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Abstract: An injective function f : V (G) → {0, 1, 2, ..., q} is an odd sum labeling if the induced edge labeling f∗ defined by

f∗(uv) = f(u) + f(v) for all uv ∈ E(G) is a bijective and f∗(E(G)) = {1, 3, 5, ..., 2q − 1}. A graph is said to be an odd

sum graph if it admits an odd sum labeling. In this paper we investigate odd sum labeling of some more graphs.
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1. Introduction

Through out this paper, by a graph we mean a finite undirected simple graph. Let G(V, E) be a graph with p vertices q

edges. For notation and terminology, we follow [7]. For detailed survey of graph labeling we refer to Gallian [4].

In [9], the concept of mean labeling was introduced and further studied in [5, 6]. An injective function f : V (G) →

{0, 1, 2, ..., q} is said to be a mean labeling if the induced edge labeling f∗ defined by

f∗(uv) =


f(u)+f(v)

2
, if f(u)+f(v) is even

f(u)+f(v)+1
2

, if f(u)+f(v) is odd

is injective and f∗(E(G)) = {0, 1, 2..., q}.

A graph G is said to be an odd mean graph if there exists an injective function f : V (G)→ {0, 1, 2, ..., 2q− 1} such that the

induced map f∗(E(G)) = {1, 3, 5, ..., 2q − 1} defined by

f∗(uv) =


f(u)+f(v)

2
, if f(u)+f(v) is even

f(u)+f(v)+1
2

, if f(u)+f(v) is odd

is a bijection[8].

In [1], the concept of odd sum labeling was introduced and studied [2,3]. An injective function f : V (G)→ {0, 1, 2, ..., q} is

an odd sum labeling if the induced edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all uv ∈ E(G) is a bijective and

f∗(E(G)) = {1, 3, 5, ..., 2q − 1}. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper we

investigate odd sum labeling of tree related graphs.
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2. Main Results

Definition 2.1. The H Graph of the path Pn, denoted by Hn is the graph obtained from two copies of Pn with vertices

v1, v2, . . . , vn and u1, u2, . . . , un by joining the vertices vn+1
2

and un+1
2

if n is odd and the vertices vn+1
2

and vn
2
if n is even.

Theorem 2.2. The graph Hn(n ≥ 3) is a odd sum graph.

Proof. Let {vi, v′i, 1 ≤ i ≤ n} be the vertices and {ei, e′i, e, 1 ≤ i ≤ n− 1} be edges which denoted as in Figure 1. First

we label the vertices as follows.

Define f : V → {0, 1, 2, ..., q} by

For 1 ≤ i ≤ n− 1

f(vi) = i− 1

f(v′i) = n + i− 1

Then the induced edge labels are:

For 1 ≤ i ≤ n− 1

f∗(ei) = 2i− 1

f∗(e′i) = 2n + 2i− 1

f∗(e) = 2n− 1

Therefore f∗(E) = {1, 3, 5, ..., 2q− 1}. So f is a odd sum labeling and hence, the graph Hn(n ≥ 3) is a odd sum graph. Odd

sum graph H3 is shown in Figure 2.

Figure 1. Ordinary labeling of Hn Figure 2. Odd sum labeling of H3

Theorem 2.3. The graph HmΘnK1(n ≥ 2,m ≥ 3) is a odd sum graph.

Proof. Let
{
vij , v

′
ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, vi, v

′
i, 1 ≤ i ≤ m

}
be the vertices and

{
eij , e

′
ij , 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n ,

e, ei, e
′
i, 1 ≤ i ≤ m− 1} be the edges which are denoted as in Figure 3. First we label the vertices as follows. Define

f : V → {0, 1, 2, ....., q} by
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For 1 ≤ i ≤ m , 1 ≤ j ≤ n

f(vij) =

 2(j − 1) + (n + 1)(i− 1) i is odd

2j + 1 + (n + 1)(i− 2) i is even

f(vi) =

 (n + 1)(i− 1) + 1 i is odd

(n + 1)(i− 2) + 2n i is even

f(v′ij) =

 m(n + 1)− n + 2j + (n + 1)(i− 1) i is odd

m(n + 1) + n + 2j − 1 + (n + 1)(i− 2) i is even

f(v′i) =

 m(n + 1) + n− 1 + (n + 1)(i− 1) i is odd

m(n + 1) + n + 2 + (n + 1)(i− 2) i is even

Then the induced edge labels are:

For 1 ≤ i ≤ m− 1 , 1 ≤ j ≤ n

f∗(eij) = 2j − 1 + 2(n + 1)(i− 1)

f∗(ei) = 2n + 1 + 2(n + 1)(i− 1)

f∗(e) = 2m(n + 1)− 1

f∗(e′ij) = 2m(n + 1) + 2j − 1 + 2(n + 1)(i− 1)

f∗(e′i) = 2m(n + 1) + 2n + 1 + 2(n + 1)(i− 1)

Therefore f∗(E) = {1, 3, 5, ...., 2q − 1}. So f is a odd sum labeling and hence, the graph HmΘnK1(n ≥ 2,m ≥ 3) is a odd

sum graph. Odd sum of the graph H6Θ4K1 is shown in Figure 4.

Figure 3. Ordinary labeling of HmΘnK1 Figure 4. Odd sum labeling of H6Θ4K1
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Definition 2.4. A twig is a tree obtained from a path by attaching exactly two pendent edges to each internal vertex of the

path.

Theorem 2.5. The twig graph TW (n)(n ≥ 4) is a odd sum graph.

Proof. Let {ui, 1 ≤ i ≤ n, vi, v
′
i, 1 ≤ i ≤ n− 2} be the vertices and {ai, a

′
i, 1 ≤ i ≤ n− 2; ei, 1 ≤ i ≤ n− 1} be the edges

which are as in Figure 5. First we label the vertices as follows

Define f : V → {0, 1, 2, ..., q} by

For 1 ≤ i ≤ n

f(ui) =

 3(i− 1) i is odd

3i− 5 i is even

f(vi) =

 3i + 1 i is odd

3i− 1 i is even

f(v′i) =

 3i− 1 i is odd

3(i− 1) i is even

Then the induced edge labels are:

For 1 ≤ i ≤ n− 1 f∗(ei) = 6i− 5

For 1 ≤ i ≤ n− 2 f∗(ai) = 6i− 3, f∗(a′i) = 6i− 1.

Therefore f∗(E) = {1, 3, 5, ..., 2q − 1}. So f is a odd sum labeling and hence, the graph TW (n)(n ≥ 4) is a odd sum graph.

Odd sum of the graph TW (5) is shown in Figure 6.

Figure 5. Ordinary labeling of TW(n). Figure 6. Odd sum labeling of TW(5).

Definition 2.6. Let A′ be the collection of paths P i
n where n is odd and P i

n = u′1, u
′
2, ..., u

′
n, (1 ≤ i ≤ m). Let G be the

graph obtained from A with V (G) =
n⋃

i=1

V (P i
n) and E(G) =

n⋃
i=1

E(P i
n)

⋃{ui
n+1

2

ui+1
n+1

2
: 1 ≤ i ≤ m− 1 the graph G

denoted by P (m,n).

Theorem 2.7. The graph P (m,n) (m ≥ 2 &n ≥ 3) is a odd sum graph.

Proof. Let {uij , 1 ≤ i ≤ m, 1 ≤ j ≤ n} be the vertices and {eij , 1 ≤ i ≤ m, 1 ≤ i ≤ n − 1ei, 1 ≤ i ≤ m − 1} be the

edges which are denoted as in Figure 7. First we label the vertices as follows

Define f : V → {0, 1, 2, ..., q}

For 1 ≤ i ≤ m; 1 ≤ i ≤ n

f(uij) = m(j − 1) + (i− 1)

Then the induced edge labels are:
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For 1 ≤ i ≤ m; 1 ≤ j ≤ n− 1

f∗(eij) = 2m(j − 1) + 2i− 1

Therefore f∗(E) = {1, 3, 5, ..., 2q − 1}. So f is a odd sum labeling and hence, the graph P (m,n) (m ≥ 2 & n ≥ 3) is a odd

sum graph. Odd sum of the graph P (4, 2) is shown in Figure 8.

Figure 7. Ordinary labeling of P(m, n). Figure 8. Odd sum labeling of P(4,2).

Theorem 2.8. The graph (Pm, Sn) (m ≥ 4&n ≥ 2) is a odd sum graph.

Proof. Let {ui, u
′
i, 1 ≤ i ≤ m,uij , 1 ≤ i ≤ m, 1 ≤ j ≤ n} be the vertices and {ai, a

′
i, 1 ≤ i ≤ m− 1, eij , 1 ≤ i ≤ m, 1 ≤ j ≤ n}

be the edges which are denoted as in Figure 9. First we label the vertices as follows

Define f : V → {0, 1, 2, ..., q} by

For 1 ≤ i ≤ m; 1 ≤ j ≤ n

f(uij) =

 2(j − 1) + (n + 2)(i− 1) j is odd

2j + 3 + (n + 2)(i− 2) j is even

f(ui) =

 2n + (n + 2)(i− 1) i is odd

(n + 2)(i− 2) + 3 i is even

f(u′i) =

 (n + 2)(i− 1) + 1 i is odd

2n + 2 + (n + 2)(i− 2) i is even

Then the induced edge labels are:

For 1 ≤ i ≤ n; 1 ≤ j ≤ m

f∗(eij) =

 2(n + 2)(i− 1) + 2j − 1 i is odd

2(n + 2)(i− 2) + 2n + 2j + 5 i is even

For 1 ≤ i ≤ m− 1 f∗(ai) = 2(n + 2)(i− 1) + 2n + 3

f∗(a′i) =

 (2n + 3) i is odd

2(n + 2)(i− 1) + 2n + 5 i is even

Therefore f∗(E) = {1, 3, 5, ..., 2q − 1}. So f is a odd sum labeling and hence, the graph (Pm, Sn) is a odd sum graph. Odd

sum of the graph (P4, S3)is shown in Figure 10.
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Figure 9. Ordinary labeling of (Pm, Sn). Figure 10. Odd sum labeling of (P4, S3).
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