $B \in IFS(X)$, $\alpha int(A) \subseteq B \subseteq A$ implies $B \in IF\alpha^{**}gO(X)$.

Proof. By hypothesis, $\alpha int(A) \subseteq B \subseteq A$. Taking complement on both sides, we get $A^c \subseteq B^c \subseteq (\alpha int(A))^c$. Let $B^c \subseteq U$ and U be an IFOS in X. Since $A^c \subseteq B^c$, $A^c \subseteq U$. Since A^c is an $IFpG\alpha CS$, $\alpha cl(A^c) \subseteq U$. Also $B^c \subseteq (\alpha int(A))^c = \alpha cl(A^c)$. Therefore $\alpha cl(B^c) \subseteq \alpha cl(A^c) \subseteq U$. Hence, B^c is an $IF\alpha GCS$ in X. This implies that B is an $IF\alpha^{**}gOS$ of X. That is $B \in IF\alpha^{**}gO(X)$.

Remark 4.16. The union of any two $IF\alpha^{**}g$ OS in (X, τ) is an $IF\alpha^{**}g$ OS in (X, τ) .

Example 4.17. Let $X = \{a, b\}$ and let $G = \langle x, (0.4, 0), (0.1, 1) \rangle$. Then $\tau = \{0_{\sim}, G, 1_{\sim}\}$ is an IFT on X and the IFS $A = \langle x, (0.2, 1), (0.6, 0) \rangle$, $B = \langle x, (0.5, 0), (0.2, 1) \rangle$ are $IF\alpha^{**}g$ OS in X but $A \cup B = \langle x, (0.5, 1), (0.2, 0) \rangle$ is an $IF\alpha^{**}gOS$ in X.

Theorem 4.18. An IFS A of an IFTS (X, τ) is an $IF\alpha^{**}g$ OS if and only if $F \subseteq \alpha int(A)$ whenever $F \subseteq A$ and F is an IFCS in X.

Proof. Necessity: Suppose A is an $IF\alpha^{**}g$ OS in X. Let F be an IFCS in X and $F \subseteq A$. Then F^c is an IFOS in X such that $A^c \subseteq F^c$. Since A^c is an $IF\alpha^{**}g$ CS, we have $\alpha cl(A^c) \subseteq F^c$. Hence $(\alpha int(A))^c \subseteq F^c$. Therefore $F \subseteq \alpha int(A)$. Sufficiency: Let A be an IFS in X and let $F \subseteq \alpha int(A)$ whenever F is an IFCS in X and $F \subseteq A$. Then $A^c \subseteq F^c$ and F^c is an IFOS. By hypothesis, $(\alpha int(A))^c \subseteq F^c$, which implies $\alpha cl(A^c) \subseteq F^c$. Therefore A^c is an $IF\alpha^{**}g$ OS of X. Hence A is an

References

 $IF\alpha^{**}g$ OS of X.

- [1] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
- [2] D.Coker, An introduction to fuzzy topological space, Fuzzy sets and systems, 88(1997), 81-89.
- [3] M.E.El-Shafhi and A.Zhakari, Semi generalized continuous mappings in fuzzy topological spaces, J. Egypt. Math. Soc., 15(1)(2007), 57-67.
- [4] H.Gurcay, D.Coker and A.Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. of Fuzzy Math., 5(1997), 365-378.
- [5] I.M.Hanafy, Intuitionistic fuzzy continuity, Canad. Math Bull., XX(2009), 1-11.
- [6] M.Lellis Thivagar, Nirmala Rebecca Paul and Saeid Jafari, On New Class of Generalized Closed Sets, Annals of the university of Craiova, Mathematics and Computer Sciences serie, 38(3)(2011), 84-93.
- [7] S.Murugesan and P.Thangavelu, Fuzzy Pre semi closed sets, Bull. Malays. Math. Sci. Soc., 31(2008), 223-232.
- [8] M.S.Sarsak and N.Rajesh, π -Generalized Semi-Preclosed Sets, International Mathematical Forum, 5(2010), 573-578.
- [9] S.S.Thakur and Rekha Chaturvedi, Regular generalized closed sets in Intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria: Matematica, 16(2006), 257-272.
- [10] R.Santhi and K.Sakthivel, Intuitionistic Fuzzy Generalized Semi Continuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.

- [11] L.A.Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.
- [12] V.Zaitsav, On certain classes of topological spaces and their bicompactifications, Dokl Akad Nauk SSSR, 178, 778-779.
- [13] K.Ramesh, B.Suguna Selvarani and B.Maheswari, $\hat{\beta}g$ Closed Set in Intuitionistic Fuzzy Topological Spaces, International Journal of Mathematics And its Applications, 5(3-C)(2017), 297-303.