

International Journal of Mathematics And its Applications

Odd Sum Labeling of Tree Related Graphs

Research Article

R.Gopi^{1*}

1 PG and Research Department of Mathematics, Srimad Andavan Arts and Science College(Autonomous), Tamil Nadu, India.

Abstract: An injective function $f : V(G) \to \{0, 1, 2, ..., q\}$ is an odd sum labeling if the induced edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all $uv \in E(G)$ is a bijective and $f^*(E(G)) = \{1, 3, 5, ..., 2q - 1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper we investigate odd sum labeling of some more graphs.

MSC: 05C78.

 ${\bf Keywords:} \ {\rm Odd} \ {\rm sum} \ {\rm Labeling}, \ {\rm Odd} \ {\rm Sum} \ {\rm Graph}, \ {\rm Twig} \ {\rm graph}, \ {\rm H}\mbox{-}{\rm graph}.$

© JS Publication.

1. Introduction

Through out this paper, by a graph we mean a finite undirected simple graph. Let G(V, E) be a graph with p vertices q edges. For notation and terminology, we follow [7]. For detailed survey of graph labeling we refer to Gallian [4]. In [9], the concept of mean labeling was introduced and further studied in [5, 6]. An injective function $f: V(G) \rightarrow \{0, 1, 2, ..., q\}$ is said to be a mean labeling if the induced edge labeling f^* defined by

$$f^*(uv) = \begin{cases} \frac{f(u)+f(v)}{2}, & \text{if } f(u)+f(v) \text{ is even} \\ \frac{f(u)+f(v)+1}{2}, & \text{if } f(u)+f(v) \text{ is odd} \end{cases}$$

is injective and $f^*(E(G)) = \{0, 1, 2..., q\}.$

A graph G is said to be an odd mean graph if there exists an injective function $f: V(G) \rightarrow \{0, 1, 2, ..., 2q - 1\}$ such that the induced map $f^*(E(G)) = \{1, 3, 5, ..., 2q - 1\}$ defined by

$$f^*(uv) = \begin{cases} \frac{f(u)+f(v)}{2}, & \text{if } f(u)+f(v) \text{ is even} \\ \frac{f(u)+f(v)+1}{2}, & \text{if } f(u)+f(v) \text{ is odd} \end{cases}$$

is a bijection[8].

In [1], the concept of odd sum labeling was introduced and studied [2,3]. An injective function $f: V(G) \to \{0, 1, 2, ..., q\}$ is an odd sum labeling if the induced edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all $uv \in E(G)$ is a bijective and $f^*(E(G)) = \{1, 3, 5, ..., 2q - 1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper we investigate odd sum labeling of tree related graphs.

^{*} E-mail: drrgmaths@gmail.com

2. Main Results

Definition 2.1. The H Graph of the path P_n , denoted by H_n is the graph obtained from two copies of P_n with vertices v_1, v_2, \ldots, v_n and u_1, u_2, \ldots, u_n by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n+1}{2}}$ and $v_{\frac{n}{2}}$ if n is even.

Theorem 2.2. The graph $H_n(n \ge 3)$ is a odd sum graph.

Proof. Let $\{v_i, v'_i, 1 \le i \le n\}$ be the vertices and $\{e_i, e'_i, e, 1 \le i \le n-1\}$ be edges which denoted as in Figure 1. First we label the vertices as follows.

Define $f: V \to \{0, 1, 2, ..., q\}$ by For $1 \le i \le n - 1$

$$f(v_i) = i - 1$$
$$f(v'_i) = n + i - 1$$

Then the induced edge labels are:

For $1 \le i \le n-1$

$$f^*(e_i) = 2i - 1$$

 $f^*(e'_i) = 2n + 2i - 1$
 $f^*(e) = 2n - 1$

Therefore $f^*(E) = \{1, 3, 5, ..., 2q - 1\}$. So f is a odd sum labeling and hence, the graph $H_n(n \ge 3)$ is a odd sum graph. Odd sum graph H_3 is shown in Figure 2.

1 7 1 5 4 3 9 2 5

3

Figure 1. Ordinary labeling of H_n

Figure 2. Odd sum labeling of H_3

0

Theorem 2.3. The graph $H_m\Theta nK_1 (n \ge 2, m \ge 3)$ is a odd sum graph.

Proof. Let $\{v_{ij}, v'_{ij}, 1 \le i \le m, 1 \le j \le n, v_i, v'_i, 1 \le i \le m\}$ be the vertices and $\{e_{ij}, e'_{ij}, 1 \le i \le m-1, 1 \le j \le n, e, e_i, e'_i, 1 \le i \le m-1\}$ be the edges which are denoted as in Figure 3. First we label the vertices as follows. Define $f: V \to \{0, 1, 2, ..., q\}$ by

For $1 \leq i \leq m$, $1 \leq j \leq n$

$$\begin{split} f(v_{ij}) &= \begin{cases} 2(j-1) + (n+1)(i-1) & i \text{ is odd} \\ 2j+1 + (n+1)(i-2) & i \text{ is even} \end{cases} \\ f(v_i) &= \begin{cases} (n+1)(i-1) + 1 & i \text{ is odd} \\ (n+1)(i-2) + 2n & i \text{ is even} \end{cases} \\ f(v'_{ij}) &= \begin{cases} m(n+1) - n + 2j + (n+1)(i-1) & i \text{ is odd} \\ m(n+1) + n + 2j - 1 + (n+1)(i-2) & i \text{ is even} \end{cases} \\ f(v'_i) &= \begin{cases} m(n+1) + n - 1 + (n+1)(i-1) & i \text{ is odd} \\ m(n+1) + n + 2 + (n+1)(i-2) & i \text{ is even} \end{cases} \end{split}$$

Then the induced edge labels are:

For $1 \leq i \leq m-1$, $\ 1 \leq j \leq n$

$$f^*(e_{ij}) = 2j - 1 + 2(n+1)(i-1)$$

$$f^*(e_i) = 2n + 1 + 2(n+1)(i-1)$$

$$f^*(e) = 2m(n+1) - 1$$

$$f^*(e'_{ij}) = 2m(n+1) + 2j - 1 + 2(n+1)(i-1)$$

$$f^*(e'_i) = 2m(n+1) + 2n + 1 + 2(n+1)(i-1)$$

Therefore $f^*(E) = \{1, 3, 5, ..., 2q - 1\}$. So f is a odd sum labeling and hence, the graph $H_m \Theta n K_1 (n \ge 2, m \ge 3)$ is a odd sum graph. Odd sum of the graph $H_6 \Theta 4 K_1$ is shown in Figure 4.

Figure 3. Ordinary labeling of $H_m \Theta nK_1$

Figure 4. Odd sum labeling of $H_6\Theta 4K_1$

Definition 2.4. A twig is a tree obtained from a path by attaching exactly two pendent edges to each internal vertex of the path.

Theorem 2.5. The twig graph $TW(n)(n \ge 4)$ is a odd sum graph.

Proof. Let $\{u_i, 1 \le i \le n, v_i, v'_i, 1 \le i \le n-2\}$ be the vertices and $\{a_i, a'_i, 1 \le i \le n-2; e_i, 1 \le i \le n-1\}$ be the edges which are as in Figure 5. First we label the vertices as follows

Define $f: V \to \{0, 1, 2, ..., q\}$ by

For $1 \leq i \leq n$

$$f(u_i) = \begin{cases} 3(i-1) & i \text{ is odd} \\ 3i-5 & i \text{ is even} \end{cases}$$
$$f(v_i) = \begin{cases} 3i+1 & i \text{ is odd} \\ 3i-1 & i \text{ is even} \end{cases}$$
$$f(v'_i) = \begin{cases} 3i-1 & i \text{ is odd} \\ 3(i-1) & i \text{ is even} \end{cases}$$

Then the induced edge labels are:

For $1 \le i \le n-1$ $f^*(e_i) = 6i-5$ For $1 \le i \le n-2$ $f^*(a_i) = 6i-3$, $f^*(a'_i) = 6i-1$.

Therefore $f^*(E) = \{1, 3, 5, ..., 2q - 1\}$. So f is a odd sum labeling and hence, the graph $TW(n)(n \ge 4)$ is a odd sum graph. Odd sum of the graph TW(5) is shown in Figure 6.

Figure 5. Ordinary labeling of TW(n).

Figure 6. Odd sum labeling of TW(5).

Definition 2.6. Let A' be the collection of paths P_n^i where n is odd and $P_n^i = u'_1, u'_2, ..., u'_n$, $(1 \le i \le m)$. Let G be the graph obtained from A with $V(G) = \bigcup_{i=1}^n V(P_n^i)$ and $E(G) = \bigcup_{i=1}^n E(P_n^i) \bigcup \left\{ \frac{u_{n+1}^i}{2} \quad \frac{u_{n+1}^{i+1}}{2} \quad : \ 1 \le i \le m-1 \text{ the graph } G \text{ denoted by } P(m,n). \right\}$

Theorem 2.7. The graph P(m, n) $(m \ge 2 \& n \ge 3)$ is a odd sum graph.

Proof. Let $\{u_{ij}, 1 \le i \le m, 1 \le j \le n\}$ be the vertices and $\{e_{ij}, 1 \le i \le m, 1 \le i \le n - 1e_i, 1 \le i \le m - 1\}$ be the edges which are denoted as in Figure 7. First we label the vertices as follows Define $f: V \to \{0, 1, 2, ..., q\}$ For $1 \le i \le m; 1 \le i \le n$

$$f(u_{ij}) = m(j-1) + (i-1)$$

Then the induced edge labels are:

For $1 \le i \le m$; $1 \le j \le n-1$

$$f^*(e_{ij}) = 2m(j-1) + 2i - 1$$

Therefore $f^*(E) = \{1, 3, 5, ..., 2q - 1\}$. So f is a odd sum labeling and hence, the graph P(m, n) $(m \ge 2 \& n \ge 3)$ is a odd sum graph. Odd sum of the graph P(4, 2) is shown in Figure 8.

 $\label{eq:Figure 7. Ordinary labeling of P(m, n).}$

Theorem 2.8. The graph (P_m, S_n) $(m \ge 4 \& n \ge 2)$ is a odd sum graph.

Proof. Let $\{u_i, u'_i, 1 \le i \le m, u_{ij}, 1 \le i \le m, 1 \le j \le n\}$ be the vertices and $\{a_i, a'_i, 1 \le i \le m - 1, e_{ij}, 1 \le i \le m, 1 \le j \le n\}$ be the edges which are denoted as in Figure 9. First we label the vertices as follows Define $f: V \to \{0, 1, 2, ..., q\}$ by

For $1 \leq i \leq m$; $1 \leq j \leq n$

$$f(u_{ij}) = \begin{cases} 2(j-1) + (n+2)(i-1) & j \text{ is odd} \\ 2j+3 + (n+2)(i-2) & j \text{ is even} \end{cases}$$
$$f(u_i) = \begin{cases} 2n + (n+2)(i-1) & i \text{ is odd} \\ (n+2)(i-2) + 3 & i \text{ is even} \end{cases}$$
$$f(u'_i) = \begin{cases} (n+2)(i-1) + 1 & i \text{ is odd} \\ 2n+2 + (n+2)(i-2) & i \text{ is even} \end{cases}$$

Then the induced edge labels are:

For $1 \leq i \leq n$; $1 \leq j \leq m$

$$f^*(e_{ij}) = \begin{cases} 2(n+2)(i-1) + 2j - 1 & i \text{ is odd} \\ 2(n+2)(i-2) + 2n + 2j + 5 & i \text{ is even} \end{cases}$$

For $1 \le i \le m-1$ $f^*(a_i) = 2(n+2)(i-1) + 2n+3$

$$f^*(a'_i) = \begin{cases} (2n+3) & i \text{ is odd} \\ 2(n+2)(i-1) + 2n + 5 & i \text{ is even} \end{cases}$$

Therefore $f^*(E) = \{1, 3, 5, ..., 2q - 1\}$. So f is a odd sum labeling and hence, the graph (P_m, S_n) is a odd sum graph. Odd sum of the graph (P_4, S_3) is shown in Figure 10.

Figure 9. Ordinary labeling of (P_m, S_n) .

Figure 10. Odd sum labeling of (P_4, S_3) .

References

- S.Arockiaraj and P.Mahalakshmi, On odd sum graphs, International Journal of Mathematical Combinatorics, 4(2013), 58-77.
- [2] S.Arockiaraj, P.Mahalakshmi and P.Namasivayam, Odd sum labeling of some subdivision graphs, Kragujevac Journal of Mathematics, 38(1)(2014), 203222.
- [3] S.Arockiaraj, P.Mahalakshmi and P.Namasivayam, Odd sum labeling of graphs obtained by duplicating any edge of some graphs, Electronic Journal of Graph Theory and Applications, 3(2)(2015), 197-215.
- [4] J.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17(2014), #DS6.
- [5] B.Gayathri and R.Gopi, Necessary Condition for mean labeling, International Journal of Engineering Science, Advanced Computing and Bio-Technology, 4(3)(2013), 43-52.
- [6] B.Gayathri and R.Gopi, Cycle related mean graphs, Elixir International Journal of Applied Sciences, 71(2014), 25116-25124.
- [7] F.Harary, Graph Theory, Narosa Publication House Reading, New Delhi, (1998).
- [8] K.Manickam and M.Marudai, Odd mean labeling of graphs, Bulletin of Pure and Applied Sciences, 25E(1)(2006), 149-153.
- [9] S.Somasundaram and R.Ponraj, Mean labeling of graphs, National Academy Science Letter, 26(2003), 210-213.