International Journal of Mathematics And its Applications

Partitioned q-k-EP Matrices

Research Article

K.Gunasekaran ${ }^{1}$ and K.Gnanabala ${ }^{1 *}$

1 PG and Research Department of Mathematics, Government Arts College(Autonomous), Kumbakonam, Tamil Nadu, India.

```
Abstract: Necessary and sufficient conditions are determined for a schur complement in a q-k-EP matrix to be q-k-EP. Further it is shown that in q-k-EP \(r_{r}\) matrix, every principal sub matrix of rank r is q-k-EP \({ }_{r}\). Necessary and sufficient conditions for products of q-k-EP \(r\) partitioned matrices to be q-k-EP \(r_{r}\) is given.
MSC: 15A57.
```

Keywords: q-k-EP matrices, Schur complements.
(C) JS Publication.

1. Introduction

In this section we consider an $2 n \times 2 n$ matrix M partitioned in the form,

$$
M=\left[\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right]
$$

where A and D are nxn matrices. If a partitioned matrix M of the form (1) is $\mathrm{q}-\mathrm{k}$-EP, then is general, Schur complement of A in M, i.e., $(M \mid A)$ is not q-k-EP. Here, necessary and sufficient conditions for $(M \mid A)$ to be q-k-EP are obtained for both the cases $\rho(M)=\rho(A)$ and $\rho(M) \neq \rho(A)$. As an application, a decomposition of a partitioned matrix into a sum of q-k-EP matrices is obtained. Throughout this section let $k=k_{1} k_{2}$ as in [5].

2. Schur Complements in q-k-EP Matrices

Definition 2.1. If $M \in H_{2 n \times 2 n}$ is of the partitioned form $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$, then a schur complement of A in M denoted by $(M \mid A)$ is defined as, $D-C A^{-} B$ where A^{-}is a generalized inverse of A satisfying $A X A=A$.

Theorem 2.2. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ with $N(A) \subseteq N(C)$ and $N(M A) \subseteq N(B)$ then the following are equivalent.
(i) M is a $q-k-E P$ matrix with $k=k_{1} k_{2}$
(ii) A is a $q-k_{1}-E P(M A)$ is $q-k_{2}-E P, N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ and $N\left((M A)^{*}\right) \subseteq N\left(C^{*}\right)$

[^0](iii) Both the matrices $\left[\begin{array}{cc}A & 0 \\ C & (M \mid A)\end{array}\right]$ and $\left[\begin{array}{cc}A & B \\ 0 & (M \mid A)\end{array}\right]$ are $q-k$ - $E P$.

Proof. $\quad(i) \Rightarrow(i i)$
(i) Since M is a q-k-EP with $k=k_{1} k_{2}, K M$ is EP and $K=\left[\begin{array}{cc}K_{1} & 0 \\ 0 & K_{2}\end{array}\right]$ where K_{1} and K_{2} are associated permutation matrices of k_{1} and k_{2}. Consider, $P=\left[\begin{array}{cc}I & 0 \\ C A^{-} & I\end{array}\right], Q=\left[\begin{array}{cc}I & B(M \mid A)^{-} \\ 0 & I\end{array}\right]$ and $L=\left[\begin{array}{cc}A & 0 \\ 0 & (M \mid A)\end{array}\right]$. It is clear that P, Q are non-singular.

$$
\begin{aligned}
K P Q L & =\left[\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
C A^{-} & I
\end{array}\right]\left[\begin{array}{cc}
I & B(M \mid A)^{-} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & (M \mid A)
\end{array}\right] \\
& =\left[\begin{array}{cc}
K_{1} A & K_{1} B(M \mid A)(M \mid A)^{-} \\
K_{2} C A^{-} A & K_{2} C A^{-} B(M \mid A)^{-}(M \mid A)+K_{2}(M \mid A)
\end{array}\right]
\end{aligned}
$$

Since $N(A) \subseteq N(C)$, by [8], we have $C=C A^{-} A$. Thus $K_{2} C=K_{2} C A^{-} A$. Also, since $N(M \mid A) \subseteq N(B)$, $B=B(M \mid A)^{-}(M \mid A)$. So, $K_{2} C A^{-} B(M \mid A)^{-}(M \mid A)+K_{2}(M \mid A)=K_{2} D,\left(\right.$ since $\left.(M A)=D-C A^{-} B\right)$. Thus,

$$
K P Q L=\left[\begin{array}{ll}
K_{1} A & K_{1} B \\
K_{2} C & K_{2} D
\end{array}\right]=\left[\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=K M .
$$

Thus $K M$ is factorized as $K M=K P Q L$. Hence $\rho(K M)=(L)$ and $N(K M)=N(L)$. But M is $\mathrm{q}-\mathrm{k}$-EP. Therefore, $K M$ is EP. $N(K M)=N\left((K M)^{*}\right) \Rightarrow N(L)=N\left(M^{*} K\right)$ [8]. By using, $M^{*} K=M^{*} K L^{-} L$ holds for all L^{-}. Choose, $L^{-}=\left[\begin{array}{ccc}A^{-} & 0 \\ 0 & (M \mid A)\end{array}\right]$

$$
M^{*} K=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{*}\left[\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right]=\left[\begin{array}{ll}
A^{*} K_{1} & C^{*} K_{2} \\
B^{*} K_{1} & D^{*} K_{2}
\end{array}\right]
$$

Since $M^{*} K=M^{*} K L^{-} L$,

$$
\begin{aligned}
{\left[\begin{array}{ll}
A^{*} K_{1} & C^{*} K_{2} \\
B^{*} K_{1} & D^{*} K_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
A^{*} K_{1} & C^{*} K_{2} \\
B^{*} K_{1} & D^{*} K_{2}
\end{array}\right]\left[\begin{array}{cc}
A^{-} & 0 \\
0 & (M \mid A)
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & (M \mid A)
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{*} K_{1} A^{-} A & C^{*} K_{2}(M \mid A)^{-}(M \mid A) \\
B^{*} K_{1} A^{-} A & D^{*} K_{2}(M \mid A)^{-}(M \mid A)
\end{array}\right]
\end{aligned}
$$

From the above, $A^{*} K_{1}=A^{*} K_{1} A^{-} A$

$$
\begin{aligned}
& \Rightarrow\left(K_{1} A\right)^{*}=\left(K_{1} A\right)^{*} A^{-} A \\
& \Rightarrow N(A) \subseteq N\left(K_{1} A\right)^{*}=N\left(A^{*} K_{1}\right)
\end{aligned}
$$

Since, $\rho\left(K_{1} A\right)^{*}=\rho\left(K_{1} A\right) \Rightarrow \rho\left(A^{*} K_{1}\right)=\rho(A)$. Thus, $N(A)=N\left(A^{*} K_{1}\right)$. Hence A is a q-k ${ }_{1}$-EP. Similarly, we can prove $(M \mid A)$ is $\mathrm{q}^{-\mathrm{k}_{2}}$-EP. Further, $C^{*} K_{2}=C^{*} K_{2}(M \mid A)^{-}(M \mid A) \Rightarrow N(M \mid A) \subseteq N\left(C^{*} K_{2}\right) \Rightarrow N\left(K_{2}(M \mid A)^{*} N\left(C^{*} K_{2}\right) \Rightarrow\right.$ $N(M \mid A)^{*} N\left(C^{*}\right)$. Thus (ii) holds.
$(i i) \Rightarrow(i)$

Since $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right), N(M \mid A) \subseteq N(B), N\left((M \mid A)^{*}\right) \subseteq N\left(C^{*}\right)$ holds. By [2],

$$
(K M)^{\dagger}=\left[\begin{array}{cc}
\left(K_{1} A\right)^{\dagger}+\left(K_{1} A\right)^{\dagger}\left(K_{1} B\right)(M \mid A)^{\dagger} K_{2}\left(K_{1} A\right)^{\dagger} & -\left(K_{1} A\right)^{\dagger}\left(K_{1} B\right) K_{2}(M \mid A)^{\dagger} \\
-K_{2}(M \mid A)^{\dagger} K_{2} C\left(K_{1} A\right)^{\dagger} & K_{2}(M \mid A)^{\dagger}
\end{array}\right]
$$

From [8], $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right) \Rightarrow(M \mid A)$ is invariant for every choice of A^{-}. Hence $K_{2} D=K_{2}(M \mid A)+K_{2} C\left(K_{1} A\right)^{\dagger}\left(K_{1} B\right)$. Further using $K_{2} C=K_{2}(M \mid A) K_{2}(M \mid A)^{\dagger} K_{2} C$ and $K_{1} B=K_{1} A\left(K_{1} A\right)^{\dagger} K_{1} B$. Now,

$$
(K M)(K M)^{\dagger}=\left[\begin{array}{cc}
K_{1} A\left(K_{1} A\right)^{\dagger} & 0 \\
0 & K_{2}(M \mid A) K_{2}(M \mid A)^{\dagger}
\end{array}\right]
$$

Again using, $K_{2} C=\left(K_{2} C\right)\left(K_{1} A\right)\left(K_{1} A\right)^{\dagger}$ and $K_{1} B=\left(K_{1} B\right) K_{2}(M \mid A) K_{2}(M \mid A)^{\dagger}$

$$
\left.(K M)^{\dagger} K M\right)=\left[\begin{array}{cc}
\left(K_{1} A\right)^{\dagger} K_{1} A & 0 \\
0 & K_{2}(M \mid A)^{\dagger} K_{2}(M \mid A)
\end{array}\right]
$$

Since A is $\mathrm{q}-k_{1}$-EP, (M|A) is q- k_{2}-EP [5]. We have $(K M)(K M)^{\dagger}=(K M)^{\dagger} K M \Rightarrow M^{\dagger} M K=K M M^{\dagger} \Rightarrow M$ is q - k-EP [5]. Thus (i) holds.
(ii) \Rightarrow (iii)
$\left[\begin{array}{cc}K_{1} A & 0 \\ K_{2} C & K_{2}(M \mid A)\end{array}\right]$ is $\mathrm{EP} \Leftrightarrow K_{1} A$ and $K_{2}(M \mid A)$ are EP. $\left[\begin{array}{cc}K_{1} & 0 \\ 0 & K_{2}\end{array}\right]\left[\begin{array}{cc}A & 0 \\ C & (M \mid A)\end{array}\right]$ is $\mathrm{EP} \Leftrightarrow K_{1} A$ and $K_{2}(M \mid A)$ are
EP. $\left[\begin{array}{cc}A & 0 \\ C & (M \mid A)\end{array}\right]$ is $\mathrm{q}-k$-EP $\Leftrightarrow A$ is $\mathrm{q}-k_{1}$-EP and $(M \mid A)$ is q- k_{2}-EP. Further $N(A) \subseteq N(C), \quad N\left((M \mid A)^{*}\right) \subseteq N\left(C^{*}\right)$. Also $\left[\begin{array}{cc}K_{1} A & K_{1} B \\ 0 & K_{2}(M \mid A)\end{array}\right]$ is EP $\Leftrightarrow K_{1} A$ and $K_{2}(M \mid A)$ are EP. $\left[\begin{array}{cc}A & B \\ 0 & (M \mid A)\end{array}\right]$ is $\mathrm{q}-k$-EP $\Leftrightarrow A$ is $\mathrm{q}-k_{1}$-EP and $(M \mid A)$ is q- k_{2}-EP. Further, $N\left(A^{*}\right) \subseteq N\left(B^{*}\right), N(M \mid A) \subseteq N(B)$. Hence the equivalence of (ii) and (iii).
Theorem 2.3. Let M be a matrix, $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ with $N\left(A^{*}\right) \subseteq N\left(B^{*}\right), N\left((M \mid A)^{*}\right) \subseteq N\left(C^{*}\right)$ then the following are equivalent.
(i). M is $q-k$-EP with $k=k_{1} k_{2}$.
(ii). A is $q-k_{1}-E P$ and $(M \mid A)$ is $q-k_{2}-E P$. Further, $N(A) \subseteq N(C), N(M \mid A) \subseteq N(B)$.
(iii). Both the matrices $\left[\begin{array}{cc}A & 0 \\ C & (M \mid A)\end{array}\right]$ and $\left[\begin{array}{cc}A & B \\ 0 & (M \mid A)\end{array}\right]$ are $q-k-E P$.

Proof. Applying the fact M is $\mathrm{q}-\mathrm{k}-\mathrm{EP} \Leftrightarrow M^{*}$ is $\mathrm{q}-\mathrm{k}-\mathrm{EP}$ from Theorem 2.2, the proof is obvious.
Corollary 2.4. Let $M=\left[\begin{array}{cc}A & C^{*} \\ C & D\end{array}\right]$ with $N(A) \subseteq N(C), N(M \mid A) \subseteq N\left(C^{*}\right)$ then the following are equivalent.
(i). M is $q-k-E P$ with $k=k_{1} k_{2}$
(ii). A is $q-k_{1}-E P$ and $(M \mid A)$ is $q-k_{2}-E P$. Further, $N(A) \subseteq N(C), N(M \mid A) \subseteq N(B)$.
(iii). The matrix $\left[\begin{array}{cc}A & 0 \\ C & (M \mid A)\end{array}\right]$ is $q-k-E P$.

Remark 2.5. The conditions on M in Theorem 2.2 and Theorem 2.4 are essential.

For example,
Let $M=\left[\begin{array}{cccc}1 & i & i & i \\ -i & 1 & j & i \\ -i & -j & 1 & k \\ -i & -i & -k & 1\end{array}\right], K=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ and $K M^{*} K=\left[\begin{array}{cccc}1 & i & i & i \\ -i & 1 & j & i \\ -i & -j & 1 & k \\ -i & -i & -k & 1\end{array}\right]=M \Rightarrow M$ is q- k-EP and rank $2 \Rightarrow M$ is
$\mathrm{q}-\mathrm{k}-\mathrm{EP}_{2}$. More over, $A=B=C=\left[\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right] ;(M \mid A)=D-C A^{\dagger} B=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right] ; K_{2}(M \mid A)=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$ is $\mathrm{EP} \Rightarrow(M \mid A)$ is q- k_{2}-EP. $K_{1} A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ is $\mathrm{EP} \Rightarrow A$ is $\mathrm{q}-k_{1}$-EP. $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$, but $N(M \mid A) \not \subset N(B), N\left((M \mid A)^{*}\right) \subseteq$ $N\left(C^{*}\right)$. Further, $K\left[\begin{array}{cc}A & 0 \\ C & (M \mid A)\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & -1\end{array}\right]$ is not EP. $\left[\begin{array}{cc}A & 0 \\ C & (M \mid A)\end{array}\right]$ is not q- k-EP. Similarly, $K\left[\begin{array}{cc}A & B \\ 0 & (M \mid A)\end{array}\right]$ is not EP. $\left[\begin{array}{cc}A & B \\ 0 & (M \mid A)\end{array}\right]$ is not q- k-EP. Thus, Theorem 2.2 and Theorem 2.3 as well as Corollary 2.4 fails.
Remark 2.6. For a $q-k$-EP matrix $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ with $k=k_{1} k_{2}$, the following are equivalent.

$$
\begin{array}{r}
N(A) \subseteq N(C), N(M \mid A) \subseteq N(B) \\
N\left(A^{*}\right) \subseteq N\left(B^{*}\right), N\left((M \mid A)^{*}\right) \subseteq N\left(C^{*}\right) \tag{3}
\end{array}
$$

If we omit the condition, M is $q-k-E P$ then the above fails.

For example, let

$$
\begin{align*}
& M=\left[\begin{array}{llll}
i & 1 & 1 & 0 \\
1 & j & 1 & 0 \\
1 & 1 & k & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \tag{4}\\
& K=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{align*}
$$

$K M=\left[\begin{array}{cccc}i & 1 & 1 & 0 \\ 1 & j & 1 & 0 \\ 1 & 1 & k & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ is not EP. Therefore, M is not q- k-EP. Here $A=\left[\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right]$ is k_{1}-EP. $B=K_{1} C^{*} K_{2}=\left[\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right]$ Thus
$N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$. Hence $(M \mid A)$ is independent of the choice of A^{-}.

$$
K_{2}(M \mid A)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

$K_{2}(M \mid A)$ is not EP. $(M \mid A)$ is not q- k_{2}-EP. Thus $N\left((M \mid A)^{*}\right) \subseteq N\left(C^{*}\right)$ but $N(M \mid A) \subseteq N(B)$. Thus (3) holds while (2) fails.

Remark 2.7. For a k-EP matrix M, the Formula 2.3 gives $(K M)^{\dagger}$ if and only if either (2) or (3) holds.
Corollary 2.8. $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ with $k=k_{1} k_{2}$ for which $(K M)^{\dagger}$ is given by the Formula 2.3. Then M is $q-k-E P$ if and only if A is $q-k_{1}-E P$ and $(M \mid A)$ is $q-k_{2}-E P$.

Proof. This follows from Theorem 2.2 and using Remark 2.11
Theorem 2.9. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ with $\rho(M)=\rho(A)=r$, then M is $q-k-E P_{r}$ with $k=k_{1} k_{2}$ if and only if A is $q-k_{1}-E P_{r}$ and $C A^{\dagger} K_{1}=\left(A^{\dagger} B K_{2}\right)^{*}$.
Proof. Let $K=\left[\begin{array}{cc}K_{1} & 0 \\ 0 & K_{2}\end{array}\right], K M=\left[\begin{array}{cc}K_{1} A & K_{1} B \\ K_{2} C & K_{2} D\end{array}\right]$. Since $\rho(M)=\rho(A)=r, \rho(K M)=\rho\left(K_{1} A\right)=r$. By $[5], N(A) \subseteq$ $N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ and $\left(K M \mid K_{1} A\right)=K_{2}(M \mid A)=0$. From [8], these relations are equivalent to $K_{2} C=K_{2} C A^{\dagger} A$, $K_{1} B=K_{1} B A A^{\dagger}$ and $K_{2} D=K_{2} C A^{\dagger} B$.
Consider, $\quad P=\left[\begin{array}{cc}I & 0 \\ C A^{\dagger} & I\end{array}\right], Q=\left[\begin{array}{cc}I & A^{\dagger} B \\ 0 & I\end{array}\right] \quad$ and $L=\left[\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right] . \quad P, Q \quad$ are non-singular. \quad By assumption, $C A^{\dagger} K_{1}=\left(A^{\dagger} B K_{2}\right)^{*}$, we have $K P=(K Q)^{*}$,

$$
K P L Q=\left[\begin{array}{cc}
K_{1} A & K_{1} A A^{\dagger} B \\
K_{2} C A^{\dagger} A & K_{2} C A^{\dagger} B
\end{array}\right]=\left[\begin{array}{ll}
K_{1} A & K_{1} B \\
K_{2} C & K_{2} D
\end{array}\right]=K M
$$

Since, $K P=(K Q)^{*}, K P^{*} K=Q$, we have $K M=K P L K P^{*} K \Rightarrow K M=(K P)(L K)(K P)^{*}(K P)(K L)(K P)^{*}$, since $K L=L K . \quad$ Since A is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}, K_{1} A$ is $\mathrm{EP}_{r} . \quad K L=\left[\begin{array}{cc}K_{1} A & 0 \\ 0 & 0\end{array}\right]$ is $\mathrm{EP}_{r} \Rightarrow L$ is $\mathrm{q}-k-\mathrm{EP}_{r} . \quad$ Therefore, $N(L)=$ $N\left(L^{*} K\right) N(K L)=N(K L)^{*}$. By [1],

$$
N\left((K P)(K L)(K P)^{*}\right)=N\left((K P)(K L)^{*}(K P)^{*}\right) N(K M)=N(K M)^{*}
$$

$N(M)=N\left(M^{*} K\right) M$ is $\mathrm{q}-k$ - $\mathrm{EP}_{r}[5]$. Since $\rho(M)=r, M$ is $\mathrm{q}-k-\mathrm{EP}_{r}$.
Conversely, let us assume that M is $\mathrm{q}-k$ - EP_{r}. Thus $K M$ is EP_{r} and $K M=K P L Q,(K M)^{-}=Q^{-}\left[\begin{array}{rr}A^{\dagger} & 0 \\ 0 & 0\end{array}\right] P^{-} K$ is EP $\Rightarrow N(K M)=N(K M)^{*}[8]$

$$
\begin{aligned}
(K M)^{*} & =(K M)^{*}(K M)^{-}(K M) \\
{\left[\begin{array}{cc}
K_{1} A & K_{1} B \\
K_{2} C & K_{2} D
\end{array}\right]^{*} } & =\left[\begin{array}{ll}
K_{1} A & K_{1} B \\
K_{2} C & K_{2} D
\end{array}\right]^{*} Q^{-}\left[\begin{array}{rr}
A^{\dagger} & 0 \\
0 & 0
\end{array}\right] P^{-} K\left[\begin{array}{cc}
K_{1} A & K_{1} B \\
K_{2} C & K_{2} D
\end{array}\right] \\
{\left[\begin{array}{cc}
\left(K_{1} A\right)^{*} & \left(K_{2} C\right)^{*} \\
\left(K_{1} B\right)^{*} & \left(K_{2} D\right)^{*}
\end{array}\right] } & =\left[\begin{array}{ll}
\left(K_{1} A\right)^{*} A^{\dagger} A & \left(K_{1} A\right)^{*} A^{\dagger} B \\
\left(K_{1} B\right)^{*} A^{\dagger} A & \left(K_{1} B\right)^{*} A^{\dagger} B
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(K_{1} A\right)^{*}=\left(K_{1} A\right)^{*} A^{\dagger} A N(A)=N\left(\left(K_{1} A\right)^{*}\right) \text { and } \\
& \left(K_{2} C\right)^{*}=\left(K_{1} A\right)^{*} A^{\dagger} B K_{2} C=B^{*}\left(A^{\dagger}\right)^{*}\left(K_{1} A\right)
\end{aligned}
$$

Hence $N(A)=N\left(A^{*} K_{1}\right) A$ is q- k_{1}-EP, since $\rho(A)=\mathrm{r}, A$ is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$

$$
\begin{aligned}
K_{2} C A^{\dagger} & =B^{*}\left(A^{\dagger}\right)^{*}\left(K_{1} A\right) A^{\dagger}=B^{*}\left(A^{\dagger}\right)^{*}\left(K_{1} A A^{\dagger}\right) \\
& =B^{*}\left(A^{\dagger}\right)^{*}\left(A^{\dagger} A K_{1}\right) \quad([5], \text { Theorem 2.4) } \\
& =B^{*}\left(\left(A^{\dagger}\right)^{*}\left(A^{\dagger} A\right)^{*}\left(K_{1}\right)^{*}\right) \quad\left(\text { Since } A^{\dagger} A \text { is hermitian }\right) \\
& =B^{*}\left(\left(A^{\dagger} A A^{\dagger}\right)^{*}\left(K_{1}\right)^{*}\right) \\
K_{2} C A^{\dagger} & =B^{*}\left(A^{\dagger}\right)^{*}\left(K_{1}\right)^{*}=\left(K_{1} A^{\dagger} B\right)^{*}=\left(A^{\dagger} B\right)^{*} K_{1}
\end{aligned}
$$

Also, $C A^{\dagger} K_{1}=K_{2}\left(A^{\dagger} B\right)^{*}=\left(A^{\dagger} B K_{2}\right)^{*}$. The theorem is proved.
Corollary 2.10. Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, with A is a non-singular matrix and $\rho(A)=\rho(M)$, then M is $q-k$ - $E P$ with $k=k_{1} k_{2} \Leftrightarrow C A^{\dagger} K_{1}=K_{2}\left(A^{\dagger} B\right)^{*}=\left(A^{\dagger} B K_{2}\right)^{*}$.

Remark 2.11. The condition on rank of M is essential in Theorem 2.13.
For example, Consider $M=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], K=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ and $K M=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], \rho(K M)=\rho(M)=2$, but $\rho\left(K_{1} A\right)=$ $\rho(A)=1$. Hence $\rho(K M) \neq \rho\left(K_{1} A\right) \Rightarrow \rho(M) \neq \rho(A) K M$ is not EP. M is not q- k-EP. $K_{1} A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is EP. A is $\mathrm{q}^{-} k_{1}$-EP.

$$
A^{\dagger}=\frac{1}{4}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], C A^{\dagger} K_{1}=\frac{1}{4}\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]=\left(A^{\dagger} B K_{2}\right)^{*}
$$

Thus Theorem 2.13 fails.

Corollary 2.12. Let M be a $2 n \times 2 n$ matrix of rank r. Then M is $q-k-E P_{r}$ with $k=k_{1} k_{2} \Leftrightarrow$ Every principal sub matrix of rank r is $q-k_{1}-E P_{r}$.

Proof. Suppose M is $\mathrm{q}-k-\mathrm{EP}_{r}, K M$ is EP_{r}. Let $K_{1} A$ be any principal sub matrix of $K M$ such that $\rho(K M)=\rho\left(K_{1} A\right)=r$ then there exists a permutation matrix P such that $(K M)^{\prime}=P(K M) P^{T}\left[\begin{array}{ll}K_{1} A & K_{1} B \\ K_{2} C & K_{2} D\end{array}\right]$, with $(K M)^{\prime}=\left(K_{1} A\right)=r$. By [1], $(K M)^{\prime}$ is EP_{r}. By Theorem 2.13, $K_{1} A$ is $\mathrm{EP}_{r} \Rightarrow A$ is $\mathrm{q}^{-} k_{1}-\mathrm{EP}_{r}$. Since A is arbitrary, every principal sub matrix of rank r is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$.

Definition 2.13. M_{1} and M_{2} are called complementary summands of M if $M=M_{1}+M_{2}$ and $\rho(M)=\rho\left(M_{1}\right)+\rho\left(M_{2}\right)$.
Theorem 2.14. Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, with $\rho(M)=\rho(A)+\rho(M \mid A)$ where $(M \mid A)=D-C A^{\dagger} B$. If A is $q-k_{1}-E P$ and $(M \mid A)$ is $q-k_{2}-E P$ such that $C A^{\dagger} K_{1}=\left(A^{\dagger} B K_{2}\right)^{*}$ and $B(M \mid A)^{\dagger} K_{2}=\left((M \mid A)^{\dagger} C K_{1}\right)^{*}$ then M can be decomposed into complementary summands of $q-k-E P$ matrices.

Proof. Consider, $\quad M_{1}=\left[\begin{array}{cc}A & A A^{\dagger} B \\ C A^{\dagger} A & C A^{\dagger} B\end{array}\right], \quad M_{2}=\left[\begin{array}{cc}0 & \left(I-A A^{\dagger}\right) B \\ C\left(I-A A^{\dagger}\right) & (M \mid A)\end{array}\right] \quad$ such that $\quad N(A) N\left(C A^{\dagger} A\right)$, $N\left(A^{*} K_{1}\right) N\left(\left(A A^{\dagger} B\right)^{*} K_{1}\right)$ and

$$
\left.\left(M_{1} \mid A\right)=C A^{\dagger} B-\left(C A^{\dagger} A\right) A^{-}\left(A A^{\dagger} B\right)=C A^{\dagger} B-C A^{\dagger}\left(A A^{-} A\right) A^{\dagger} B\right)=0
$$

By [3], $\rho\left(M_{1}\right)=\rho(A)$. Since A is $\mathrm{q}-k_{1}$-EP and

$$
\left(C A^{\dagger} A\right) A^{\dagger} K_{1}=C\left(A^{\dagger} A A^{\dagger}\right) K_{1}=C A^{\dagger} K_{1}=\left(A^{\dagger} B K_{2}\right)^{*}=\left(A^{\dagger}\left(A A^{\dagger} B\right) K_{2}\right)^{*}
$$

By Theorem 2.13, M_{1} is $\mathrm{q}-k_{1}$-EP. Since, $\rho(M)=\rho(A)+\rho(M \mid A)$. By [3], $N(M \mid A) \subseteq N\left(C\left(I-A^{\dagger} A\right) B\right)$

$$
N(M \mid A)^{*} \subseteq N\left(C\left(I-A^{\dagger} A\right)^{*}\right) \text { and }\left(I-A A^{\dagger}\right) B(M \mid A)^{\dagger} \subseteq\left(I-A^{\dagger} A\right)=0
$$

Therefore, $\left(M_{2} \mid(M \mid A)\right)=0$. By [3], $\left(M_{2}\right)=\rho(M \mid A)$. Hence, $(M)=\left(M_{1}\right)+\left(M_{2}\right)$. Further, $A A^{\dagger} K_{1}=K_{1} A^{\dagger} A$

$$
\begin{aligned}
\left(I-A A^{\dagger}\right) B(M \mid A)^{\dagger} K_{2} & =\left(I-A A^{\dagger}\right)\left((M \mid A)^{\dagger} C K_{1}\right)^{*}=\left((M \mid A)^{\dagger} C K_{1}\left(I-A A^{\dagger}\right)^{*}\right)^{*} \\
& =\left((M \mid A)^{\dagger} C\left(I-A^{\dagger} A\right) K_{1}\right)^{*}
\end{aligned}
$$

By Theorem 2.13, M_{2} is q- k_{2}-EP. Clearly, $M=M_{1}+M_{2}$ and $\rho(M)=\rho\left(M_{1}\right)+\rho\left(M_{2}\right)$. Hence M_{1} and M_{2} are complementary summands of $q-k$-EP matrices.

Remark 2.15. Any matrix represented as the sum of complementary summands of $q-k-E P$ matrices is $q-k-E P$. If $M=\sum_{i=1}^{n} M_{i}$ such that M_{i} is $q-k-E P$ and $(M)=\left(\sum_{i=1}^{n} M_{i}\right)$. Then $N(M)=\bigcap_{i=1}^{n} N\left(M_{i}\right)=\bigcap_{i=1}^{n} N\left(M_{i}{ }^{*} K\right)\left(M_{i}\right.$ is $\left.q-k-E P\right) . N(M)=N\left(M^{*} K\right)$. Thus M is $q-k-E P$.

3. Factorization of q-k-EP matrices

Throughout this section, M is a $2 n \times 2 n$ matrix of the form,

$$
M=\left[\begin{array}{ll}
A & B \tag{5}\\
C & D
\end{array}\right] \quad \text { with } \rho(M)=\rho(A)=r
$$

Where A is $n \times n$ and D is $n \times n$. If M is $\mathrm{q}-k$-EP with $k=k_{1} k_{2}$ then the associated permutation matrix K is of the form,

$$
K=\left[\begin{array}{cc}
K_{1} & 0 \tag{6}\\
0 & K_{2}
\end{array}\right]
$$

where K_{1} is the associated permutation $n \times n$ matrix of k_{1} and K_{2} is the associated permutation $n \times n$ matrix of k_{2}.

$$
K M=\left[\begin{array}{ll}
K_{1} A & K_{1} B \tag{7}\\
K_{2} C & K_{2} D
\end{array}\right] \text { and } \rho(A)=\rho(M)=r
$$

By [3],

$$
\begin{equation*}
N\left(K_{1} A\right) \subseteq N\left(K_{2} C\right), N\left(A^{*} K_{1}\right) \subseteq N\left(B^{*} K_{1}\right), D=C A^{\dagger} B \tag{8}
\end{equation*}
$$

Also let

$$
M K=\left[\begin{array}{ll}
A K_{1} & B K_{1} \tag{9}\\
C K_{2} & D K_{2}
\end{array}\right] \text { and } \rho(A)=\rho(M)=r
$$

Again by [3],

$$
\begin{equation*}
N\left(A K_{1}\right) \subseteq N\left(C K_{1}\right), N\left(K_{1} A^{*}\right) \subseteq N\left(K_{2} B^{*}\right), D=C A^{\dagger} B \tag{10}
\end{equation*}
$$

Lemma 3.1. If M is $q-k$ - $E P_{r}$ of the form (5) with $k=k_{1} k_{2}$ then there exists a $(p \times 2 n-p)$ matrix X such that

$$
K M=\left[\begin{array}{cc}
K_{1} A & K_{1} A X \tag{11}\\
X^{*} K_{1} A & X^{*} K_{1} A X
\end{array}\right]
$$

And A is $q-k_{1}-E P_{r}$.

Proof. Since $K M$ is of the form (7) and $\rho(A)=\rho(M)$ then (8) holds. Hence there is an ($p \times 2 n-p$) matrix X such that $K_{2} C=Y K_{1} A$ and $B=A X$. By [8], since M is $\mathrm{q}-k-\mathrm{EP}_{r}$, By Theorem 2.13, A is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$ and

$$
C A^{\dagger} K_{1}=\left(A^{\dagger} B K_{2}\right)^{*}
$$

Also by Theorem 2.4 [5], A is q- $k_{1}-\mathrm{EP}_{r} . K_{1} A A^{\dagger}=A A^{\dagger} K_{1} A A^{\dagger} K_{1}=K_{1} A A^{\dagger}$. Since, $C A^{\dagger} K_{1}=\left(A^{\dagger} B K_{2}\right)^{*}$

$$
K_{2} C A^{\dagger} K_{1}=\left(A^{\dagger} B\right)^{*} Y K_{1} A=X^{*} K_{1} A
$$

Also, $K_{2} D=K_{2} C A^{\dagger} B=Y K_{1} A X=X^{*} K_{1} A X$. Hence, $K M$ is of the form (11).

Lemma 3.2. If M is q - k - EP P_{r} of the form (5) with $k=k_{1} k_{2}$ then there exists a $(p \times 2 n-p)$ matrix X such that

$$
M K=\left[\begin{array}{cc}
A K_{1} & A K_{1} X \tag{12}\\
X^{*} A K_{1} & X^{*} A K_{1} X
\end{array}\right]
$$

And A is $q-k_{1}-E P_{r}$.

Proof. Since $M K$ is of the form (9) and $\rho(A)=\rho(M)$ then (10) holds. Hence there is an ($2 n-p \times p$) matrix Y such that $B K_{2}=A K_{1} X$ and $\mathrm{C}=Y A$. By [8], since M is $\mathrm{q}-k-\mathrm{EP}_{r}$, by Theorem 2.13, A is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$ and

$$
\begin{aligned}
C A^{\dagger} K_{1} & =\left(A^{\dagger} B K_{2}\right)^{*} \\
Y A A^{\dagger} K_{1} & =\left(A^{\dagger} A K_{1} X\right)^{*} Y A K_{1}=X^{*} A K_{1}
\end{aligned}
$$

Also,

$$
\begin{aligned}
D K_{2} & =C A^{\dagger} B K_{2} \\
& =Y A K_{1} X \\
& =X^{*} A K_{1} X
\end{aligned}
$$

Hence, $M K$ is of the form (12).
Theorem 3.3. If M is $q-k-E P_{r}$ of the form (5) and A is $q-k_{1}-E P_{r}$, then M is a product of $q-k$ - $E P_{r}$ matrices.

Proof. If M is $\mathrm{q}-k-\mathrm{EP}_{r}$ of the form (5) then it satisfies $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right), D=C A^{\dagger} B$, hence there exists X and Y such that $C=Y A, B=A X, D=C A^{\dagger} B=Y A A^{\dagger} A X=Y A X$. Consider the matrices, $S K=\left[\begin{array}{cc}A^{\dagger} A K_{1} & A A^{\dagger} Y^{*} K_{2} \\ Y A A^{\dagger} K_{1} & Y A A^{\dagger} Y^{*} K_{2}\end{array}\right], K L=\left[\begin{array}{cc}K_{1} A & 0 \\ 0 & 0\end{array}\right]$ and $T K=\left[\begin{array}{cc}A^{\dagger} A K_{1} & A A^{\dagger} X K_{2} \\ X^{*} A^{\dagger} A K_{1} & X^{*} A^{\dagger} A X K_{2}\end{array}\right]$. By Theorem 2.13, S, L and T are $\mathrm{q}-k$-EP ${ }_{r}$. Also,

$$
(S K)(K L)(T K)=\left[\begin{array}{cc}
A K_{1} & A X K_{2} \\
Y A K_{1} & Y A X K_{2}
\end{array}\right]=\left[\begin{array}{cc}
A K_{1} & B K_{2} \\
C K_{1} & D K_{2}
\end{array}\right]=M K
$$

Thus, $M K$ is a product of $S K, K L$ and $T K$ are all $\mathrm{q}-k$-EP $_{r}$ matrices. Therefore, $M=S L T$.
Lemma 3.4. Let $L=\left[\begin{array}{cc}E & F \\ G & H\end{array}\right]$ be a $2 n \times 2 n$ matrix of rank r. If E is an $n \times n$ non-singular matrix, then $L=S\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right] T$, where S, T are $q-k-E P_{r}$ matrices.
Proof. $L=K P\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right] K Q$, where P, Q are non-singular matrix and K is the permutation matrix $\left[\begin{array}{cc}K_{1} & 0 \\ 0 & K_{2}\end{array}\right]$. If we write $P=\left[\begin{array}{cc}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right], P=\left[\begin{array}{cc}\widehat{A_{1}} & \widehat{B_{1}} \\ \widehat{C_{1}} & \widehat{D_{1}}\end{array}\right]$ then $L=\left[\begin{array}{cc}\left(K_{1} A_{1}\right)\left(K_{1} \widehat{\left.A_{1}\right)}\right. & \left(K_{1} A_{1}\right)\left(K_{1} \widehat{\left.B_{1}\right)}\right. \\ \left(K_{2} C_{1}\right)\left(K_{1} \widehat{A_{1}}\right) & \left(K_{2} C_{1}\right)\left(K_{1} \widehat{\left.B_{1}\right)}\right.\end{array}\right]$ and $\left(K_{1} A_{1}\right)\left(K_{1} \widehat{\left.A_{1}\right)}=E\right.$ is non-singular. Thus, $K_{1} A,\left(K_{1} \widehat{A)}\right.$ are non-singular. So, $\left[\begin{array}{c}K_{1} A_{1} \\ K_{2} C_{1}\end{array}\right]$ and $\left[\begin{array}{ll}K_{1} \widehat{A_{1}} & K_{2} \widehat{B_{1}}\end{array}\right]$ have rank r. Thus there is an $2 n-r \times r$ matrix X and $r \times 2 n-r$ matrix Y such that $X K_{1} A_{1}=K_{2} C_{1}$ and $\widehat{A_{1}} Y=\widehat{B_{1}}$. Put $S=\left[\begin{array}{cc}K_{1} A_{1} & K_{1} A_{1} X^{*} \\ X K_{1} A_{1} & X K_{1} A_{1} X^{*}\end{array}\right], T=\left[\begin{array}{cc}K_{1} \widehat{A_{1}} & K_{1} \widehat{A_{1}} Y \\ Y^{*} K_{1} \widehat{A_{1}} & Y^{*} K_{1} \widehat{A_{1}} Y\end{array}\right]$. Now,

$$
S\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] T=\left[\begin{array}{cc}
K_{1} A_{1} & K_{1} A_{1} X^{*} \\
X K_{1} A_{1} & X K_{1} A_{1} X^{*}
\end{array}\right]\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
K_{1} \widehat{A_{1}} & K_{1} \widehat{A_{1}} Y \\
Y^{*} K_{1} \widehat{A_{1}} & Y^{*} K_{1} \widehat{A_{1}} Y
\end{array}\right]=L
$$

By [1], $K S$ and $K T$ are EP_{r} matrices. Hence, S, T are $\mathrm{q}-k-\mathrm{EP}_{r}$ matrices. Any matrix $A H_{2 n \times 2 n}$ of rank r is called a P_{r} matrix if it has a principal $r \times r$ non-singular matrix.

Lemma 3.5. Let M be a $2 n \times 2 n$ matrix of order r. If M is a P_{r} matrix then M is a product of q - k - $E P_{r}$ matrices.

Proof. Let M be a $2 n \times 2 n$ matrix of order r having E as a principal $r \times r$ non-singular sub matrix, there is a permutation matrix P such that $P M P^{T}=\left[\begin{array}{cc}E & F \\ G & H\end{array}\right]$. By Lemma 3.12, $\left[\begin{array}{cc}E & F \\ G & H\end{array}\right]=S\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right] T$, where $S, \mathrm{~T}$ are $\mathrm{q}-k$ - EP_{r} matrices. Hence,

$$
\begin{aligned}
P M P^{T} & =S\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right] T \\
M & =P^{T} S\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right] T P \\
M & =\left(P^{T} S P\right) P\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right] P(P T P)
\end{aligned}
$$

Since S, T are $\mathrm{q}-k$ - EP_{r} matrices, $P^{T} S P$ and $P^{\dagger} T P$ are $\mathrm{q}-k-\mathrm{EP}_{r}$ matrices. Thus, M is a product of $\mathrm{q}-k$ - EP_{r} matrices.

Remark 3.6. The converse of Theorem 3.13 need not be true.
Example 3.7. Let $A=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & i \\ -i & 0 & 0\end{array}\right], B=\left[\begin{array}{ccc}0 & 0 & j \\ 0 & 0 & -j \\ 1 & 1 & 0\end{array}\right], C=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & k & 0 \\ 0 & -k & 0\end{array}\right]$. For $K=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ where A, B, C are $q-k$ - $E P$
matrices of rank 2. But $A B C=\left[\begin{array}{ccc}0 & 0 & 0 \\ i & j & -i \\ 0 & 1 & 0\end{array}\right]$ has rank 2, does not have a P_{2} matrices. More over, ABC is not $q-k-E P$.
Lemma 3.8. Let $A=\left[\begin{array}{cc}E & F \\ G & H\end{array}\right]$ be a $q-k-E P_{r}$ matrix with $k=k_{1} k_{2} . K_{1} E$ is an r x r matrix and $\left[K_{1} E\right.$ K $\left.F\right]$ has rank r, then $K_{1} E$ is non-singular.
Proof. $\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}K_{1} & 0 \\ 0 & K_{2}\end{array}\right]\left[\begin{array}{cc}E & F \\ G & H\end{array}\right]=\left[\begin{array}{cc}K_{1} E & K_{1} F \\ 0 & 0\end{array}\right] \quad$ where I_{r} is the r 有 r identity matrix. By [2], $\left[\begin{array}{cc}K_{1} & 0 \\ 0 & K_{2}\end{array}\right]\left[\begin{array}{cc}E & F \\ G & H\end{array}\right]\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}K_{1} E & 0 \\ K_{2} G & 0\end{array}\right]$ has rank r. By [8], $K_{1} E$ has rank r. Thus $K_{1} E$ is non-singular.

Theorem 3.9. Let A and B be $2 n \times 2 n$ q- $k-E P$ matrices with $k=k_{1} k_{2}$. If $A B$ has rank r, then $A B$ is unitarily similar to a P_{r} matrix.

Proof. Since A is $\mathrm{q}-k$ - EP_{r}, by [5], there is a unitary matrix U such that A is unitarily k-similar to a diagonal block $\mathrm{q}-k-\mathrm{EP}_{r}$ matrix $\left[\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right]$ where D is a r x r non-singular matrix.

$$
A=K U K\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right]{ }^{*}{ }^{*} \Rightarrow U^{*}(K A) U=K\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right]
$$

Put $U^{*}(B K) U=\left[\begin{array}{cc}E & F \\ H & G\end{array}\right]$ where E is r x r matrix. Then

$$
\begin{gathered}
U^{*}(K A)(B K) U=K\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
E & F \\
H & G
\end{array}\right] \\
(K U)^{*} A B(K U)=\left[\begin{array}{cc}
K_{1} D E & K_{1} D F \\
0 & 0
\end{array}\right] \text { has rank r. }
\end{gathered}
$$

Thus $K_{1} D\left[\begin{array}{ll}E & F\end{array}\right]$ has rank r, it follows $\left[\begin{array}{ll}E & F\end{array}\right]$ has rank r. By Lemma $3.16, K_{1} E$ is non-singular. Thus $(K U)^{*} A B(K U)$ is a P_{r} matrix. $A B$ is unitarily similar to a P_{r} matrix.

Theorem 3.10. Let A and B be $n \times n$ matrices. If A has rank r, B and $A B$ are $q-k-E P_{r}$ matrices, then A is a product $q-k-E P_{r}$ of matrices.

$$
U^{*} B K U=\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] K, U^{*} B K U=\left[\begin{array}{cc}
D K_{1} & 0 \\
0 & 0
\end{array}\right]
$$

Put $U^{*}(K A) U=\left[\begin{array}{cc}E & F \\ H & G\end{array}\right]$ where E is $\mathrm{r} x \mathrm{r}$ matrix and U is unitary. Then

$$
\begin{aligned}
\left(U^{*} K A U\right)\left(\left(U^{*} B K U\right)\right. & =\left[\begin{array}{ll}
E & F \\
H & G
\end{array}\right]\left[\begin{array}{cc}
D K_{1} & 0 \\
0 & 0
\end{array}\right] \\
\Rightarrow U^{*} K A B K U & =\left[\begin{array}{lll}
E D K_{1} & 0 \\
G D K_{1} & 0
\end{array}\right] \\
\Rightarrow(K U)^{*} A B(K U) & =\left[\begin{array}{lll}
E D K_{1} & 0 \\
G D K_{1} & 0
\end{array}\right]
\end{aligned}
$$

Since $A B$ is q- k - EP_{r}, by [5], $G D K_{1}=0$. Hence $G=0 . E$ is non-singular. Applying Lemma 3.12, A is a product of q- k - EP_{r} matrices.

Remark 3.11. The condition on $\rho(A)=r$ is essential. If $\rho(A) \neq r$ then Theorem 3.18 fails.
For example, Let $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and let $K=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Here $\rho(A)=1, \rho(B)=0 . B$ is q-k-EP $0 . A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is $\mathrm{q}-k-\mathrm{EP}_{0}$. Here $B=A B$. Hence the Statement of 3.18 fails.

Theorem 3.12. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right], L=\left[\begin{array}{cc}P & Q \\ R & S\end{array}\right]$ be $q-k-E P_{r}$ matrices with $k=k_{1} k_{2}$ and $M L$ be of rank r. Then the following are equivalent.
(1). $M L$ is $q-k-E P_{r}$
(2). $A P$ is $q-k_{1}-E P_{r}$ and $C A^{\dagger} K_{1}=K_{2} R P^{\dagger}$
(3). $A P$ is $q-k_{1}-E P_{r}$ and $A^{\dagger} B K_{2}=K_{1} P^{\dagger} Q$

Proof.

$$
\begin{aligned}
M K & =\left[\begin{array}{ll}
A K_{1} & B K_{2} \\
C K_{1} & D K_{2}
\end{array}\right], \quad K L=\left[\begin{array}{cc}
K_{1} P & K_{1} Q \\
K_{2} R & K_{2} S
\end{array}\right] \\
(M K)(K L) & =\left[\begin{array}{cc}
A K_{1}\left(1+X Y^{*}\right) K_{1} P & A K_{1}\left(1+X Y^{*}\right) K_{1} P Y \\
X^{*} A K_{1}\left(1+X Y^{*}\right) K_{1} P & X^{*} A K_{1}\left(1+X Y^{*}\right) K_{1} P Y
\end{array}\right] \\
M L & =\left[\begin{array}{cc}
A K_{1} Z K_{1} P & A K_{1} Z K_{1} P Y \\
X^{*} A K_{1} Z K_{1} P & X^{*} A K_{1} Z K_{1} P Y
\end{array}\right], Z=1+X Y^{*}
\end{aligned}
$$

Clearly,

$$
\begin{aligned}
& N\left(A K_{1} Z K_{1} P\right) \subseteq N\left(X^{*} A K_{1} Z K_{1} P Y\right) \\
& N\left(A K_{1} Z K_{1} P\right)^{*} \subseteq N\left(X^{*} A K_{1} Z K_{1} P Y\right)^{*}
\end{aligned}
$$

Schur complement of $A K_{1} Z K_{1} P$ in $M L$,

$$
\left(M L \mid A K_{1} Z K_{1} P\right)=\left(X^{*} A K_{1} Z K_{1} P Y\right)-\left(X^{*} A K_{1} Z K_{1} P\right)\left(A K_{1} Z K_{1} P\right)^{\dagger}\left(A K_{1} Z K_{1} P Y\right)=0
$$

By [3], $\rho\left(A K_{1} Z K_{1} P\right)=\rho(M L)=r$. Hence by Theorem 2.13, A and P are both $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$ matrices.

$$
\begin{equation*}
C A^{\dagger} K_{1}=\left(A^{\dagger} B K_{2}\right)^{*}, R P^{*} K_{1}=\left(P^{\dagger} Q K_{2}\right)^{*} \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
R\left(A K_{1} Z K_{1} P\right) \subseteq R\left(A K_{1}\right) & =R(A) \\
R\left(A K_{1} Z K_{1} P\right)^{*} \subseteq R\left(P^{*} K_{1}\right) & =R\left(P^{*}\right)=R\left(K_{1} P\right) \quad\left(\text { Since } P \text { is q- } k_{1}-\mathrm{EP}\right) \\
\text { and } \rho\left(A K_{1} Z K_{1} P\right) & =\rho(A)=\rho\left(K_{1} P\right)=r
\end{aligned}
$$

Hence, $R\left(A K_{1} Z K_{1} P\right)=R(A) ; R\left(A K_{1} Z K_{1} P\right)^{*}=R\left(K_{1} P\right)$

$$
\begin{equation*}
\left(A K_{1} Z K_{1} P\right)\left(A K_{1} Z K_{1} P\right)^{\dagger}=\left(A K_{1}\right)\left(A K_{1}\right)^{\dagger} \tag{14}
\end{equation*}
$$

By [2],

$$
\begin{equation*}
\left(A K_{1} Z K_{1} P\right)^{\dagger}\left(A K_{1} Z K_{1} P\right)=\left(K_{1} P\right)\left(K_{1} P\right)^{\dagger} \tag{15}
\end{equation*}
$$

$M L$ is $\mathrm{q}-k-\mathrm{EP}_{r} \Leftrightarrow(M K)(K L)$ is $\mathrm{EP}_{r} \Leftrightarrow A K_{1} Z K_{1} P$ is EP_{r} (By Theorem 2.13)

$$
\begin{aligned}
\left(X^{*} A K_{1} Z K_{1} P\right)\left(A K_{1} Z K_{1} P\right)^{\dagger} & =\left(A K_{1} Z K_{1} P\right)^{\dagger}\left(A K_{1} Z K_{1} P Y\right)^{*} \\
\Leftrightarrow R\left(A K_{1} Z K_{1} P\right) & =R\left(A K_{1} Z K_{1} P\right)^{*} \quad(B y \quad(15)) \\
X^{*}\left(A K_{1}\right)\left(A K_{1}\right)^{\dagger} & =Y^{*}\left(K_{1} P\right)\left(K_{1} P\right)^{\dagger} \\
R(A) & =R\left(K_{1} P\right) \text { and by (14) } \\
\left(X^{*} A K_{1}\right)\left(K_{1} A^{\dagger}\right) & =\left(Y^{*} K_{1} P\right)\left(P^{\dagger} K_{1}\right)
\end{aligned}
$$

Since A and P are both $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$ matrices, $\Leftrightarrow A P$ is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}, C K_{1} K_{1} A^{\dagger}=K_{2} R P^{\dagger} K_{1} \Leftrightarrow A P$ is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$ and $C A^{\dagger} K_{1}=K_{2} R P^{\dagger} \Leftrightarrow A P$ is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$ and $\left(A^{\dagger} B K_{2}\right)^{*}=K_{2}\left(P^{\dagger} Q K_{2}\right)^{*} \Leftrightarrow A P$ is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$ and $A^{\dagger} B K_{2}=K_{1} P^{\dagger} Q$. Thus, $M L$ is $\mathrm{q}-k-\mathrm{EP}_{r} \Leftrightarrow A P$ is $\mathrm{q}-k_{1}-\mathrm{EP}_{r}$ and $A^{\dagger} B K_{2}=K_{1} P^{\dagger} Q$.

4. Pivotal Transform on q-k-EP Matrices

Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ then a principal re-arrangement of square matrix M (i.e) $P^{T} M P$, where P is a permutation matrix, $P^{T} M P=\left[\begin{array}{ll}D & C \\ B & A\end{array}\right]$, where P is a permutation matrix $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Let us consider a system of Linear equations, $M z=t$, where $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ satisfying $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$. If z and t are partitioned conformably as $z=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $t=\left[\begin{array}{l}u \\ v\end{array}\right]$. Then $A x+B y=u, C x+D y=v$. Then by [7, P.21] we can solve for x and v as

$$
x=A^{\dagger} u^{-} A^{\dagger} B y, v=C A^{\dagger} u+\left(D-C A^{\dagger} B\right) y
$$

Thus a matrix $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ satisfying $N(A) N(C), N\left(A^{*}\right) N\left(B^{*}\right)$ can be transformed into the matrix,

$$
\widehat{M}=\left[\begin{array}{cc}
A^{\dagger} & -A^{\dagger} B \tag{16}\\
C A^{\dagger} & (M \mid A)
\end{array}\right]
$$

\widehat{M} is called a principal pivot transform of M.
Lemma 4.1. Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ with $N(A) \subseteq N(C), N(D) \subseteq N(B)$ then the following are equivalent.
(i). M is q-k-EP with $k=k_{1} k_{2}, N(M \mid A) \subseteq N(B), N(M \mid D) \subseteq N(C)$
(ii). A and $M \mid D$ are $q-k_{1}-E P$ and D and $(M \mid A)$ are $q-k_{2}-E P$.

Further, $N(A)=N(M \mid D) \subseteq N\left(B^{*} K_{1}\right)$ and $N(D)=N(M \mid A) \subseteq N\left(C^{*} K_{2}\right)$.

Proof. $\quad(i) \Rightarrow(i i)$: Since M is q- k-EP with $k=k_{1} k_{2}, N(A) \subseteq N(C), N(M \mid A) \subseteq N(B)$. By Theorem 2.2, A is q- k_{1}-EP and $(M \mid A)$ is q- k_{2}-EP; $N\left(A^{*} K_{1}\right) \subseteq N\left(B^{*} K_{1}\right)$ and $N\left((M \mid A)^{*} K_{2}\right) \subseteq N\left(C^{*} K_{2}\right)$. Since A is q- k_{1}-EP, $N\left(A^{*} K_{1}\right)=N(A)$ (By Definition of q- k-EP). Therefore, $N(A)=N\left(B^{*} K_{1}\right)$. Since M is $\mathrm{q}-k$-EP, $K M$ is EP, implies the principal rearrangement $P^{T} K M P=\left[\begin{array}{ll}K_{1} D & K_{2} C \\ K_{1} B & K_{1} A\end{array}\right]$ is also EP.
Further $N\left(K_{2} D\right) \subseteq N\left(K_{1} B\right)$ and $N\left(K_{1}(M \mid D)\right) \subseteq N\left(K_{2} C\right)$ holds. Hence by Theorem $2.2, K_{2} D$ is EP. $K_{1}(M \mid D)$ is EP. $N\left(\left(K_{2} D\right)^{*}\right) \subseteq N\left(\left(K_{2} C\right)^{*}\right)$ and $N\left(K_{1}(M \mid D)\right) \subseteq N\left(\left(K_{1} B\right)^{*}\right)$. Thus We have, D is $\mathrm{q}-k_{2}$-EP, $(M \mid D)$ is $\mathrm{q}-k_{1}-$ EP. $N\left(D^{*} K_{2}\right) \subseteq N\left(C^{*} K_{2}\right)$ and $N\left(K_{1}(M \mid D)\right) \subseteq N\left(B^{*} K_{1}\right)$. Since, D is q- k_{2}-EP, by Definition, $N\left(D^{*} K_{2}\right)=N(D)$. Thus, $N(D) \subseteq N\left(C^{*} K_{2}\right)$. Since the relations, $N(A) \subseteq N(C), N\left(A^{*} K_{1}\right) \subseteq N\left(B^{*} K_{1}\right), N(M \mid A) \subseteq N(B)$ and $N\left((M \mid A)^{*} K_{2}\right) \subseteq N\left(C^{*} K_{2}\right)$ holds for $K_{1} A$. According to the assumptions and from [7],

$$
(K M)^{\dagger}=\left[\begin{array}{cc}
\left(K_{1} A\right)^{\dagger}+\left(K_{1} A\right)^{\dagger}\left(K_{1} B\right)(M \mid A)^{\dagger} K_{2}\left(K_{1} A\right)^{\dagger} & -\left(K_{1} A\right)^{\dagger}\left(K_{1} B\right) K_{2}(M \mid A)^{\dagger} \tag{17}\\
-K_{2}(M \mid A)^{\dagger} K_{2} C\left(K_{1} A\right)^{\dagger} & K_{2}(M \mid A)^{\dagger}
\end{array}\right]
$$

Using $K_{2} C=\left(K_{2}(M \mid A)\left(K_{2}(M \mid A)^{\dagger}\left(K_{2} C\right) \text { and } K_{1} B=\left(K_{1} A\right)\left(K_{1} A\right)\right)^{\dagger}\left(K_{1} B\right)\right.$

$$
\left.(K M)^{\dagger} K M\right)=\left[\begin{array}{cc}
\left(K_{1} A\right)\left(K_{1} A\right)^{\dagger} & 0 \tag{18}\\
0 & \left(K_{2}(M \mid A)\right)\left(K_{2}(M \mid A)\right)^{\dagger}
\end{array}\right]
$$

Since the relations, $N(D) \subseteq N(B), N\left(D^{*} K_{2}\right) \subseteq N\left(C^{*} K_{2}\right), N((M \mid D)) \subseteq N(C)$ and $N\left((M \mid D)^{*} K_{1}\right) \subseteq N\left(B^{*} K_{1}\right)$ holds for $K_{1} D$, according to the assumptions by Theorem 1.2,

$$
(K M)^{\dagger}=\left[\begin{array}{cc}
\left(K_{1}(M \mid D)\right)^{\dagger} & -\left(K_{1} A\right)^{\dagger}\left(K_{1} B\right) K_{2}(M \mid A)^{\dagger} \tag{19}\\
-\left(K_{2} D\right)^{\dagger} K_{2} C\left(K_{1}(M \mid D)\right)^{\dagger} & K_{2}(M \mid A)^{\dagger}
\end{array}\right]
$$

Using $K_{2} C=\left(K_{2} D\right)\left(K_{2}(D)^{\dagger}\left(K_{2} C\right), C=D D^{\dagger} C\right.$ and $K_{1} B=\left(K_{1} A\right)\left(K_{1} A\right)^{\dagger}\left(K_{1} B\right), B=A A^{\dagger} B \quad$ in (19)

$$
(K M)(K M)^{\dagger}=\left[\begin{array}{cc}
K_{1}(M \mid D)\left(K_{1}(M \mid D)\right)^{\dagger} & 0 \tag{20}\\
0 & K_{2}(M \mid A) K_{2}(M \mid A)^{\dagger}
\end{array}\right]
$$

Comparing (18) and (20),

$$
\left.\left(K_{1} A\right)\left(K_{1} A\right)\right)^{\dagger}=K_{1}(M \mid D)\left(K_{1}(M \mid D)\right)^{\dagger} \Rightarrow K_{1} A A^{\dagger} K_{1}=K_{1}(M \mid D)\left(K_{1}(M \mid D)^{\dagger} K_{1}\right.
$$

Thus, $A A^{\dagger}=(M \mid D)(M \mid D)^{\dagger}$. Since A and $\quad(M \mid D)$ are $\mathrm{q}^{-} k_{1}$-EP, $\quad\left(K_{1} A\right)^{\dagger}\left(K_{1} A\right)=\left(K_{1}(M \mid D)^{\dagger}\left(K_{1}(M \mid D)\right)\right.$; $A^{\dagger} A=(M \mid D)^{\dagger}(M \mid D)$. Thus, $N(A)=N(M \mid D)$ [3]. Similarly, we can obtain the expressions for $(K M)^{\dagger}(K M)$. Comparing $D^{\dagger} D=(M \mid A)^{\dagger}(M \mid A) \Rightarrow N(D)=N(M \mid A)$.
(ii) $\Rightarrow(i): N(M \mid A) \subseteq N(B)$ follows directly from $N(M \mid A)=N(D) \subseteq N(B)$. Similarly, $N(M \mid D) \subseteq N(C)$ follows from $N(M \mid D)=N(A) \subseteq N(C)$. Now A is $\mathrm{q}-k_{1}$-EP and $(M \mid A)$ is q- k_{2}-EP satisfying the relations $N(A) \subseteq$ $N(C), N\left(A^{*} K_{1}\right) \subseteq N\left(B^{*} K_{1}\right), N(M \mid A) \subseteq N(B)$ and $N\left((M \mid A)^{*} K_{2}\right) \subseteq N\left(C^{*} K_{2}\right)$. Hence by Theorem 2.2, M is q- k-EP. Thus (i) holds.

Theorem 4.2. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ be a $q-k-E P_{r}$ matrix with $k=k_{1} k_{2}, \quad N(A) \subseteq N(C), \quad N(D) \subseteq N(B), \quad N(M \mid A) \subseteq$ $N(B)$ and $N(M \mid D) \subseteq N(C)$. Then the following are hold.
(i). Principal sub-matrix A is $q-k_{1}-E P$ and principal sub-matrix D is $q-k_{2}-E P$.
(ii). The schur complement $(M \mid A)$ is $q-k_{2}-E P$ and the schur complement $(M \mid D)$ is $q-k_{1}-E P$.
(iii). Each principal pivot transforms of M is $q-k-E P_{r}$.

Proof. (i) and (ii) are consequences of Lemma 4.1
(iii): By Lemma 4.1, $K M$ satisfies $N(A) \subseteq N(C), N\left(A^{*} K_{1}\right) \subseteq N\left(B^{*} K_{1}\right)$ hence by pivoting the block $K_{1} A$, the principal pivot transform $\widehat{K M}$ of $K M$ is of the form $\widehat{K M}=\left[\begin{array}{cc}\left(K_{1} A\right)^{\dagger} & -\left(K_{1} A\right)^{\dagger}\left(K_{1} B\right) \\ \left(K_{2} C\right)\left(K_{1} A\right)^{\dagger} & K_{2}(M \mid A)\end{array}\right]$

$$
\widehat{K M}=\left[\begin{array}{cc}
A^{\dagger} K_{1} & -A^{\dagger} B \tag{21}\\
K_{2} C A^{\dagger} K_{1} & K_{2}(M \mid A)
\end{array}\right]
$$

In $\widehat{K M}, N\left(A^{\dagger} K_{1}\right) N\left(K_{2} C A^{\dagger} K_{1}\right)=N\left(C A^{\dagger} K_{1}\right), N\left(\left(A^{\dagger} K_{1}\right)^{*}\right) \subseteq N\left(\left(A^{\dagger} B\right)^{*}\right)$. Further,

$$
\begin{aligned}
\left.(\widehat{K M}) \mid\left(K_{1} A\right)^{\dagger}\right) & =K_{2}(M \mid A)+\left(K_{2} C A^{\dagger} K_{1}\right)\left(A^{\dagger} K_{1}\right)^{\dagger}\left(A^{\dagger} B\right) \\
& =K_{2}(M \mid A)+K_{2} C A^{\dagger} K_{1} K_{1} A A^{\dagger} B \\
& =K_{2}\left((M \mid A)+C A^{\dagger} B\right) \\
& =K_{2} D \\
\left.\Rightarrow(\widehat{K M}) \mid\left(K_{1} A\right)^{\dagger}\right) & =K_{2} D
\end{aligned}
$$

By the assumption, $N\left(K_{2}\left(\widehat{M} \mid A^{\dagger}\right)\right)=N\left(K_{2} D\right)$ which implies

$$
N\left(\left(\widehat{M} \mid A^{\dagger}\right)\right)=N(D) \subseteq N(B)
$$

From Lemma 4.1, A is $\mathrm{q}-k_{1}$ - EP and D is $\mathrm{q}-k_{2}$-EP. Therefore, A^{\dagger} is $\mathrm{q}-k_{1}-\mathrm{EP}$ and $\left(\widehat{M} \mid A^{\dagger}\right)$ is $\mathrm{q}-k_{2}-\mathrm{EP}(\mathrm{By}$ [5], Theorem 2.4). Hence, $D=\left(\widehat{M} \mid A^{\dagger}\right)$. Also, $\left.N\left(K_{2}\left(\widehat{M} \mid A^{\dagger}\right)\right)^{*}=N\left(K_{2} D\right)^{*}\right)$

$$
N\left(\left(\widehat{M} \mid A^{\dagger}\right)^{*} K_{2}\right)=N\left(D^{*} K_{2}\right) \subseteq N\left(C^{*} K_{2}\right)
$$

Now applying Theorem 2.2 , we see that \widehat{M} is $q-k$-EP. Now,

$$
\begin{aligned}
r & =\rho(M)=\rho(A)+(M \mid A) \quad(\mathrm{By}[3]) \\
& \left.=\rho\left(A^{\dagger}\right)+(D) \quad \text { By }[2]\right) \\
& =\rho\left(A^{\dagger}\right)+\left(\widehat{M} \mid A^{\dagger}\right) \\
& =(\widehat{M})(\mathrm{By}[3])
\end{aligned}
$$

Thus \widehat{M} is $\mathrm{q}-k$ - EP_{r}. Similarly, under the conditions given on M, M can be transformed to its principal pivot transform by pivoting the block $K_{2} D$ without changing the rank. Hence the Theorem.

Remark 4.3. For $k(i)=i$, (the identity transposition), Theorem 4.2 reduces to the Theorem 1 of [6].

Remark 4.4. In the special case when M is non-singular with A and D non-singular, then the conditions $N(A) N(C)$ and $N(D) N(B)$. Automatically hold and by [3], $(M \mid A)$ and $(M \mid D)$ are non-singular. Further, $\rho(\widehat{M})=\rho(A)+\rho(D)$. Hence it follows that each principal pivot transform of M is non-singular. We note that the non-singularity of \widehat{M} need not imply M is non-singular.

Example 4.5. Let $M=\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 3 & 1\end{array}\right]$ with $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and the associated permutation matrix $K=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$ and
$K M=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 3 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$. Here $K_{1} A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] .\left(K_{1} B\right)=\left(K_{2} C\right)^{*}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right], K_{2} D=\left[\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right]$. Here $K_{1} A$ and $K_{2} D$ are nonsingular and $K_{2}(M \mid A)=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is $E P_{1}$. Therefore, $(M \mid A)$ is $q-k_{2}-E P_{1}$.

$$
\rho(M)=\rho(A)+\rho(M \mid A)=3
$$

Since $K M$ is symmetric, $K M$ is $E P_{3}$ which implies M is $q-k E P_{3}$. $B y(21),(\widehat{K M})=\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ is non-singular. Thus $\widehat{K M}$ is $E P_{4}$ which implies \widehat{M} is $q-k E P_{4}$.

Remark 4.6. By considering the matrix M in Example 4.5, we note that the conditions $N(M \mid A) \subseteq N(B)$ and $N(M \mid D) \subseteq$ $N(C)$ fail and the statement (iii) of Theorem 4.2 does not hold.

References

[^1] J. Appl. Math., 26(1974), 169-175.
[4] K.Gunasekaran and K.Gnanabala, On sums and products of q - k-EP matrices, IJMER, 6(3)(2016), 54-60.
[5] A.R.Meenakshi and S.Krishnamoorthy, On k-EP matrices, Linear Algebra and its Applications, 269(13)(1998), 219232.
[6] A.R.Meenakshi, Principal pivot transforms of an EP matrix, C. R. Math. Rep. Acad. Sci. Canada, 8(1986), 121-126.
[7] R.Penrose, On best approximate solutions of linear matrix equations, Proc. Cambridge. Phil. Soc., 52(1959), 17-19.
[8] C.R.Rao and S.K.Mitra, Generalized inverse of matrices and its applications, Wiley and sons, Newyork, (1971).
[9] H.Schwerdtfeger, Introduction to Linear Algebra and the theory of matrices, P.Nooedhoff, Groningen. (1962).

[^0]: * E-mail: gbalamaths@gmail.com

[^1]: [1] T.S.Baskett and I.J.Katz, Theorems on products of $E P_{r}$ matrices, Lin. Alg. Appl., 2(1969), 87-103.
 [2] A.Ben Israel and T.N.E.Greville, Generalized inverses, Theory and applications, Wiley and sons, Newyork, (1974).
 [3] D.Carlson and E.Haynsworth, A generalization of the schur complements by means of the moore penrose inverse, SIAM

