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Abstract: We analyze the steady state behavior of an M/G/1 queue with Poisson arrivals subject to multiple optional services and

random system breakdowns. Arriving customer has to undergo first essential service and there are j optional services,

where j = 1, 2, . . . , n. As soon as the essential service of a customer is complete, then with probability rj , j = 1 . . . n, he
may opt for any one of the j optional services, in which case his any one of the j services will immediately commence

or else with probability 1 −
n∑
j=1

rj , he may opt to leave the system, in which case another customer at the head of the

queue is taken up for his essential service.The service times follow arbitrary (general) service distributions. The system
is prone to random breakdowns and just after a breakdown the server undergoes repair of a fixed duration. We obtain

time dependent as well as steady state probability generating functions for the number in the system. For steady state we
obtain explicitly the mean number and the mean waiting time for the system and for the queue. Results for some special

cases of interest are derived.
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1. Introduction

Queues and queueing networks occupy a prominent role in the performance analysis of wide range of systems in computer

communications, logistics and flexible manufacturing systems. In fact, new results in queueing theory have often been inspired

by new technological advances in computer, manufacturing and communication networks. There have been extensive studies

in queues with server vacations and breakdowns. Vacation queueing models have been of great interest due to its applicability

in real situations. Single server queueing models with vacations have been studied by various authors due to their wide

applications in the analysis of processor schedules in computer and switching systems, the analysis of manufacturing system

with machine breakdown etc. Levy and Yechailai [10], Takagi [15], Doshi [3], Keilson and Servi [8], Gaver [6], Fuhrman

[5], Shantikumar [14], Cramer [2] and Madan [11] are a few among many authors who have studied queues with server

vacations with varying vacation policies. In real life situations, a queueing system might suddenly breakdown and hence the

server will not be able to continue providing service unless the system is repaired. In recent years, significant work has been

done on queues with random breakdowns by several authors which include Kulkarni and Choi [9], Federgruen and So [4],

Jayawardene and Kella [7], Aissani and Artalejo [1], Wang, Cao and Li [16], Madan [12,13], Vinck and Bruneel [17].

∗ E-mail: vanithas@ssn.edu.in
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In the current work, we consider an M/G/1 queue with optional services subject to random breakdowns and deterministic

repair times of fixed length d(> 0), using supplementary variable technique due to Cox. Each customer has to undergo first

essential service and there are j optional services. As soon as the essential service of a customer is complete, then with

probability rj , j = 1 . . . n, he may opt for any one of the j optional services and the service times are assumed to follow

general distribution. We assume that the breakdowns are random and time-homogeneous which means that service channel

may fail not only while it is working, but it may fail even when it is idle. The rest of the paper is organized as follows. The

mathematical description of our model is in section 2 and the equations governing the model are given in section 3. The

time dependent solutions have been obtained in section 4 using supplementary variable technique and the corresponding

steady state results have been derived explicitly in section 5. Mean number in the system and mean waiting time have been

computed in the section 6 and section 7 respectively. some particular cases for this model are discussed in section 8.

2. Assumptions Underlying the Model

The following assumptions describe the mathematical model

• Customers arrive at the system one by one in according to a Poisson stream with arrival rate λ(> 0).

• There is a single server which provides the essential service to all arriving customers. Let B(v) and b(v) respectively

be the distribution function and the density function of the essential service times and let µ(x)dx be the conditional

probability density of completion of the essential service given that the elapsed time is x, so that

µ(x) =
b(x)

1−B(x)
, (1)

and therefore

b(v) = µ(v)e
−

v∫
0
µ(x)dx

. (2)

• There are j optional services where j take values from 1 to n. As soon as the essential service of a customer is

complete, then with probability rj , j = 1 . . . n, he may opt for any one of the j optional services, in which case his any

one of the j services will immediately commence or else with probability 1-
n∑
j=1

rj , he may opt to leave the system, in

which case another customer at the head of of the queue is taken up for his essential service.

• The service times of j optional services, j = 1, . . . n have different general (arbitrary) distributions with distribution

function Bj(v) and the density function bj(v), j = 1, . . . n.

• The service channel is subject to random breakdowns and the failure time distribution is exponential with mean
1

α
.

Consequently the service channel may fail any time during the interval (t, t+ dt] with the probability αdt. Further we

have assumed that the breakdowns are time homogeneous which implies that the service channel may fail any time

even including the period of time when it is idle.

• We assume that whenever service channel breaks down, it instantly undergoes a repair process and the repair times

are deterministic of a constant (fixed) duration d(> 0).

• Various Stochastic Processes involved in the system are independent of each other.
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3. Definitions, Notations and the Time-Dependant Equations Gov-
erning the System

We define

Pn(x, t) : Probability that at time t, there are n ≥ 0 customers in the queue excluding the one being provided the first

essential service and the lapsed service time of this customer is x. Accordingly, Pn(t) =
∞∫
0

Pn(x, t)dx denotes probability

that at time t, there are n customers in the queue excluding one customer in the first essential service irrespective of the

value of x.

P
(j)
n (x, t) : Probability that at time t, there are n ≥ 0 customers in the queue excluding the one being provided the jth

optional service, j = 1, 2, . . . n and the lapsed service time of this customer is x. Accordingly, P
(j)
n (t) =

∞∫
0

Pn(x, t)(j)dx

denotes probability that at time t, there are n customers in the queue excluding one customer in the jth optional service

irrespective of the value of x.

Vn(t) : Probability that at time t, there are n ≥ 0 customers in the queue and the server is under repair.

Qn(t) : Probability that at time t, there is no customer in the system and the server is idle but available in the system.

Finally, we assume that kr is the probability of r arrivals during a repair period of duration d so that,

Kr =
e−λd(λd)r

r!
, r = 0, 1, 2, . . . . (3)

The system has then the following set of differential - difference equations

∂

∂x
Pn(x, t) +

∂

∂t
Pn(x, t) + (λ+ µ(x) + α)Pn(x, t) = λPn−1(x, t), n = 1, 2, . . . (4)

∂

∂x
P0(x, t) +

∂

∂t
P0(x, t) + (λ+ µ(x) + α)P0(x, t) = 0, (5)

∂

∂x
P (j)
n (x, t) +

∂

∂t
P (j)
n (x, t) + (λ+ µj(x) + α)P (j)

n (x, t) = λP
(j)
n−1(x, t), n, j = 1, 2, . . . , (6)

∂

∂x
P

(j)
0 (x, t) +

∂

∂t
P

(j)
0 (x, t) + (λ+ µj(x) + α)P

(j)
0 (x, t) = 0, j = 1, 2, . . . , n, (7)

d

dt
V0(t) = αQ(t) + V0(t)[ −K0 −K1 −K2 · · · ], (8)

d

dt
Vn(t) = α

∞∫
0

Pn−1(x, t)µ1(x)dx+ α

n∑
j=1

∞∫
0

P
(j)
n−1(x, t)µj(x)dx+ Vn(t)[ −K0 −K1 −K2 . . .], n, j = 1, 2, . . . , (9)

d

dt
Q(t) = −(λ+ α)Q(t) + V0(t)K0 +

[
1−

n∑
j=1

rj

] ∞∫
0

P0(x, t)µ(x)dx+ α

n∑
j=1

∞∫
0

P
(j)
0 (x, t)µj(x)dx. (10)

Equations (4)-(10) are to be solved subject to the following boundary conditions

P0(0, t) = Q(t)λ+ V0(t)K1 + V1(t)K0 +

[
1−

n∑
j=1

rj

] ∞∫
0

P1(x, t)µ(x)dx,+

n∑
j=1

∞∫
0

P
(j)
1 (x, t)µj(x)dx (11)

Pn(0, t) = V0(t)Kn+1 + V1(t)Kn + · · ·+ Vn(t)K1 + Vn+1(t)K0 +

+

[
1−

n∑
j=1

rj

] ∞∫
0

Pn+1(x, t)µ(x)dx+

n∑
j=1

∞∫
0

P
(j)
n+1(x, t)µj(x)dx, n = 1, 2, . . . , (12)

P (j)
n (0, t) = rj

∞∫
0

Pn(x, t)µ1(x)dx, n = 0, 1, . . . , j = 1, 2, . . . , n, (13)

We assume that initially there is no customer in the system and the server is idle so that the initial conditions are

Q(0) = 1, Pn(0) = 0, P (j)
n (0) = 0, V0(0) = 0 = Vn(0), n ≥ 0, j = 1, 2, . . . , n. (14)
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4. Generating Functions of the Queue Length: The Time-dependent
Solution

We define the probability generating functions,

P (x, z, t) =
∞∑
n=0

znP (x, t),

P (z, t) =
∞∑
n=0

znP (t),

P (j)(x, z, t) =
∞∑
n=0

znP (j)(x, t),

P (j)(z, t) =
∞∑
n=0

znP (j)(t), j = 1, 2, . . . , n,

V (z, t) =
∞∑
n=0

znVn(t).


(15)

which are convergent inside the circle given by |z| ≤ 1 and define the Laplace transform of a function f(t) as

f(s) =

∞∫
0

e−stf(t)dt, <(s) > 0. (16)

Taking the Laplace transforms of equations (4) to (13) and using (14), we obtain

∂

∂x
Pn(x, s) + (s+ λ+ µ(x) + α)Pn(x, s) = λPn−1(x, s), n = 1, 2, . . . (17)

∂

∂x
P 0(x, s) + (s+ λ+ µ(x) + α)P 0(x, s) = 0, (18)

∂

∂x
P

(j)
n (x, s) + (s+ λ+ µj(x) + α)P

(j)
n (x, s) = λP

(j)
n−1(x, s), n = 1, 2, . . . , (19)

∂

∂x
P

(j)
0 (x, s) + (s+ λ+ µj(x) + α)P

(j)
0 (x, s) = 0, j = 1, 2, . . . , n, (20)

sV 0(s) = αQ(s) + V 0(s)[−K0 −K1 −K2 . . .] (21)

sV n(s) = α

∞∫
0

Pn−1(x, s)µ(x)dx+ α

n∑
j=1

∞∫
0

P
(j)
n−1(x, s)µj(x)dx+ V n(s)[ −K0 −K1 −K2 . . .], n = 1, 2, . . . , (22)

(s+ λ+ α)Q(s) = 1 + V 0(s)K0 +

[
1−

n∑
j=1

rj

] ∞∫
0

P 0(x, s)µ(x)dx+

n∑
j=1

∞∫
0

P
(j)
0 (x, s)µj(x)dx, (23)

P 0(0, s) = Q(s)λ+ V 0(s)K1 + V 1(s)K0 +

[
1−

n∑
j=1

rj

] ∞∫
0

P 1(x, s)µ(x)dx,+

n∑
j=1

∞∫
0

P
(j)
1 (x, s)µj(x)dx (24)

Pn(0, s) = V 0(s)Kn+1 + V 1(s)Kn + · · ·+ V n(s)K1 + V n+1(s)K0 +

+

[
1−

n∑
j=1

rj

] ∞∫
0

Pn+1(x, t)µ(x)dx+
n∑
j=1

∞∫
0

P
(j)
n+1(x, s)µj(x)dx, n = 1, 2, . . . , (25)

P
(j)
n (0, s) = rj

∞∫
0

Pn(x, s)µ1(x)dx, n = 0, 1, . . . , j = 1, 2, . . . , n, (26)

Now multiplying equation (17) by zn and summing over n from 1 to ∞, adding to equation (18) and using the generating

functions defined in (15), we get

∂

∂x
P (x, z, s) + (s+ λ− λz + µ(x) + α)P (x, z, s) = 0, (27)
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Performing similar operations on equations (19) to (22) we obtain

∂

∂x
P

(j)
(x, z, s) + (s+ λ− λz + µj(x) + α)P

(j)
(x, z, s) = 0, (28)

(s+ 1)V (z, s) = αQ(s) + αz


∞∫
0

P (x, z, s)dx+

∞∫
0

P
(j)

(x, z, s)dx

 . (29)

For the boundary conditions, we multiply both sides of equation (24) by z, multiply both sides of equation (25) by zn+1,

sum over n from 1 to ∞, add the two results and use equation (15) to get

zP (0, z, s) = λzQ(s) + V (z, s)e−λd[1−z] +

[
1−

n∑
j=1

rj

] ∞∫
0

P (x, z, s)µ(x)dx

+

n∑
j=1

∞∫
0

P
(j)

(x, z, s)µj(x)dx−
n∑
j=1

∞∫
0

P
(j)
0 (x, s)µj(x)dx− V 0(s)K0 −

[
1−

n∑
j=1

rj

] ∞∫
0

P 0(x, s)µ(x)dx.(30)

Performing similar operation on equation (26), we have

P
(j)

(0, z, s) = rj

∞∫
0

P (x, z, s)µ(x)dx. (31)

Using equation (23), equation (30) become

zP (0, z, s) =

[
1−

n∑
j=1

rj

] ∞∫
0

P (x, z, s)µ(x)dx+

n∑
j=1

∞∫
0

P
(j)

(x, z, s)µj(x)dx

+V (z, s)e−λd[1−z] + [1− sQ(s)]− [−λz + λ+ α]Q(s). (32)

Integrating equation (27) from 0 to x yields

P (x, z, s) = P (0, z, s) e
−(s+λ−λz+α)x−

x∫
0
µ(t)dt

, (33)

where P (0, z, s) is given by equation (32) Again integrating equation (33) by parts with respect to x yields

P (z, s) = P (0, z, s)

[
1− b(s+ λ− λz + α)

s+ λ− λz + α

]
, (34)

where

b(s+ λ− λz + α) =

∞∫
0

e−(s+λ−λz+α)xdb(x) (35)

is the Laplace-Stieltjes transform of the essential service time b(x). Now multiplying both sides of equation (33) by µ(x)

and integrating over x, we obtain

∞∫
0

P (x, z, s)µ(x)dx = P (0, z, s)b(s+ λ− λz + α). (36)

Similarly, on integrating equation (28) from 0 to x, we get

P
(j)

(x, z, s) = P
(j)

(0, z, s) e
−(s+λ−λz+α)x−

x∫
0
µj(t)dt

, (37)
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where P
(j)

(0, z, s) is given by equation (31). Again integrating equation (37) by parts with respect to x yields

P
(j)

(z, s) = P
(j)

(0, z, s)

[
1− bj(s+ λ− λz + α)

s+ λ− λz + α

]
, (38)

where

bj(s+ λ− λz + α) =

∞∫
0

e−(s+λ−λz+α)xdbj(x) (39)

is the Laplace-Stieltjes transform of n optional service times bj(x). We see that by virtue of equation (37), we have

∞∫
0

P
(j)

(x, z, s)µj(x)dx = P
(j)

(0, z, s)bj(s+ λ− λz + α). (40)

By using equation (36), equation (31) reduces to

P
j
(0, z, s) = rjP (0, z, s)b(s+ λ− λz + α). (41)

Using equation (41), equation (40) becomes

∞∫
0

P
(j)

(x, z, s)µj(x)dx = rjP (0, z, s)b(s+ λ− λz + α)bj(s+ λ− λz + α). (42)

By using above equation (32) reduces to

P (0, z, s) =
V (z, s)e−λd[1−z] + [1− sQ(s)]− [−λz + λ+ α]Q(s)

z−b(s+λ−λz+α)+
n∑

j=1
rjb(s+λ−λz+α)−

n∑
j=1

b(s+λ−λz+α)bj(s+λ−λz+α)
. (43)

Substituting the value of P (0, z, s) into equation (4.20), we get

P (z, s) =
V (z, s)e−λd[1−z] + [1− sQ(s)]− [−λz + λ+ α]Q(s)

z−b(s+λ−λz+α)+
n∑

j=1
rjb(s+λ−λz+α)−

n∑
j=1

b(s+λ−λz+α)bj(s+λ−λz+α)

[
1− b(s+ λ− λz + α)

s+ λ− λz + α

]
. (44)

Now using equations (41) and (43), equation (38) become

P
(j)

(z, s) = rj
V (z, s)e−λd[1−z] + [1− sQ(s)]− [−λz + λ+ α]Q(s)

z−b(s+λ−λz+α)+
n∑

j=1
rjb(s+λ−λz+α)−

n∑
j=1

b(s+λ−λz+α)bj(s+λ−λz+α)

b(s+ λ− λz + α)

[
1− bj(s+ λ− λz + α)

s+ λ− λz + α

]
, j = 1, 2, . . . , n. (45)

From equation (29)

V (z, s) =
αQ(s) + αz{P (z, s) + P

(j)
(z, s)}

(s+ 1)
, j = 1, 2, . . . , n. (46)

Let P (z, s) = P (z, s) + P
(j)

(z, s), j = 1, 2, . . . , n denote the probability generating function of the number in the queue

irrespective of the type of service being provided. Then adding equations (44) and (45) we have

W (z, s) =
V (z, s)e−λd[1−z] + [1− sQ(s)]− [−λz + λ+ α]Q(s)

z−b(s+λ−λz+α)+
n∑

j=1
rjb(s+λ−λz+α)−

n∑
j=1

rjb(s+λ−λz+α)bj(s+λ−λz+α) 1−b(s+λ−λz+α)+
n∑

j=1
rjb(s+λ−λz+α)−

n∑
j=1

rjb(s+λ−λz+α)bj(s+λ−λz+α)

s+ λ− λz + α

 . (47)
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Thus substituting the value of V (z, s) from equation (46) into equation (47) we get

W (z, s) =
N(z, s)

D(z, s)
(48)

N(z, s) =
{
αQ(s)e−λd[1−z] − [−λz + λ+ α] (s+ 1) +Q(s)[1− sQ(s)](s+ 1)

}
{

1− b(s+ λ− λz + α) +

n∑
j=1

rjb(s+ λ− λz + α)−
n∑
j=1

rjb(s+ λ− λz + α)bj(s+ λ− λz + α)

}
, (49)

D(z, s) = (s+ λ− λz + α)(s+ 1)

[
z − b(s+ λ− λz + α) +

n∑
j=1

rjb(s+ λ− λz + α)

−
n∑
j=1

rjb(s+ λ− λz + α)bj(s+ λ− λz + α)

]
− αze−λd[1−z]

{
1− b(s+ λ− λz + α)

{
+

n∑
j=1

rjb(s+ λ− λz + α)−
n∑
j=1

rjb(s+ λ− λz + α)bj(s+ λ− λz + α)

}
. (50)

If we let z = 1 in equation (48), we can easily verify that

Q(s) + V (z, s) +W (z, s) =
1

s
, (51)

as it should be. Thus V (z, s), P (z, s) and P
(j)

(z, s), j = 1, 2, . . . , n are completely determined from equations (46), (44) and

(45) respectively.

5. Steady State Solution

In this section, we shall derive the steady state probability distribution for our queueing model. To define the steady state

probabilities, we suppress the argument t wherever it appears in the time-dependent analysis. This can be obtained by

applying the well-known Tauberian property,

lim
s→0

f(s) = lim
t→∞

f(t). (52)

In order to determine P (z, s), P
(j)

(z, s), j = 1, 2, . . . , n and V (z, s) completely, we have yet to determine the unknown Q

which appears in the numerators of the right hand sides of equations (44), (45) and (46) by using initial conditions (43) and

(41). For that purpose, we shall use the normalizing condition

P (1) +

n∑
j=1

P (j)(1) + V (1) +Q = 1. (53)

Thus multiplying both sides of equations (44), (45) and (46) by s, taking limit as s → 0, applying property (52) and

simplifying we have

P (z) =

 V (z)e−λd[1−z] − [−λz + λ+ α]Q

z − b(λ− λz + α) +
n∑
j=1

rjb(λ− λz + α)−
n∑
j=1

b(λ− λz + α)bj(λ− λz + α)

[1− b(λ− λz + α)

λ− λz + α

]
, (54)

P (j)(z) = rj
V (z)e−λd[1−z] − [−λz + λ+ α]Q

z − b(λ− λz + α) +
n∑
j=1

rjb(λ− λz + α)−
n∑
j=1

b(λ− λz + α)bj(λ− λz + α)

b(λ− λz + α)

[
1− bj(λ− λz + α)

λ− λz + α

]
, j = 1, 2, . . . , n. (55)
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and

V (z) = αQ+ αzW (z), (56)

where

W (z) = P (z) +

n∑
j=1

P (j)(z), j = 1, 2, . . . , n,

=
N(z)

D(z)
, (57)

where

N(z) =

{
1− b(λ− λz + α) +

n∑
j=1

rjb(λ− λz + α)−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

}
{
αQe−λd[1−z] − [−λz + λ+ α]

}
Q, (58)

D(z) = (λ− λz + α)

[
z − b(λ− λz + α) +

n∑
j=1

rjb(λ− λz + α)

−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

]
− αze−λd[1−z] {1− b(λ− λz + α)

+

n∑
j=1

rjb(λ− λz + α)−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

}
. (59)

We see that for z = 1, W (z) in equation (57) is indeterminate of the
0

0
form. Therefore, we apply L’Hopital’s rule on

equation (57) and on simplifying we get

W (1) = lim
z→1

W (z)

=

[
1− b(α) +

n∑
j=1

rjb(α)−
n∑
j=1

rjb(α)bj(α)

]
[λ+ αλd]Q

α

[
b(α)−

n∑
j=1

rjb(α)+
n∑

j=1
rjb(α)bj(α)

]
−[λ+αλd]

[
1−b(α)+

n∑
j=1

rjb(α)−
n∑

j=1
rjb(α)bj(α)

] . (60)

Now using (60) in equation (56) we have

V (1) =

α2Q

[
b(α)−

n∑
j=1

rjb(α) +
n∑
j=1

rjb(α)bj(α)

]
α

[
b(α)−

n∑
j=1

rjb(α)+
n∑

j=1
rjb(α)bj(α)

]
−[λ+αλd]

[
1−b(α)+

n∑
j=1

rjb(α)−
n∑

j=1
rjb(α)bj(α)

] . (61)

Now since we must have Q+W (1) + V (1) = 1, we have

Q =
α

[
b(α)−

n∑
j=1

rjb(α)+
n∑

j=1
rjb(α)bj(α)

]
−
[
1−b(α)+

n∑
j=1

rjb(α)−
n∑

j=1
rjb(α)bj(α)

]
[λ+λαd]

α(α+ 1)

[
b(α)−

n∑
j=1

rjb(α) +

n∑
j=1

rjb(α)bj(α)

] (62)

which is the steady state probability that the server is idle but operative. Then we substitute the value of Q from (62) into

(57) we have

W (z) =
N1(z)

D1(z)
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where

N1(z) =

[
1− b(λ− λz + α) +

n∑
j=1

rjb(λ− λz + α)−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

]

α

[
b(α)−

n∑
j=1

rjb(α)+
n∑

j=1
rjb(α)bj(α)

]
−
[
1−b(α)+

n∑
j=1

rjb(α)−
n∑

j=1
rjb(α)bj(α)

]
[λ+λαd]

α(α+ 1)

[
b(α)−

n∑
j=1

rjb(α) +

n∑
j=1

rjb(α)bj(α)

] {
αe−λd[1−z] − [−λz + λ+ α]

}
, (63)

D1(z) = (λ− λz + α)

[
z − b(λ− λz + α) +

n∑
j=1

rjb(λ− λz + α)

−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

]
− αze−λd[1−z] {1− b(λ− λz + α)

+

n∑
j=1

rjb(λ− λz + α)−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

}
. (64)

Next, using above equation in V (z) and simplifying, we have

V (z) = αQ


(λ−λz+α)

[
b(λ−λz+α)−

n∑
j=1

rjb(λ−λz+α)+
n∑

j=1
rjb(λ−λz+α)bj(λ−λz+α)

]
[z−1]

D(z)

 , (65)

where D(z) is given by (59) and Q is given by (62). Thus W (z) and V (z) have been completely and explicitly determined

in above equations.

6. The Mean Number in the System

Let Pq(z) = W (z) + V (z) denote the probability generating function of the queue length irrespective of whether the server

is operative or in failed state. Then adding V (z) and W (z) and simplifying, we have

Pq(z) =
N2(z)

D2(z)
(66)

where where

N2(z) = αQ

{
(λ− λz + α)

[
b(λ− λz + α)−

n∑
j=1

rjb(λ− λz + α)

+

n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

]
[z − 1]

}

+

[
1− b(λ− λz + α) +

n∑
j=1

rjb(λ− λz + α)−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

]
{
αe−λd[1−z] − [−λz + λ+ α]

}
Q, (67)

D2(z) = (λ− λz + α)

[
z − b(λ− λz + α) +

n∑
j=1

rjb(λ− λz + α)

−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

]
− αze−λd[1−z] {1− b(λ− λz + α)

+

n∑
j=1

rjb(λ− λz + α)−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

}
. (68)

and Q is given by equation (62). Let Lq denote the mean number of customers in the queue under the steady state. Then

Lq =
d

dz
Pq(z)

∣∣∣∣
z=1
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Since this formula gives 0/0 form, we write Pq(z) given in (6.1) as Pq(z) =
N2(z)

D2(z)
where N2(z) and D2(z) are the numerator

and denominator of the right hand side of (66) respectively. Then we use following well known result in queueing theory

(see Kashyap and Chaudhry [9])

Lq = lim
z→1

d

dz
Pq(z),

= P
′
q(1),

= lim
z→1

D
′
(z)N

′′
(z)−N

′
(z)D

′′
(z)

2(D′(z))2
,

= lim
z→1

D
′
(1)N

′′
(1)−N

′
(1)D

′′
(1)

2(D′(1))2
. (69)

where primes and double primes in equation (69) denote the first and second derivative at z = 1. Carrying out the derivatives

at z = 1, we have

N
′
(1) = [αλd+ λ]

[
1− b(α) +

n∑
j=1

rjb(α)−
n∑
j=1

rjb(α)bj(α)

]

+α2

[
b(α) +

n∑
j=1

rjb(α)−
n∑
j=1

rjb(α)bj(α)

]
, (70)

N
′′

(1) = α(λd)2
[

1− b(α) +

n∑
j=1

rjb(α)−
n∑
j=1

rjb(α)bj(α)

]

+2λ2[1 + αd]

[
b
′
(α)−

n∑
j=1

rjb
′
(α) +

n∑
j=1

rjb
′
(α)bj(α) +

n∑
j=1

rjb(α)b
′

j(α)

]

−2α2λ

[
b
′
(α)−

n∑
j=1

rjb
′
(α) +

n∑
j=1

rjb
′
(α)bj(α) +

n∑
j=1

rjb(α)b
′

j(α)

]

−2αλ

[
b(α) +

n∑
j=1

rjb(α)−
n∑
j=1

rjb(α)bj(α)

]
, (71)

D
′
(1) =

[
1− b(α) +

n∑
j=1

rjb(α)−
n∑
j=1

rjb(α)bj(α)

]
[−λ− αλd]

+α

[
b(α)−

n∑
j=1

rjb(α) +

n∑
j=1

rjb(α)bj(α)

]
, (72)

D
′′

(1) = [1 + αd]

[
−2λ− 2λ2b

′
(α) + 2λ2

n∑
j=1

rjb
′
(α)− 2λ2

n∑
j=1

rjb
′
(α)bj(α)

−2λ2
n∑
j=1

rjb(α)b
′

j(α)

]
− αλ2d2

[
1− b(α) +

n∑
j=1

rjb(α)−
n∑
j=1

rjb(α)bj(α)

]

−2αλb
′

1(α) + 2αλd

[
b(α)−

n∑
j=1

rjb(α) +

n∑
j=1

rjb(α)bj(α)

]
(73)

Then if we substitute the values of N
′
(1), N

′′
(1), D

′
(1) and D

′′
(1) from equations (70) to (73) into equation (69) we obtain

Lq in closed form. Further let P (z) denote the probability generating function of the number in the system. Then from

above equations and from (62) and simplifying we have

P (z) = Q+ zPq(z)

=
N3(z)

D3(z)
, (74)
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where

N3(z) = (λ− λz + α)

[
b(λ− λz + α)−

n∑
j=1

rjb(λ− λz + α)

+

n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

]
Q(1 + αz), (75)

D3(z) = (λ− λz + α)

[
z − b(λ− λz + α) +

n∑
j=1

rjb(λ− λz + α)

−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

]
− αze−λd[1−z] {1− b(λ− λz + α)

+

n∑
j=1

rjb(λ− λz + α)−
n∑
j=1

rjb(λ− λz + α)bj(λ− λz + α)

}
. (76)

and Q is given by equation (62). Moreover, we find the average system size Ls using Little’s formula. Thus we have

Ls = Lq + ρ (77)

where Lq has been found in equation (69) and ρ is obtained from equation (62) as

ρ = 1−Q. (78)

7. The Mean Waiting Time

Let Wq and Ws denote the mean waiting time in the queue and the system respectively. Then using Little’s formula, we

obtain,

Wq =
Lq
λ

(79)

Ws =
Ls
λ

(80)

where Lq and Ls have been found in equations (69) and (77) respectively.

8. Special Cases

8.1. Case I. No Optional Services, Random Breakdowns and Deterministic Repair
Times

In this case, we assume that are no optional services and the essential service is provided to all the arriving customers.

Therefore the results (62) to (65), (66) to (68) and (74) to (76) reduce to

Q =
αb(α)− [1− b(α)][λ+ λαd]

α(α+ 1)b(α)
(81)

W (z) =
[1− b(λ− λz + α)]

{
αe−λd[1−z] − [−λz + λ+ α]

}
Q

[−λz + λ+ α][z − b(λ− λz + α)]− [1− b(λ− λz + α)]αze−λd[1−z]
, (82)

V (z) =
α(−λz + λ+ α)

{
z − b(λ− λz + α)

}
Q

[−λz + λ+ α][z − b(λ− λz + α)]− [1− b(λ− λz + α)]αze−λd[1−z]
, (83)

P (z) =
(λ− λz + α)b(λ− λz + α)[z − 1](1 + αz)Q

[−λz + λ+ α]
{
z − b(λ− λz + α)

}
− [1− b(λ− λz + α)]αze−λd[1−z]

,

Pq(z) =
Pq(Nr)

Pq(Dr)
(84)
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where

Pq(Nr) =
{

[1− b(λ− λz + α)][αe−λd[1−z] − (λ− λz + α)] + α(λ− λz + α)b(λ− λz + α)[z − 1]
}
Q (85)

Pq(Dr) = [−λz + λ+ α][z − b(λ− λz + α)]− [1− b(λ− λz + α)]αze−λd[1−z], (86)

where Q in the right hand side of equations (82) to (85) is given by (81).

8.2. Case II. Exponential Essential Service, no Optional Services, Random Break-
downs and Deterministic Repair Times.

In this case, we assume that there are no optional services and the essential service follows exponentional service time.

Therefore, we have

b(α) =

∞∫
0

e−αxµe−µxdx =
µ

α+ µ

and similarly

b(λ− λz + α) =
µ

λ+ µ+ α− λz .

With these substitutions into the results (62) to (65), (66) to (68) and (74) to (76), we obtain

Q =
µ− [λ+ λαd]

(α+ 1)µ
, (87)

W (z) =
[ λ−λz+α
λ−λz+α+µ ][αe−λd[1−z] − (λ− λz + α)]

[
µ−[λ+λαd]

(α+1)µ

]
(λ− λz + α)

[
(λ−λz+α+µ)z−µ

λ−λz+α+µ

]
−
[

λ−λz+α
λ−λz+α+µ

]
αze−λd[1−z]

, (88)

V (z) =

[
αµ(λ−λz+α)
λ−λz+α+µ

]
[z − 1]

[
µ−[λ+λαd]

(α+1)µ

]
(λ− λz + α)

[
(λ−λz+α+µ)z−µ

λ−λz+α+µ

]
−
[

λ−λz+α
λ−λz+α+µ

]
αze−λd[1−z]

(89)

P (z) =

[
(λ−λz+α)µ
λ−λz+α+µ

]
[z − 1](1 + αz)

[
µ−[λ+λαd]

(α+1)µ

]
(λ− λz + α)

[
(λ−λz+α+µ)z−µ

λ−λz+α+µ

]
−
[

λ−λz+α
λ−λz+α+µ

]
αze−λd[1−z]

, (90)

Pq(z) =

{[
λ−λz+α

λ−λz+α+µ

]
[αe−λd[1−z] − (λ− λz + α)] + αµ(λ−λz+α)

λ−λz+α+µ [z − 1]
}
Q

(λ− λz + α)
[
(λ−λz+α+µ)z−µ

λ−λz+α+µ

]
−
[

λ−λz+α
λ−λz+α+µ

]
αze−λd[1−z]

(91)

8.3. Case III. Exponential Essential Service, no Optional Services, no Random
Breakdowns

If the system suffers no breakdowns, then letting α = 0 in the main results, we obtain V (z) = 0,

Q =
µ− λ
µ

(92)

P (z) =

b(λ− λz)
[
1− λ

µ

]
(1− z)

b(λ− λz)− z
, (93)

Pq(z) =

[
b(λ− λz)− 1

] [
1− λ

µ

]
z − b(λ− λz)

. (94)
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