International Journal of Mathematics And its Applications

Odd Sum Labeling of Tree Related Graphs

Research Article

R.Gopi ${ }^{1 *}$

1 PG and Research Department of Mathematics, Srimad Andavan Arts and Science College(Autonomous), Tamil Nadu, India.

Abstract

An injective function $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ is an odd sum labeling if the induced edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all $u v \in E(G)$ is a bijective and $f^{*}(E(G))=\{1,3,5, \ldots, 2 q-1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper we investigate odd sum labeling of some more graphs.

MSC: 05C78.

Keywords: Odd sum Labeling, Odd Sum Graph, Twig graph, H-graph.
(C) JS Publication.

1. Introduction

Through out this paper, by a graph we mean a finite undirected simple graph. Let $G(V, E)$ be a graph with p vertices q edges. For notation and terminology, we follow [7]. For detailed survey of graph labeling we refer to Gallian [4]. In [9], the concept of mean labeling was introduced and further studied in [5, 6]. An injective function $f: V(G) \rightarrow$ $\{0,1,2, \ldots, q\}$ is said to be a mean labeling if the induced edge labeling f^{*} defined by

$$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2}, & \text { if } \mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}) \text { is even } \\ \frac{f(u)+f(v)+1}{2}, & \text { if } \mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}) \text { is odd }\end{cases}
$$

is injective and $f^{*}(E(G))=\{0,1,2 \ldots, q\}$.
A graph G is said to be an odd mean graph if there exists an injective function $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ such that the induced $\operatorname{map} f^{*}(E(G))=\{1,3,5, \ldots, 2 q-1\}$ defined by

$$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2}, & \text { if } \mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}) \text { is even } \\ \frac{f(u)+f(v)+1}{2}, & \text { if } \mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}) \text { is odd }\end{cases}
$$

is a bijection[8].
In [1], the concept of odd sum labeling was introduced and studied $[2,3]$. An injective function $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ is an odd sum labeling if the induced edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all $u v \in E(G)$ is a bijective and $f^{*}(E(G))=\{1,3,5, \ldots, 2 q-1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper we investigate odd sum labeling of tree related graphs.

[^0]
2. Main Results

Definition 2.1. The H Graph of the path P_{n}, denoted by H_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n+1}{2}}$ and $v_{\frac{n}{2}}$ if n is even.

Theorem 2.2. The graph $H_{n}(n \geq 3)$ is a odd sum graph.
Proof. Let $\left\{v_{i}, v_{i}^{\prime}, 1 \leq i \leq n\right\}$ be the vertices and $\left\{e_{i}, e_{i}^{\prime}, e, 1 \leq i \leq n-1\right\}$ be edges which denoted as in Figure 1. First we label the vertices as follows.

Define $f: V \rightarrow\{0,1,2, \ldots, q\}$ by
For $1 \leq i \leq n-1$

$$
\begin{aligned}
& f\left(v_{i}\right)=i-1 \\
& f\left(v_{i}^{\prime}\right)=n+i-1
\end{aligned}
$$

Then the induced edge labels are:
For $1 \leq i \leq n-1$

$$
\begin{aligned}
f^{*}\left(e_{i}\right) & =2 i-1 \\
f^{*}\left(e_{i}^{\prime}\right) & =2 n+2 i-1 \\
f^{*}(e) & =2 n-1
\end{aligned}
$$

Therefore $f^{*}(E)=\{1,3,5, \ldots, 2 q-1\}$. So f is a odd sum labeling and hence, the graph $H_{n}(n \geq 3)$ is a odd sum graph. Odd sum graph H_{3} is shown in Figure 2.

Figure 1. Ordinary labeling of H_{n}

Figure 2. Odd sum labeling of H_{3}

Theorem 2.3. The graph $H_{m} \Theta n K_{1}(n \geq 2, m \geq 3)$ is a odd sum graph.

Proof. Let $\left\{v_{i j}, v_{i j}^{\prime}, 1 \leq i \leq m, 1 \leq j \leq n, v_{i}, v_{i}^{\prime}, 1 \leq i \leq m\right\} \quad$ be the vertices and $\quad\left\{e_{i j}, e_{i j}^{\prime}, 1 \leq i \leq m-1,1 \leq j \leq n\right.$, $\left.e, e_{i}, e_{i}^{\prime}, 1 \leq i \leq m-1\right\}$ be the edges which are denoted as in Figure 3. First we label the vertices as follows. Define $f: V \rightarrow\{0,1,2, \ldots ., q\}$ by

For $1 \leq i \leq m, 1 \leq j \leq n$

$$
\begin{aligned}
& f\left(v_{i j}\right)=\left\{\begin{array}{l}
2(j-1)+(n+1)(i-1) \quad i \text { is odd } \\
2 j+1+(n+1)(i-2) \quad i \text { is even }
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
(n+1)(i-1)+1 \quad i \text { is odd } \\
(n+1)(i-2)+2 n i \text { is even }
\end{array}\right. \\
& f\left(v_{i j}^{\prime}\right)= \begin{cases}m(n+1)-n+2 j+(n+1)(i-1) & i \text { is odd } \\
m(n+1)+n+2 j-1+(n+1)(i-2) & i \text { is even }\end{cases} \\
& f\left(v_{i}^{\prime}\right)=\left\{\begin{array}{l}
m(n+1)+n-1+(n+1)(i-1) \quad i \text { is odd } \\
m(n+1)+n+2+(n+1)(i-2) \\
i \text { is even }
\end{array}\right.
\end{aligned}
$$

Then the induced edge labels are:
For $1 \leq i \leq m-1,1 \leq j \leq n$

$$
\begin{aligned}
f^{*}\left(e_{i j}\right) & =2 j-1+2(n+1)(i-1) \\
f^{*}\left(e_{i}\right) & =2 n+1+2(n+1)(i-1) \\
f^{*}(e) & =2 m(n+1)-1 \\
f^{*}\left(e_{i j}^{\prime}\right) & =2 m(n+1)+2 j-1+2(n+1)(i-1) \\
f^{*}\left(e_{i}^{\prime}\right) & =2 m(n+1)+2 n+1+2(n+1)(i-1)
\end{aligned}
$$

Therefore $f^{*}(E)=\{1,3,5, \ldots, 2 q-1\}$. So f is a odd sum labeling and hence, the graph $H_{m} \Theta n K_{1}(n \geq 2, m \geq 3)$ is a odd sum graph. Odd sum of the graph $H_{6} \Theta 4 K_{1}$ is shown in Figure 4.

Figure 3. Ordinary labeling of $H_{m} \Theta n K_{1}$

Figure 4. Odd sum labeling of $H_{6} \Theta 4 K_{1}$

Definition 2.4. A twig is a tree obtained from a path by attaching exactly two pendent edges to each internal vertex of the path.

Theorem 2.5. The twig graph $T W(n)(n \geq 4)$ is a odd sum graph.

Proof. Let $\left\{u_{i}, 1 \leq i \leq n, v_{i}, v_{i}^{\prime}, 1 \leq i \leq n-2\right\}$ be the vertices and $\left\{a_{i}, a_{i}^{\prime}, \quad 1 \leq i \leq n-2 ; e_{i}, 1 \leq i \leq n-1\right\}$ be the edges which are as in Figure 5. First we label the vertices as follows

Define $f: V \rightarrow\{0,1,2, \ldots, q\}$ by
For $1 \leq i \leq n$

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}3(i-1) & i \text { is odd } \\
3 i-5 & i \text { is even }\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}3 i+1 & i \text { is odd } \\
3 i-1 & \text { i is even }\end{cases} \\
& f\left(v_{i}^{\prime}\right)= \begin{cases}3 i-1 & i \text { is odd } \\
3(i-1) & i \text { is even }\end{cases}
\end{aligned}
$$

Then the induced edge labels are:
For $1 \leq i \leq n-1 \quad f^{*}\left(e_{i}\right)=6 i-5$
For $1 \leq i \leq n-2 \quad f^{*}\left(a_{i}\right)=6 i-3, f^{*}\left(a_{i}^{\prime}\right)=6 i-1$.
Therefore $f^{*}(E)=\{1,3,5, \ldots, 2 q-1\}$. So f is a odd sum labeling and hence, the graph $T W(n)(n \geq 4)$ is a odd sum graph. Odd sum of the graph $T W(5)$ is shown in Figure 6.

Figure 5. Ordinary labeling of TW(n).

Figure 6. Odd sum labeling of TW(5).

Definition 2.6. Let A^{\prime} be the collection of paths P_{n}^{i} where n is odd and $P_{n}^{i}=u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$, $(1 \leq i \leq m)$. Let G be the graph obtained from A with $V(G)=\bigcup_{i=1}^{n} V\left(P_{n}^{i}\right)$ and $E(G)=\bigcup_{i=1}^{n} E\left(P_{n}^{i}\right) \bigcup\left\{\frac{u_{n+1}^{i}}{2} \quad \frac{u_{n+1}^{i+1}}{2} \quad: 1 \leq i \leq m-1\right.$ the graph G denoted by $P(m, n)$.

Theorem 2.7. The graph $P(m, n)(m \geq 2 \& n \geq 3)$ is a odd sum graph.
Proof. Let $\left\{u_{i j}, 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the vertices and $\left\{e_{i j}, 1 \leq i \leq m, 1 \leq i \leq n-1 e_{i}, 1 \leq i \leq m-1\right\}$ be the edges which are denoted as in Figure 7. First we label the vertices as follows
Define $f: V \rightarrow\{0,1,2, \ldots, q\}$
For $1 \leq i \leq m ; 1 \leq i \leq n$

$$
f\left(u_{i j}\right)=m(j-1)+(i-1)
$$

Then the induced edge labels are:

For $1 \leq i \leq m ; 1 \leq j \leq n-1$

$$
f^{*}\left(e_{i j}\right)=2 m(j-1)+2 i-1
$$

Therefore $f^{*}(E)=\{1,3,5, \ldots, 2 q-1\}$. So f is a odd sum labeling and hence, the graph $P(m, n)(m \geq 2 \& n \geq 3)$ is a odd sum graph. Odd sum of the graph $P(4,2)$ is shown in Figure 8.

Figure 7. Ordinary labeling of $\mathbf{P}(\mathbf{m}, \mathbf{n})$.

Figure 8. Odd sum labeling of $\mathrm{P}(4,2)$.

Theorem 2.8. The graph $\left(P_{m}, S_{n}\right)(m \geq 4 \& n \geq 2)$ is a odd sum graph.

Proof. Let $\left\{u_{i}, u_{i}^{\prime}, 1 \leq i \leq m, u_{i j}, 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the vertices and $\left\{a_{i}, a_{i}^{\prime}, 1 \leq i \leq m-1, e_{i j}, 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the edges which are denoted as in Figure 9. First we label the vertices as follows

Define $f: V \rightarrow\{0,1,2, \ldots, q\}$ by
For $1 \leq i \leq m ; 1 \leq j \leq n$

$$
\begin{aligned}
& f\left(u_{i j}\right)=\left\{\begin{array}{cc}
2(j-1)+(n+2)(i-1) & j \text { is odd } \\
2 j+3+(n+2)(i-2) & j \text { is even }
\end{array}\right. \\
& f\left(u_{i}\right)= \begin{cases}2 n+(n+2)(i-1) & i \text { is odd } \\
(n+2)(i-2)+3 & i \text { is even }\end{cases} \\
& f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{cc}
(n+2)(i-1)+1 & i \text { is odd } \\
2 n+2+(n+2)(i-2) & i \text { is even }
\end{array}\right.
\end{aligned}
$$

Then the induced edge labels are:
For $1 \leq i \leq n ; 1 \leq j \leq m$

$$
f^{*}\left(e_{i j}\right)=\left\{\begin{array}{cl}
2(n+2)(i-1)+2 j-1 & i \text { is odd } \\
2(n+2)(i-2)+2 n+2 j+5 & \text { i is even }
\end{array}\right.
$$

For $1 \leq i \leq m-1 \quad f^{*}\left(a_{i}\right)=2(n+2)(i-1)+2 n+3$

$$
f^{*}\left(a_{i}^{\prime}\right)=\left\{\begin{array}{cl}
(2 n+3) & i \text { is odd } \\
2(n+2)(i-1)+2 n+5 & \text { i is even }
\end{array}\right.
$$

Therefore $f^{*}(E)=\{1,3,5, \ldots, 2 q-1\}$. So f is a odd sum labeling and hence, the graph $\left(P_{m}, S_{n}\right)$ is a odd sum graph. Odd sum of the graph $\left(P_{4}, S_{3}\right)$ is shown in Figure 10.

Figure 9. Ordinary labeling of $\left(P_{m}, S_{n}\right)$.

Figure 10. Odd sum labeling of $\left(P_{4}, S_{3}\right)$.

References

[1] S.Arockiaraj and P.Mahalakshmi, On odd sum graphs, International Journal of Mathematical Combinatorics, 4(2013), 58-77.
[2] S.Arockiaraj, P.Mahalakshmi and P.Namasivayam, Odd sum labeling of some subdivision graphs, Kragujevac Journal of Mathematics, 38(1)(2014), 203222.
[3] S.Arockiaraj, P.Mahalakshmi and P.Namasivayam, Odd sum labeling of graphs obtained by duplicating any edge of some graphs, Electronic Journal of Graph Theory and Applications, 3(2)(2015), 197-215.
[4] J.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17(2014), \#DS6.
[5] B.Gayathri and R.Gopi, Necessary Condition for mean labeling, International Journal of Engineering Science, Advanced Computing and Bio-Technology, 4(3)(2013), 43-52.
[6] B.Gayathri and R.Gopi, Cycle related mean graphs, Elixir International Journal of Applied Sciences, 71(2014), 2511625124.
[7] F.Harary, Graph Theory, Narosa Publication House Reading, New Delhi, (1998).
[8] K.Manickam and M.Marudai, Odd mean labeling of graphs, Bulletin of Pure and Applied Sciences, 25E(1)(2006), 149-153.
[9] S.Somasundaram and R.Ponraj, Mean labeling of graphs, National Academy Science Letter, 26(2003), 210-213.

[^0]: * E-mail: drrgmaths@gmail.com

