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Abstract: In this paper, we first give solution to a general family of fractional differential equation involving Hilfer derivative
operator and the fractional integral operator whose kernel is the H-function. Next, we record here solutions of two

fractional differential equations involving the function associated with Gaussian Model free energy and Polylogarithm

function of order g as special cases of our main result. These special cases are believed to be new. On account of the
general nature of H-function in our main findings, the results derived earlier by Srivastava et al. [15], Srivastava and

Tomovski [16] and Tomovski et al. [17] follow as special cases.
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1. Introduction

Fractional differential equations involving known integral operators have been studied earlier by a large number of authors

(see, for details, [15], [16] and [17]) and have diverse applications. Motivated by above mentioned work and the references

cited therein, we make use of the following functions and fractional integral operators: The H-function occurring in the

present paper was introduced by Inayat Hussain [9] and studied by Bushman and Srivastava [1] and others, it is defined and

represented in the following manner:

H
m,n
p,q

z
∣∣∣∣∣∣∣∣∣∣

(ej , Ej ;∈j)1,n, (ej , Ej)n+1,p

(fj , Fj)1,m, (fj , Fj ;=j)m+1,q

 =
1

2πω

∫
L

Θ(ξ)zξdξ (1)

where, ω =
√
−1, z ∈ C \ {0}, C being the set of complex numbers,

Θ(ξ) =

m∏
j=1

Γ(fj − Fjξ)
n∏
j=1

{Γ(1− ej + Ejξ)}∈j

q∏
j=m+1

{Γ(1− fj + Fjξ)}=j
p∏

j=n+1

Γ(ej − Ejξ)
(2)

∗ E-mail: nidhinj6@gmail.com

155

http://ijmaa.in/


On the Solution of General Family of Fractional Differential Equation Involving Hilfer Derivative Operator and H-function

and

1 5 m 5 q and 0 5 n 5 p (m, q ∈ N = {1, 2, 3, · · · }; n, p ∈ N0 = N ∪ {0}), (3)

The nature of contour L in (1) and various conditions on its parameters can be seen in the paper by Gupta, Jain and

Agarwal [4]. In this paper we make use of the Riemann-Liouville fractional integral operator Ipa+ and the Riemann-Liouville

fractional derivative operator Dp
a+, which are defined by (see, for details, [10], [11] and [13]):

(Iµa+f)(x) =
1

Γ(µ)

∫ x

a

f(t)

(x− t)1−µ dt
(
<(µ) > 0

)
(4)

and

(Dµ
a+f)(x) =

(
d

dx

)n
(In−µa+ f)(x)

(
<(µ) > 0; n = [<(µ)] + 1), (5)

where [x] denotes the greatest integer in the real number x. Hilfer [7] generalized the operator in (5) and defined a general

fractional derivative operator Dµ,ν
a+ of order 0 < µ < 1 and type 0 5 ν 5 1 with respect to x as follows:

(Dµ,ν
a+ f)(x) =

(
I
ν(1−µ)
a+

d

dx

(
I
(1−ν)(1−µ)
a+ f

))
(x). (6)

Equation (6) yields the classical Riemann-Liouville fractional derivative operator Dµ
a+ when ν = 0 and for ν = 1 it reduces

to the fractional derivative operator introduced by Joseph Liouville (1809-1882) in 1832, which is called the Liouville-Caputo

fractional derivative operator (see [3], [10] and [17]). Now, the Laplace transform L[f(x)](s) of the function f(x) is defined

as follows:

L[f(x)](s) =

∫ ∞
0

e−sx f(x)dx
(
<(s) > 0

)
, (7)

provided that the integral exists, we recall the following known result (see, for details, [16] and [17]):

L[(Dµ,ν
0+ f)(x)](s) = sµL[f(x)](s)− s−ν(1−µ)

(
I
(1−ν)(1−µ)
0+ f

)
(0+)

(
<(s) > 0; 0 < µ < 1

)
, (8)

where the initial-value term: (
I
(1−ν)(1−µ)
0+ f

)
(0+)

involves the Riemann-Liouville fractional integral (4) (with a = 0) of the function f(t) of order

µ 7→ (1− ν)(1− µ) (9)

evaluated in the limit as x → 0+. The familiar Mittag-Leffler functions Eµ(z) and Eµ,ν(z) are defined by the following

series:

Eµ(z) :=

∞∑
n=0

zn

Γ(µn+ 1)
=: Eµ,1(Z) (z ∈ C; <(µ) > 0) (10)

and

Eµ,ν(z) :=

∞∑
n=0

zn

Γ(µn+ ν)
(z, ν ∈ C; <(µ) > 0) (11)
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respectively. By means of the series representation, a generalization of the Mittag-Leffler function Eµ,ν(z) of (11) was

introduced by Prabhakar [12] as follows:

Eλµ,ν(z) :=

∞∑
n=0

(λ)n
Γ(µn+ ν)

zn

n!
(z, ν, λ ∈ C; <(µ) > 0) (12)

The following Laplace transform formula for the generalized Mittag-Leffler function Eλµ,ν(z) was given by Prabhakar [12]:

L[xν−1Eλµ,ν(ωxµ)](s) =
sλµ−ν

(sµ − ω)λ
(13)

(µ, ω, λ ∈ C;<(ν) > 0;<(s) > 0; ω
sµ
< 1)

Prabhakar [12] also introduced the following fractional integral operator:

(Eλµ,ν,ω;a+φ)(x) :=

∫ x

a

(x− t)ν−1 Eλµ,ν [w(x− t)µ]φ(t)dt (x > a) (14)

in the space L(a, b) of Lebesgue integrable functions on a finite closed interval [a, b] (b > a) of the real line < given by

L(a, b) = {f : ‖f‖1 =

a∫
b

f(x)dx <∞} (15)

A Fractional Integral Operator Involving H-function

In our present investigation we make use of a fractional integral operator with H-function in its kernel defined as follows:

(
Hw;m,n;γ

0+;p,q;β ϕ
)

(x) :=

∫ x

0

(x− t)β−1 H
m,n
p,q [w(x− t)γ ]ϕ(t)dt (16)

(
<(β) > 0; w ∈ C \ {0}; 1 5 m 5 q; 0 5 n 5 p; <(β) + min

15j5m

{
<
(
γfj
Fj

)}
> 0

)
.

If we take w = 1 and m = 1 in (16) we obtain a fractional integral operator introduced by Harjule(see for details [6]). Now,

by using the Convolution Theorem for the Laplace Transform in (7), we find from the definition (16) that

L
[(
Hw;m,n;γ

0+;p,q;β ϕ
)

(x)
]

(s) = L
[
xβ−1 H

m,n
p,q [wxγ ]

]
(s) · L[ϕ(x)](s)

= s−βH
m,n+1
p+1,q

ws−γ
∣∣∣∣∣∣∣∣∣∣

(1− β, γ; 1), (ej , Ej ;∈j)1,n, (ej , Ej)n+1,p

(fj , Fj)1,m, (fj , Fj ;=j)m+1,q

Φ(s) (17)

(
<(s) > 0; γ > 0; <(β) + min

15j5m

{
<
(
γfj
Fj

)}
> 0

)
where,

Φ(s) := L[ϕ(x)](s)
(
<(s) > 0

)
.

In its special case when ϕ(x) ≡ 1, (17) immediately yields

L
[(
Hw;m,n;γ

0+;p,q;β 1
)

(x)
]

(s) = s−β−1H
m,n+1
p+1,q

ws−γ
∣∣∣∣∣∣∣∣∣∣

(1− β, γ; 1), (ej , Ej ;∈j)1,n, (ej , Ej)n+1,p

(fj , Fj)1,m, (fj , Fj ;=j)m+1,q

 (18)

(
<(s) > 0; γ > 0; <(β) + min

15j5m

{
<
(
γfj
Fj

)}
> 0

)
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2. Required Results

The following formulae to be used in the main theorem was given by Tomovski el al. [17]:

sβi(αi−1)

asα1 + bsα2 + c
=

1

b

(
sβi(αi−1)

sα2 + c
b

)(
1

1 + a
b
( sα1

sα2+ c
b

)

)
=

1

b

∞∑
r=0

(
− a

b

)r
sα1r+βiαi−βi

(sα2 + c
b
)r+1

= L
[

1

b

∞∑
r=0

(
− a

b

)r
x(α2−α1)r+α2+βi(1−αi)−1

· Er+1
α2,(α2−α1)r+α2+βi(1−αi)

(
− c

b
xα2

)]
(s) (i = 1, 2) (19)

and

F (s)

asα1 + bsα2 + c
=

1

b

∞∑
r=0

(
− a

b

)r(
sα1r

(sα2 + c
b
)r+1

F (s)

)
= L

[
1

b

∞∑
r=0

(
− a

b

)r
·
(
x(α2−α1)r+α2−1Er+1

α2,(α2−α1)r+α2

(
− c

b
xα2

)
∗ f(x)

)]
(s)

= L
[

1

b

∞∑
r=0

(
− a

b

)r(
Er+1
α2,(α2−α1)r+α2,− cb ;0+

f

)
(x)

]
(s). (20)

Further, we obtain

λ

(asα1 + bsα2 + c)
s−β−1 H

m,n+1
p+1,q

ws−γ
∣∣∣∣∣∣∣∣∣∣

(1− β, γ; 1), (ej , Ej ;∈j)1,n, (ej , Ej)n+1,p

(fj , Fj)1,m, (fj , Fj ;=j)m+1,q


= L

[
λ

b

∞∑
r=0

∞∑
j=0

(
− a

b

)r
(r + 1)j x

(α2−α1)r+α2(j+1)+β 1

j!

(
− c

b

)j

·Hm,n+1
p+1,q+1

wxγ
∣∣∣∣∣∣∣∣∣∣

(1− β, γ; 1), (ej , Ej ;∈j)1,n, (ej , Ej)n+1,p

(fj , Fj)1,m, (fj , Fj ;=j)m+1,q, (−α2j − (α2 − α1)r − α2 − β, γ; 1)


]

(21)

Proof. We first express H-function in the form of contour integral and then interchange the order of summation and

integration(which is permissible under the conditions stated) in the left hand side of (21)

=
λ

2πib

∫
L

∞∑
r=0

(
− a

b

)r
sα1r−γξ−β−1

(sα2 + c
b
)r+1

wξ Γ(β + γξ) Θ(ξ) dξ (22)

using (19) we get

=
λ

2πib

∫
L

L
[ ∞∑
r=0

(
− a

b

)r(
x(α2−α1)r+α2+γξ+β Er+1

α2,(α2−α1)r+α2+γξ+β+1

(
− c

b
xα2

)]
(s)Γ(β + γξ)Θ(ξ) dξ (23)

Further, we express generalization of the Mittag-Leffler function in the series form and reinterpret H-function in order to

obtain the right hand side of (21).

3. A General Family of Fractional Differential Equations

In this section, a general family of fractional differential equations [17, p.803, Eq.(3.7)] given by (24), was introduced in [8]

for dielectric relaxation in glasses but its general solution was not given, though the laplace transformed relaxation function
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and the corresponding dielectric susceptibility were calculated. Therefore, in this section we proceed to find its general

solution. Consider the following fractional differential equation:

a
(
Dα1,β1

0+ y
)

(x) + b
(
Dα2,β2

0+ y
)

(x) + cy(x) = g(x) (24)

(
0 < α1 5 α2 < 1; 0 5 β1 5 1; 0 5 β2 5 1 and a, b, c ∈ R

)
in the space of Lebesgue integrable functions ( see [3, 16]) y ∈ L(0,∞) with the initial conditions:

(
I
(1−βi)(1−αi)
0+ y

)
(0+) = Ci (i = 1, 2), (25)

where, without loss of generality, we assume that

(1− β1)(1− α1) 5 (1− β2)(1− α2).

if C1 <∞, then C2 = 0 unless (1− β1)(1− α1) = (1− β2)(1− α2).

3.1. Main Theorem

Theorem 3.1. The following fractional differential equation:

a
(
Dα1,β1

0+ y
)

(x) + b
(
Dα2,β2

0+ y
)

(x) + cy(x) = λ
(
Hw;m,n;γ

0+;p,q;β 1
)

(x) + f(x) (26)

(
0 < α1 5 α2 < 1; 0 5 β1 5 1; 0 5 β2 5 1; <(β) > 0; w ∈ C \ {0}; 1 5 m 5 q; 0 5 n 5 p; <(β) + min

15j5m

{
<
(
γfj
Fj

)}
> 0

)
with the initial condition: (

I
(1−βi)(1−αi)
0+ y

)
(0+) = Ci (i = 1, 2), (27)

has its solution in the space L(0,∞) given by

y(x) =
1

b

∞∑
r=0

(−1)r
(
a

b

)r[
aC1x

(α2−α1)r+α2+β1(1−α1)−1Er+1
α2,(α2−α1)r+α2+β1(1−α1)

(
− c

b
xα2

)
+ bC2x

(α2−α1)r+α2+β2(1−α2)−1Er+1
α2,(α2−α1)r+α2+β2(1−α2)

(
− c

b
xα2

)
+ Er+1

α2,(α2−α1)r+α2,− cb ;0+
f(x)

+ λ

∞∑
j=0

(r + 1)j x
(α2−α1)r+α2(j+1)+β 1

j!

(
− c

b

)j

·Hm,n+1
p+1,q+1

wxγ
∣∣∣∣∣∣∣∣∣∣

(1− β, γ; 1), (ej , Ej ;∈j)1,n, (ej , Ej)n+1,p

(fj , Fj)1,m, (fj , Fj ;=j)m+1,q, (−α2j − (α2 − α1)r − α2 − β, γ; 1)


]

(28)

where C1, C2 and λ are arbitrary constants and the function f is suitably prescribed.

Proof. We denote by Y (s) the Laplace transform of the function y(x), which is given as in (7). Then, by applying the

Laplace transform operator L to each side of (26), and using the formulas (8) and (18) and the initial condition (27), we

find that

a(sα1Y (s)− C1 s
β1(α1−1))+b(sα2Y (s)− C2 s

β2(α2−1)) + c Y (s) =
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F (s) + λs−β−1H
m,n+1
p+1,q

ws−γ
∣∣∣∣∣∣∣∣∣∣

(1− β, γ; 1), (ej , Ej ;∈j)1,n, (ej , Ej)n+1,p

(fj , Fj)1,m, (fj , Fj ;=j)m+1,q

 (29)

which readily yields

Y (s) =
aC1

(asα1 + bsα2 + c)
sβ1(α1−1) +

bC2

(asα1 + bsα2 + c)
sβ2(α2−1) +

F (s)

(asα1 + bsα2 + c)

+
λ

(asα1 + bsα2 + c)
s−β−1 H

m,n+1
p+1,q

ws−γ
∣∣∣∣∣∣∣∣∣∣

(1− β, γ; 1), (ej , Ej ;∈j)1,n, (ej , Ej)n+1,p

(fj , Fj)1,m, (fj , Fj ;=j)m+1,q

 . (30)

Using (19), (20) and (21) we obtain

Y (s) =L
[

1

b

∞∑
r=0

(
− a

b

)r[
aC1 x

(α2−α1)r+α2+β1(1−α1)−1Er+1
α2,(α2−α1)r+α2+β1(1−α1)

(
− c

b
xα2

)
+ bC2 x

(α2−α1)r+α2+β2(1−α2)−1Er+1
α2,(α2−α1)r+α2+β2(1−α2)

(
− c

b
xα2

)
+

(
Er+1
α2,(α2−α1)r+α2,− cb ;0+

f

)
(x)

+ λ

∞∑
j=0

(r + 1)j x
(α2−α1)r+α2(j+1)+β 1

j!

(
− c

b

)j

·Hm,n+1
p+1,q+1

wxγ
∣∣∣∣∣∣∣∣∣∣

(1− β, γ; 1), (ej , Ej ;∈j)1,n, (ej , Ej)n+1,p

(fj , Fj)1,m, (fj , Fj ;=j)m+1,q, (−α2j − (α2 − α1)r − α2 − β, γ; 1)


]]

(s) (31)

Finally, by applying the inverse of Laplace transform, we get the solution (28) asserted by the main theorem.

Corollary 3.2. If we reduce H-function occurring in the right hand side of (26) to the function

associated with Gaussian Model free energy([5, p.4126, 4127, Eq.(23),(28)] and [9, p.98, Eq.(1.4)]), we observe that the

following fractional differential equation:

a
(
Dα1,β1

0+ y
)

(x) + b
(
Dα2,β2

0+ y
)

(x) = λ
(
Fw;1,1;γ

0+;1,2;β 1
)

(x) + f(x) (32)

(
0 < α1 5 α2 < 1; 0 5 β1 5 1; 0 5 β2 5 1; <(β) > 0; w ∈ C \ {0}

)

with the initial condition (27) has its solution in the space L(0,∞) given by

y(x) =
1

b

∞∑
r=0

(−1)r
(
a

b

)r[
aC1x

(α2−α1)r+α2+β1(1−α1)−1Er+1
α2,(α2−α1)r+α2+β1(1−α1)

(
− c

b
xα2

)
+ bC2x

(α2−α1)r+α2+β2(1−α2)−1Er+1
α2,(α2−α1)r+α2+β2(1−α2)

(
− c

b
xα2

)
+ Er+1

α2,(α2−α1)r+α2,− cb ;0+
f(x)

− λ

4π
d
2

∞∑
j=0

(r + 1)j x
(α2−α1)r+α2(j+1)+β 1

j!

(
− c

b

)j

·H1,3
3,3

−xγ
∣∣∣∣∣∣∣∣∣∣

(1− β − γ, γ; 1), (0, 1; 2), (− 1
2
, 1; d)

(0, 1), (−1, 1; 1 + d), (−α2j − (α2 − α1)r − α2 − β − γ, γ; 1)


]

(33)

where C1, C2 and λ are arbitrary constants and the function f is suitably prescribed.
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Corollary 3.3. If we reduce H-function to the Polylogarithm function of order p [2, p.30] in the integral operator on the

right-hand side of (26), we obtain the following fractional differential equation:

a
(
Dα1,β1

0+ y
)

(x) + b
(
Dα2,β2

0+ y
)

(x) = λ
(
Fw;1,1;γ
0+;1,2;β 1

)
(x) + f(x) (34)

(
0 < α1 5 α2 < 1; 0 5 β1 5 1; 0 5 β2 5 1; <(β) > 0; w ∈ C \ {0}; p 5 q + 1

)

with the initial condition (27) has its solution in the space L(0,∞) given by

y(x) =
1

b

∞∑
r=0

(−1)r
(
a

b

)r[
aC1x

(α2−α1)r+α2+β1(1−α1)−1Er+1
α2,(α2−α1)r+α2+β1(1−α1)

(
− c

b
xα2

)
+ bC2x

(α2−α1)r+α2+β2(1−α2)−1Er+1
α2,(α2−α1)r+α2+β2(1−α2)

(
− c

b
xα2

)
+ Er+1

α2,(α2−α1)r+α2,− cb ;0+
f(x)

− λ
∞∑
j=0

(r + 1)j x
(α2−α1)r+α2(j+1)+β 1

j!

(
− c

b

)j

·H1,2
2,3

−wxγ
∣∣∣∣∣∣∣∣∣∣

(1− β, γ; 1), (1, 1; p+ 1)

(1, 1), (0, 1; p), (−α2j − (α2 − α1)r − β, γ; 1)


]

(35)

where C1, C2 and λ are arbitrary constants and the function f is suitably prescribed.

Known Special Cases of Our Main Findings

If we consider λ = 0 in the right hand side of (26), we get the result obtained by Tomovski et al. [17, p.803, theorem 5].

Again, if we take a=1, b=c=0 and reduce H-function to the Mittag-Leffler function(see[14] and [16]) in the integral operator

on the right hand side of (26), we get the result obtained by Srivastava and Tomovski [16, p.207,theorem 8]. Further, if we

take a=1, b=c=0 and reduce H-function to the H-function [6, p.10, Eq.(1.1.42)], we get the result obtained by Srivastava

et al.[15, p.115, theorem 2].

4. Conclusion and Observations

In this paper, we have given solution to a general family of fractional differential equation involving Hilfer derivative operator

and the fractional integral operator whose kernel is the H-function. Our main result generalizes the results obtained recently

by Srivastava et al.[15], Srivastava and Tomovski[16] and Tomovski et al.[17]. Further, corollaries of the main result have

been derived.
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