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Abstract: In this paper, we have presented new homotopy perturbation method (NHPM) to solve the system of nonlinear parabolic

equation in chemical sciences. The NHPM allows for the solution of the nonlinear parabolic equations to be calculated
in the form of a series with easily computable term by converting a non-linear differential equation into linear differential

equation. The obtained results are presented and only one iteration is required to obtain an approximate solution that is

accurate and efficient. Simple analytical expressions for the concentration of substrate and product have been derived for
all values of reaction parameters using the new homotopy perturbation method (NHPM). The analytical results are also

compared with numerical ones and a good agreement is obtained.
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1. Introduction

Many physical real life problems can be described by mathematical models that involves linear or nonlinear partial differen-

tial equations. Mathematical modeling involves physical observation, selection of the relevant physical variables, formulation

of the mathematical equations, analysis of the equations, simulation, and finally, validation of the model with experimen-

tal/numerical. The behavior of each model is governed by the input data for the particular problem: the boundary and initial

conditions, the coefficient functions of the differential equation, and the forcing function. This input data cause the solution

of the model problem to possess highly localized properties in space, in time, or in both. Thus, the investigation of the exact

or approximate solution helps us to understand the means of these mathematical models. In most case, it is complicated,

to find the exact and analytical solution of the nonlinear problems and even if it is obtained, the steps used for calculation

maybe too complicated. Numerical solutions or approximate analytical solutions become necessary for these problem. The

main goal of this paper is to apply the new homotopy perturbation method (NHPM) to obtain the approximate solution

of the system of nonlinear parabolic differential equations with nonlocal boundary conditions. Parabolic equations in one

dimension that involve non local boundary conditions have been studied by several authors [1-5].

Approximate analytical schemes such as Adomain decomposition method (ADM), Variational iteration method (VIM),

Homotopy perturbation method (HPM) and Homotopy analysis method (HAM) have been used to solve the any linear
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nonlinear problems. The solution obtained by using these methods shows the applicability, accuracy and efficiency in

solving a large class of nonlinear physics, engineering and various branches of mathematics. The Homotopy perturbation

method (HPM), was first proposed by He in 1998, was developed and improved by He [6-8]. The HPM is a novel and

effective method, and can solve various nonlinear equations of various branches in mathematics and physical or chemical

sciences. This method has been successfully applied to solve many types of problems [9-12].

The purpose of this communication is to derive the analytical expression of concentrations and current of four enzyme

systems based on new homotopy perturbation method. This is an effective tool for solve the system of nonlinear problems

in chemical sciences. These analytical results are helpful to understand the mechanism and physical effects of parameters

through the mathematical modeled problems. It is also useful to validate the numerical results and the experimental data.

2. Mathematical Formulation of the Problem And Analysis

The reaction of the enzyme in cylindrical electrode are [13]:

O2+2 catechol→ 2 O−quinone + 2 H2O (1)

O−quinone + 2 H+ +2 e− → catechol (2)

The electrode conversion is made in presences of stirred solution containing an excess of supporting electrolyte, in three

different states, oxy, met, deoxy [14]. Hence, the catechol/quinone conversion forms an amplification cycle within the enzyme

film.

[Cu(I)− Cu(I)]deoxy + O2 +2H2O
k1−→ [H2O− Cu(II)−O−O− Cu(II)−H2O]oxy (3)

[H2O− Cu(II)−O−O− Cu(II)−H2O]oxy
k2−→ [Cu(II)− Ca− Cu(II)]met +2H2O + 2H+ (4)

[Cu(II)− Ca− Cu(II)]met

k3−→ [Cu(I)− Cu(I)]deoxy + Q (5)

In these stages, the enzyme concentration is supposed as unbroken and that the enzyme reaction follows Michaelis-Menten

kinetics, in the reaction in the film is [15]

S + E1
k1⇔
k2

[E1S]
kcat−→ P + E2 (6)

where

kcat = k1cO2 and KM =
k1(k2 + k3)cO2

k2k3
(7)

are the rate constant and Michaelis-Menten constant. The mass balance for concentration of catechol cC can be written as

follows:

DC

r

d

dr

(
r
dcC
dr

)
− kcatcEcC
cC +KM

= 0 (8)

Where cC , cE and cQ is the concentration profile of catechol, enzyme and quinone respectively DC and DQare its diffusion

coefficients, and KM is the Michaelis constant. Then the equation of continuum for quinone is generally expressed in the

steady-state by [13]

DQ

r

d

dr

(
r
dcQ
dr

)
+
kcatcEcC
cC +KM

= 0 (9)

At the electrode surface (r0) and at the film surface (r1) the boundary conditions are given by [13]

r = r0 : cC = c∗C , cQ = 0

r = r1 : cC = c∗C , cQ = 0
(10)
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where c∗C is the bulk concentration of catechol scaled by the partition coefficient of the enzyme film. Relation between

the concentrations catechol and quinone is obtained by adding the equations (8) and (9) and integrating with boundary

condition (10):

cC(r)

c∗C
+
DQcQ(r)

DCc∗C
= 1 (11)

The current for steady-state condition can be given as [13]:

I

nF
= 2π L r0DQ

(
dcQ
dr

)
r=r0

(12)

2.1. Normalised Form

By defining the following dimensionless variables

C =
cC
c∗C
, Q =

cQ
c∗C
, R =

r

r0
(13)

where C and Q are the dimensionless concentration of the catechol and o-quinone. R is the dimensionless distance parameter.

The non-linear Equations (8-9) becomes in dimensionless form as follows:

d2C

dR2
+

1

R

dC

dR
− γEC

1 + αC
= 0 (14)

d 2Q

dR2
+

1

R

dQ

dR
+

γSC

1 + αC
= 0 (15)

where the dimensionless reaction-diffusion and saturation parameters [13] are

α =
c∗C
KM

, γE =
kcatcEr

2
0

DCKM
, γS =

kcatcEr
2
0

DQKM
,
DQ

DC
=
γE
γS

The boundary conditions reduces as follows:

C = 1 , Q = 0 when R = 1 (16)

C = 1 , Q = 0 when R =
r1
r0

(17)

The dimensionless current at the micro-cylinder electrode is

ψ = I/nFLDQ c
∗
C = 2π (dQ/dR)R=1 (18)

3. Analytical Solution of the Concentration Using NHPM

The NHPM yields solutions in convergent series form with easily computable terms, and in some cases, yields exact solutions

in one iteration. In the present paper, the system of BVPs will be solved by the NHPM which is introduced by Aminikhah and

Hemmatnezhad [16]. Using new approach of homotopy perturbation method, the dimensionless concentration is obtained

as follows (Appendix A):

C0(R) =

e
−
√

γE
1+α

R

(
e

√
γE
1+α

(
r1
r0

+1
)

+ e
2
√

γE
1+α

R

)
e

√
γE
1+α

r1
r0 + e

√
γE
1+α

(19)
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And by adding the equations (14) and (15) and integrating with boundary conditions (16-17), we will have.

Q (R) =
γE
γS

(1− C (R)) (20)

The Equations (19) and (20) satisfy the boundary conditions (16) and (17). These equations represent the new and simple

analytical expression of the concentration of catechol and o-quinone for all possible values of the parameters γE , γS , α and

R From Equations (19) and (20), we can obtain the dimensionless current, which is as follows:

ψ = I/nFLDQ c
∗
C = 2π

e√ γE
1+α

(
r1
r0

)
− e

√
γE
1+α

e

√
γE
1+α

r1
r0 + e

√
γE
1+α

 γE
γS

√
γE

1 + α
(21)

4. Numerical Simulation

The non-linear differential equations (14) and (15) are solved using numerical methods. The function pdex2 in Scilab software

which is the function of solving the boundary value problems for ordinary differential is used to solve this equation. Our

theoretical results for the concentration of cC using equation (19) and cEusing equation (20) are compared with simulation

results (Scilab program 4.1) in Figures 1-2. The Scilab program is also given in Appendix B. Satisfactory agreement is found

for all values of R.

5. Discussion

Figure 1 shows that the dimensionless concentration profile of catechol C(R) using Equation (19) for all various values of the

parameters γE andα. The plot was constructed for r1/r0 = 1.5 and 2.5. Thus it is concluded that there is a simultaneous

increase in the values of the concentration of catechol as well as in saturated parameter α for small values of γE. Also

the value of catechol concentration is uniform when γE is small and α is large. Figure 2 shows the concentration profile

of O-quinone in R space for various values of γS , γE and α calculated using Equation (20). The plot was constructed for

r1/r0 = 1.5. From the Figure 2 (a-c), we can observed that the dimensionless concentration of catechol should vary between

0 and 1. Because catechol is converted to o−quinone, the o− quinone concentration should be the inverse of catechol. From

Figure 2 it is observed that the concentration of quinone increases steadily and attain the maximum value then conclude

decreases slowly. The concentration is maximum when R = 1.25 for all values of γS , γE and α whereas the concentration of

catechol is minimum at R = 1.25. The dimensionless current ψ versus r1/r0 using Equation (21) is plotted in Figure 3. The

value of current ψ increases when thickness of the film r1/r0 and dimensionless reaction-diffusion parameter γS is increases

whereas the value of current ψ increases for the decreasing values of γE and α and current reaches the steady state value

when r1/r0 ≥ 5.
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Figure 1(a-d): Dimensionless steady-state concentration profile of catechol C (R) plotted from Equation (19). Figure 1 (a-b)

for different values of parameters γE and α when r1/r0 = 1.5. Figure 1(c-d) for different values of parameters γE and α

when r1/r0 = 2.5. Key to the graph: ( ) represents the Equation (19) and (....) represents the numerical results.

Figure 2(a-c) Dimensionless steady-state concentration profile of O-quinone Q (R) plotted from Equation (20) for different

values of parameters γE , α and γS when r1/r0 = 1.5. Key to the graph: ( ) represents the Equation (20) and (....)
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represents the numerical results.

Figure 3. Plot of dimensionless current ψ versus r1/r0 for various values of parameters γE , α and γS . Current is calculated

in the Equation (21).

6. Conclusions

The system of nonlinear time independent ordinary differential equation has been solved analytically using new Homotopy

perturbation method. In this paper we have presented approximate analytical expression for the concentration of catechol

and o- quinone. The primary result of this work is simple approximate calculation of concentration of catechol, o-quinone

and current for all values of parameters. Analytical results are compared with simulation results and satisfactory agreement

is noted.

Appendix A

Solution of the Equation (14) using new approach of homotopy perturbation method

In this appendix, we indicate how Equation (19) is derived. Furthermore, a homotopy was constructed to determine the

solution of Equation (14) us follows:

(1− p)
[
d2C

dR2
− γEC

1 + αC (R = 0)

]
+ p

[
(1 + αC)

(
d2C

dR2
+

1

R

dC

dR

)
− γEC

]
= 0 (A1)

The boundary conditions are as follows:

R = 0, , C = 1 (A2)

R =
r1
r0
, C = 1 (A3)

The approximate solutions of (A1) is

C = C0 + pC1 + p2C2 + p3C3 + . . . (A4)
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Substituting Equation (A4) in Equation (A1) and comparing the coefficients of like powers of p

p0 :
d2C0

dR2
− γEC0

1 + α
= 0 (A5)

The initial approximations are as follows:

R = 1, C0 = 1 (A6)

R =
r1
r0
, C0 = 1 (A7)

Solving the Equation (A5) using the boundary conditions (A6) and (A7), we can find the following results

C0 (R) =

e
−
√

γE
1+α

R

(
e

√
γE
1+α

(
r1
r0

+1
)

+ e
2
√

γE
1+α

R

)
e

√
γE
1+α

r1
r0 + e

√
γE
1+α

(A8)

According to the HPM, we can conclude that

C(R) = lim
p→1

C(R) ∼= C0. (A9)

Appendix B

Scilab program to find the numerical solution of the Equations (19-20)

function pdex2

m = 0;

x = linspace(1,2);

t=linspace(0,1000000);

sol = pdepe(m,@pdex2pde,@pdex2ic,@pdex2bc,x,t);

u1 = sol(:,:,1);

u2 = sol(:,:,2);

%——————————————————————

figure

plot(x,u1(end,:))

title(’u1(x,t)’)

xlabel(’Distance x’)

ylabel(’u1(x,1)’)

%——————————————————————

%figure

%plot(x,u2(end,:))

title(’u2(x,t)’)

xlabel(’Distance x’)

ylabel(’u2(x,2)’)

%——————————————————————

function [c,f,s] = pdex2pde(x,t,u,DuDx)
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c = [1; 1];

f = [1; 1].*DuDx;

b=0.5;

g=1;

l=1;

F= (- g*u(1))*((1+u(1)*b)∧(-1));

F1=(+ l*u(1))*((1+u(1)*b)∧(-1));

s=[F; F1];

% —————————————————————–

function u0 = pdex2ic(x);

u0 = [1; 0];

% —————————————————————–

function [pl,ql,pr,qr]=pdex2bc(xl,ul,xr,ur,t)

pl = [ul(1)-1; ul(2)];

ql = [0; 0];

pr = [ur(1)-1; ur(2)];

qr = [0; 0];

Appendix C

Symbol Definitions Units

cC Concentration profile of catechol mole/cm3

cE Concentration profile of enzyme mole/cm3

cQ Concentration profile of quinine mole/cm3

DC Diffusion coefficient of catechol cm2/s

DQ Diffusion coefficient of quinine cm2/s

KM Michaelis Menten constant mole/cm3

Kcat Catalytic rate constant sec−1

c∗C Bulk concentration of C mole/cm3

r Radius of the cylinder Cm

I Current Ampere

r0 Electrode radius Cm

r1 Film radius Cm

r1/r0 Dimensionless parameter for film thickness None

χr0 Dimensionless parameter for enzyme kinetic None

j Dimensionless sensor response None

ψ Dimensionless current None

C Dimensionless concentration of catechol None

Q Dimensionless concentration of quinine None

R Dimensionless distance None

γE Dimensionless reaction diffusion parameter None

γS Dimensionless reaction diffusion parameter None

α Dimensionless saturation parameter None

L Length of the electrode Cm

F Faraday constant C mole−1

n Number of electrons None

Table 1. Nomenclature
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