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1. Introduction

In this section we consider an 2n× 2n matrix M partitioned in the form,

M =

A B

C D

 (1)

where A and D are nxn matrices. If a partitioned matrix M of the form (1) is q-k-EP, then is general, Schur complement

of A in M, i.e., (M | A) is not q-k-EP. Here, necessary and sufficient conditions for (M | A) to be q-k-EP are obtained for

both the cases ρ(M) = ρ(A) and ρ(M) 6= ρ(A). As an application, a decomposition of a partitioned matrix into a sum of

q-k-EP matrices is obtained. Throughout this section let k = k1k2 as in [5].

2. Schur Complements in q-k-EP Matrices

Definition 2.1. If M ∈ H2n×2n is of the partitioned form M =

 A B

C D

, then a schur complement of A in M denoted by

(M |A) is defined as, D − CA−B where A− is a generalized inverse of A satisfying AXA = A.

Theorem 2.2. Let M =

 A B

C D

 with N (A) ⊆ N (C) and N (MA) ⊆ N (B) then the following are equivalent.

(i) M is a q-k-EP matrix with k=k1 k2

(ii) A is a q-k1-EP (MA) is q-k2-EP, N (A∗) ⊆ N (B∗) and N ((MA)∗) ⊆ N (C∗)
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(iii) Both the matrices

 A 0

C (M |A)

 and

 A B

0 (M |A)

 are q-k-EP.

Proof. (i)⇒ (ii)

(i) Since M is a q-k-EP with k = k1k2, KM is EP and K =

 K1 0

0 K2

 where K1 and K2 are associated permutation

matrices of k1 and k2. Consider, P =

 I 0

CA− I

, Q =

 I B(M |A)−

0 I

 and L =

 A 0

0 (M |A)

. It is clear that P,Q are

non-singular.

KPQL =

 K1 0

0 K2


 I 0

CA− I


 I B(M |A)−

0 I


 A 0

0 (M |A)


=

 K1A K1B(M |A)(M |A)−

K2CA
−A K2CA

−B(M |A)− (M |A) +K2(M |A)


Since N (A) ⊆ N (C), by [8], we have C = CA−A. Thus K2C = K2CA

−A. Also, since N (M |A) ⊆ N (B),

B = B(M |A)−(M |A). So, K2CA
−B(M |A)− (M |A) +K2 (M |A) =K2D, (since (MA) = D − CA−B). Thus,

KPQL =

 K1A K1B

K2C K2D

 =

 K1 0

0 K2


 A B

C D

= KM.

Thus KM is factorized as KM = KPQL. Hence ρ(KM) = (L) and N(KM) = N(L). But M is q-k-EP. Therefore,

KM is EP. N(KM) =N ((KM)∗) ⇒ N(L) =N(M∗K) [8]. By using, M∗K =M∗KL−L holds for all L−. Choose,

L−=

 A− 0

0 (M |A)
−


M∗K =

 A B

C D


∗  K1 0

0 K2

 =

 A∗K1 C∗K2

B∗K1 D∗K2


Since M∗K =M∗KL−L,

 A∗K1 C∗K2

B∗K1 D∗K2

 =

 A∗K1 C∗K2

B∗K1 D∗K2


 A− 0

0 (M |A)
−


 A 0

0 (M |A)


=

 A∗K1A
−A C∗K2(M |A)−(M |A)

B∗K1A
−A D∗K2(M |A)−(M |A)


From the above, A∗K1=A∗K1A

−A

⇒ (K1A)∗=(K1A)∗A−A

⇒ N(A) ⊆ N(K1A)∗= N(A∗K1)

Since, ρ(K1A)∗=ρ(K1A) ⇒ ρ (A∗K1) =ρ(A). Thus, N(A) = N(A∗K1). Hence A is a q-k1-EP. Similarly, we can prove

(M |A) is q-k2-EP. Further, C∗K2 = C∗K2(M | A)−(M | A) ⇒ N(M | A) ⊆ N(C∗K2) ⇒ N(K2(M | A)∗N(C∗K2) ⇒

N(M | A)∗N(C∗). Thus (ii) holds.
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(ii)⇒ (i)

Since N (A) ⊆ N (C) , N (A∗) ⊆ N (B∗) , N (M |A) ⊆ N (B) , N ((M | A)∗) ⊆ N (C∗) holds. By [2],

(KM)† =

 (K1A)†+(K1A)†(K1B)(M |A)†K2(K1A)† −(K1A)†(K1B)K2(M |A)†

−K2(M |A)†K2C(K1A)† K2(M |A)†


From [8], N (A) ⊆ N (C) , N (A∗) ⊆ N (B∗) ⇒ (M | A) is invariant for every choice of A−. Hence

K2D =K2(M |A)+K2C(K1A)†(K1B). Further using K2C =K2(M | A)K2(M | A)†K2C and K1B =K1A(K1A)†K1B. Now,

(KM)(KM)†=

 K1A(K1A)† 0

0 K2(M | A)K2(M | A)†


Again using, K2C =(K2C)(K1A)(K1A)† and K1B =(K1B)K2 (M | A)K

2
(M | A)†

(KM)†KM) =

 (K1A)†K1A 0

0 K2(M | A)†K2 (M | A)


Since A is q-k1-EP, (M|A) is q-k2-EP [5]. We have (KM)(KM)†=(KM)†KM ⇒M†MK = KMM†⇒ M is q-k-EP [5].

Thus (i) holds.

(ii)⇒ (iii)

 K1A 0

K2C K2 (M | A)

is EP ⇔K1A and K2 (M | A) are EP.

 K1 0

0 K2


 A 0

C (M | A)

is EP⇔K1A and K2 (M | A) are

EP.

 A 0

C (M | A)

is q-k-EP⇔A is q-k1-EP and (M | A) is q-k2-EP. Further N (A) ⊆ N (C) , N ((M |A)∗) ⊆ N (C∗).

Also

 K1A K1B

0 K2 (M | A)

 is EP ⇔K1A and K2 (M | A) are EP.

 A B

0 (M | A)

 is q-k-EP⇔A is q-k1-EP and (M | A) is

q-k2-EP. Further, N (A∗) ⊆ N (B∗) , N (M |A) ⊆ N (B). Hence the equivalence of (ii) and (iii).

Theorem 2.3. Let M be a matrix, M =

 A B

C D

 with N (A∗) ⊆ N (B∗) , N ((M |A)∗) ⊆ N (C∗) then the following are

equivalent.

(i). M is q-k-EP with k =k1k2.

(ii). A is q-k1-EP and (M | A) is q-k2-EP. Further, N (A) ⊆ N (C) , N (M |A) ⊆ N (B).

(iii). Both the matrices

 A 0

C (M | A)

 and

 A B

0 (M | A)

 are q-k-EP.

Proof. Applying the fact M is q-k-EP⇔M∗ is q-k-EP from Theorem 2.2, the proof is obvious.

Corollary 2.4. Let M =

 A C∗

C D

 with N (A) ⊆ N (C) , N (M |A) ⊆ N (C∗) then the following are equivalent.

(i). M is q-k-EP with k =k1k2
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(ii). A is q-k1-EP and (M | A) is q-k2-EP. Further, N (A) ⊆ N (C) , N (M |A) ⊆ N (B).

(iii). The matrix

 A 0

C (M | A)

 is q-k-EP.

Remark 2.5. The conditions on M in Theorem 2.2 and Theorem 2.4 are essential.

For example,

Let M =



1 i i i

−i 1 j i

−i −j 1 k

−i −i −k 1


, K =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


and KM∗K =



1 i i i

−i 1 j i

−i −j 1 k

−i −i −k 1


= M ⇒M is q-k-EP and rank 2 ⇒M is

q-k-EP2. More over, A = B = C =

 1 1

1 1

; (M | A) = D − CA†B =

 0 0

0 −1

; K2 (M | A) =

 0 0

0 −1

 is EP ⇒ (M | A)

is q-k2-EP. K1A =

 1 1

1 0

 is EP⇒ A is q-k1-EP. N (A) ⊆ N (C) , N (A∗) ⊆ N (B∗), but N (M |A) 6⊂ N (B) , N ((M |A)∗) ⊆

N (C∗). Further, K

 A 0

C (M | A)

=



1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 −1


is not EP.

 A 0

C (M | A)

 is not q-k-EP. Similarly, K

 A B

0 (M | A)



is not EP.

 A B

0 (M | A)

 is not q-k-EP. Thus, Theorem 2.2 and Theorem 2.3 as well as Corollary 2.4 fails.

Remark 2.6. For a q-k-EP matrix M =

 A B

C D

 with k =k1k2, the following are equivalent.

N (A) ⊆ N (C) , N (M |A) ⊆ N (B) (2)

N (A∗) ⊆ N (B∗) , N ((M |A)∗) ⊆ N (C∗) (3)

If we omit the condition, M is q-k-EP then the above fails.

For example, let

M =



i 1 1 0

1 j 1 0

1 1 k 1

0 0 0 0


(4)

K =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



KM =



i 1 1 0

1 j 1 0

1 1 k 1

0 0 0 0


is not EP. Therefore, M is not q-k-EP. Here A =

 1 1

1 1

 is k1-EP. B =K1C
∗K2=

 1 0

1 0

. Thus
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N (A) ⊆ N (C) , N (A∗) ⊆ N (B∗). Hence (M |A) is independent of the choice of A−.

K2(M |A) =

 1 0

0 1


 0 1

0 0

 =

 0 1

0 0


K2(M |A) is not EP. (M |A) is not q- k2-EP. Thus N ((M | A)∗) ⊆ N (C∗) but N (M |A) ⊆ N (B). Thus (3) holds while (2)

fails.

Remark 2.7. For a k-EP matrix M , the Formula 2.3 gives (KM)† if and only if either (2) or (3) holds.

Corollary 2.8. M =

 A B

C D

 with k =k1k2 for which (KM)† is given by the Formula 2.3. Then M is q-k-EP if and only

if A is q-k1-EP and (M | A) is q-k2-EP.

Proof. This follows from Theorem 2.2 and using Remark 2.11

Theorem 2.9. Let M =

 A B

C D

 with ρ( M)=ρ( A)= r, then M is q-k-EPr with k =k1k2 if and only if A is q-k1-EPr

and CA†K1=(A†BK2)
∗
.

Proof. Let K =

 K1 0

0 K2

, KM =

 K1A K1B

K2C K2D

. Since ρ(M) = ρ(A) = r, ρ(KM) = ρ(K1A) = r. By [5], N (A) ⊆

N (C) , N (A∗) ⊆ N (B∗) and (KM | K1A) =K2 (M | A) = 0. From [8], these relations are equivalent to K2C =K2CA
†A,

K1B =K1BAA
† and K2D =K2CA

†B.

Consider, P =

 I 0

CA† I

 , Q =

 I A†B

0 I

 and L =

 A 0

0 0

. P, Q are non-singular. By assumption,

CA†K1=(A†BK2)
∗
, we have KP =(KQ)∗,

KPLQ =

 K1A K1AA
†B

K2CA
†A K2CA

†B

=

 K1A K1B

K2C K2D

= KM

Since, KP =(KQ)∗, KP ∗K = Q, we have KM = KPLKP ∗K ⇒ KM = (KP )(LK)(KP )∗(KP )(KL)(KP )∗, since

KL = LK. Since A is q-k1-EPr, K1A is EPr. KL =

 K1A 0

0 0

 is EPr ⇒ L is q-k-EPr. Therefore, N(L) =

N (L∗K)N(KL) = N(KL)∗. By [1],

N((KP )(KL)(KP )∗) = N ((KP ) (KL)∗(KP )∗)N (KM) = N(KM)∗

N (M) = N(M∗K)M is q-k-EPr [5]. Since ρ(M) = r, M is q-k-EPr.

Conversely, let us assume that M is q-k-EPr. Thus KM is EPrand KM = KPLQ, (KM)−=Q−

 A† 0

0 0

P−K is EP

⇒N(KM)=N(KM)∗ [8]

(KM)∗ = (KM)∗(KM)−(KM) K1A K1B

K2C K2D


∗

=

 K1A K1B

K2C K2D


∗

Q−

 A† 0

0 0

P−K
 K1A K1B

K2C K2D


 (K1A)∗ (K2C)∗

(K1B)∗ (K2D)∗

 =

 (K1A)∗A†A (K1A)∗A†B

(K1B)∗A†A (K1B)∗A†B


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(K1A)∗ = (K1A)∗A†AN (A) = N((K1A)∗) and

(K2C)∗ = (K1A)∗A†BK2C =B∗(A†)
∗
(K1A)

Hence N (A) = N(A∗K1)A is q-k1-EP, since ρ( A)= r, A is q-k1-EPr

K2CA
† = B∗

(
A†)
∗
(K1A

)
A†=B∗

(
A†)
∗
(K1AA

†
)

= B∗
(
A†)
∗
(A†AK1

)
([5], Theorem 2.4)

= B∗
(

(A†)
∗
(A†A)

∗
(K1)

∗)
(Since A†A is hermitian)

= B∗
(

(A†AA†)
∗
(K1)

∗)
K2CA

† = B∗(A†)∗(K1)
∗
=(K1A

†B)
∗
=(A†B)

∗
K1

Also, CA†K1=K2(A†B)
∗
=(A†BK2)

∗
. The theorem is proved.

Corollary 2.10. Let M =

 A B

C D

, with A is a non-singular matrix and ρ(A) = ρ(M), then M is q-k-EP with

k =k1k2 ⇔CA†K1=K2(A†B)
∗
=(A†BK2)

∗
.

Remark 2.11. The condition on rank of M is essential in Theorem 2.13.

For example, ConsiderM =



1 1 1 0

1 1 1 0

1 1 1 1

0 0 0 0


, K =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


andKM =



1 1 1 0

1 1 1 0

1 1 1 1

0 0 0 0


, ρ(KM) = ρ(M) = 2, but ρ(K1A) =

ρ(A) = 1. Hence ρ(KM) 6=ρ(K1A) ⇒ ρ(M)6=ρ(A)KM is not EP. M is not q-k-EP. K1A =

 0 1

1 0


 1 1

1 1

=

 1 1

1 1

 is

EP. A is q-k1-EP.

A†=
1

4

 1 1

1 1

 , CA†K1=
1

4

 2 2

0 0

=
(
A†BK2

)∗
Thus Theorem 2.13 fails.

Corollary 2.12. Let M be a 2n× 2n matrix of rank r. Then M is q-k-EPr with k =k1k2 ⇔ Every principal sub matrix of

rank r is q-k1-EPr.

Proof. Suppose M is q-k-EPr, KM is EPr. Let K1A be any principal sub matrix of KM such that ρ(KM) = ρ(K1A) = r

then there exists a permutation matrix P such that (KM)
′
= P (KM)PT

 K1A K1B

K2C K2D

 , with (KM)
′
=(K1A) = r. By

[1], (KM)
′

is EPr. By Theorem 2.13, K1A is EPr ⇒ A is q-k1-EPr. Since A is arbitrary, every principal sub matrix of rank

r is q-k1-EPr.

Definition 2.13. M1 and M2 are called complementary summands of M if M = M1 +M2 and ρ(M) = ρ(M1) + ρ(M2).

Theorem 2.14. Let M =

 A B

C D

, with ρ(M) = ρ(A) + ρ(M |A) where (M |A) = D − CA†B. If A is q-k1-EP and (M |A)

is q-k2-EP such that CA†K1=
(
A†BK2

)∗
and B(M |A)†K2=((M | A)†CK1)

∗
then M can be decomposed into complementary

summands of q-k-EP matrices.
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Proof. Consider, M1=

 A AA†B

CA†A CA†B

 , M2=

 0
(
I −AA†

)
B

C
(
I −AA†

)
(M | A)

 such that N(A)N(CA†A),

N(A∗K1)N(
(
AA†B

)∗
K1) and

(M1 | A) = CA†B−
(
CA†A

)
A
−

(AA†B) = CA†B−CA†(AA−A)A†B) = 0

By [3], ρ(M1) = ρ(A). Since A is q-k1-EP and

(
CA†A

)
A†K1= C(A†AA†)K1= CA†K1=

(
A†BK2

)∗
=
(
A†(AA†B)K2

)∗
By Theorem 2.13, M1 is q-k1-EP. Since, ρ(M)=ρ(A)+ ρ(M |A). By [3], N(M |A) ⊆ N(C(I−A†A)B)

N(M |A)∗ ⊆ N(C
(
I−A†A

)∗
) and

(
I −AA†

)
B(M | A)† ⊆

(
I−A†A

)
= 0

Therefore, (M2 |(M | A)) = 0. By [3], (M2)=ρ(M |A). Hence, (M) =(M1)+ (M2). Further, AA†K1=K1A
†A

(
I −AA†

)
B (M |A)†K2 =

(
I −AA†

)
((M |A)† CK1)∗ =

(
(M |A)† CK1

(
I −AA†

)∗)∗
= ((M |A)† C(I −A†A)K1)∗

By Theorem 2.13, M2 is q-k2-EP. Clearly, M =M1+ M2 and ρ(M) = ρ(M1)+ρ(M2). Hence M1 and M2 are complementary

summands of q-k-EP matrices.

Remark 2.15. Any matrix represented as the sum of complementary summands of q-k-EP matrices is q-k-EP. If M =
n∑

i=1

Mi

such that Mi is q-k-EP and (M) =

(
n∑

i=1

Mi

)
. Then N (M) =

n⋂
i=1

N(Mi)=
n⋂

i=1

N(Mi
∗K)(Mi is q-k-EP). N (M) = N(M∗K).

Thus M is q-k-EP.

3. Factorization of q-k-EP matrices

Throughout this section, M is a 2n× 2n matrix of the form,

M =

 A B

C D

 with ρ(M) = ρ(A) = r (5)

Where A is n× n and D is n× n. If M is q-k-EP with k =k1k2 then the associated permutation matrix K is of the form,

K =

 K1 0

0 K2

 (6)

where K1 is the associated permutation n× n matrix of k1 and K2 is the associated permutation n× n matrix of k2.

KM =

 K1A K1B

K2C K2D

 and ρ(A) = ρ(M) = r (7)

By [3],

N (K1A) ⊆ N (K2C) , N (A∗K1) ⊆ N (B∗K1) , D = CA†B (8)
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Also let

MK =

 AK1 BK1

CK2 DK2

 and ρ(A) = ρ(M) = r (9)

Again by [3],

N (AK1) ⊆ N (CK1) , N (K1A
∗) ⊆ N (K2B

∗) , D = CA†B (10)

Lemma 3.1. If M is q-k-EPr of the form (5) with k =k1k2 then there exists a (p× 2n− p) matrix X such that

KM =

 K1A K1AX

X∗K1A X∗K1AX

 (11)

And A is q-k1-EPr.

Proof. Since KM is of the form (7) and ρ(A) = ρ(M) then (8) holds. Hence there is an (p× 2n− p) matrix X such that

K2C =Y K1A and B = AX. By [8], since M is q-k-EPr , By Theorem 2.13, A is q-k1-EPr and

CA†K1=
(
A†BK2

)∗
Also by Theorem 2.4 [5], A is q-k1-EPr. K1AA

†= AA†K1AA
†K1=K1AA

†. Since, CA†K1=
(
A†BK2

)∗
K2CA

†K1=
(
A†B

)∗
Y K1A =X∗K1A

Also, K2D =K2CA
†B = Y K1AX = X∗K1AX. Hence, KM is of the form (11).

Lemma 3.2. If M is q-k-EPr of the form (5) with k =k1k2 then there exists a (p× 2n− p) matrix X such that

MK =

 AK1 AK1X

X∗AK1 X∗AK1X

 (12)

And A is q-k1-EPr.

Proof. Since MK is of the form (9) and ρ(A) = ρ(M) then (10) holds. Hence there is an (2n− p× p) matrix Y such that

BK2=AK1X and C= Y A. By [8], since M is q-k-EPr, by Theorem 2.13, A is q-k1-EPr and

CA†K1 =
(
A†BK2

)∗
Y AA†K1 = (A†AK1X)

∗
Y AK1=X∗AK1

Also,

DK2 = CA†BK2

= Y AK1X

= X∗AK1X

Hence, MK is of the form (12).

Theorem 3.3. If M is q-k-EPr of the form (5) and A is q-k1-EPr, then M is a product of q-k-EPr matrices.
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Proof. If M is q-k-EPr of the form (5) then it satisfies N (A) ⊆ N (C) , N (A∗) ⊆ N (B∗), D = CA†B,

hence there exists X and Y such that C = Y A, B = AX, D = CA†B = Y AA†AX= Y AX. Consider the matrices,

SK =

 A†AK1 AA†Y ∗K2

Y AA†K1 Y AA†Y ∗K2

, KL =

 K1A 0

0 0

 and TK =

 A†AK1 AA†XK2

X∗A†AK1 X∗A†AXK2

. By Theorem 2.13, S, L

and T are q-k-EPr. Also,

(SK) (KL) (TK) =

 AK1 AXK2

Y AK1 Y AXK2

 =

 AK1 BK2

CK1 DK2

= MK

Thus, MK is a product of SK, KL and TK are all q-k-EPr matrices. Therefore, M = SLT .

Lemma 3.4. Let L =

 E F

G H

 be a 2n×2n matrix of rank r. If E is an n×n non-singular matrix, then L = S

 Ir 0

0 0

T ,

where S, T are q-k-EPr matrices.

Proof. L = KP

 Ir 0

0 0

KQ, where P,Q are non-singular matrix and K is the permutation matrix

 K1 0

0 K2

.

If we write P =

 A1 B1

C1 D1

 , P =

 Â1 B̂1

Ĉ1 D̂1

 then L =

 (K1A1)(K
1
Â1) (K1A1)(K

1
B̂1)

(K2C1)(K
1
Â1) (K2C1)(K

1
B̂1)

 and (K1A1)(K
1
Â1)= E

is non-singular. Thus, K1A, (K1Â) are non-singular. So,

 K1A1

K2C1

 and

[
K1Â1 K2B̂1

]
have rank r. Thus

there is an 2n − r × r matrix X and r × 2n − r matrix Y such that XK1A1=K2C1 and Â1Y =B̂1. Put

S =

 K1A1 K1A1X
∗

XK1A1 XK1A1X
∗

 , T =

 K1Â1 K1Â1Y

Y ∗K1Â1 Y ∗K1Â1Y

. Now,

S

 Ir 0

0 0

T =

 K1A1 K1A1X
∗

XK1A1 XK1A1X
∗


 Ir 0

0 0


 K1Â1 K1Â1Y

Y ∗K1Â1 Y ∗K1Â1Y

 = L

By [1], KS and KT are EPr matrices. Hence, S, T are q-k-EPr matrices. Any matrix AH2n×2n of rank r is called a Pr

matrix if it has a principal r × r non-singular matrix.

Lemma 3.5. Let M be a 2n× 2n matrix of order r. If M is a Pr matrix then M is a product of q-k-EPr matrices.

Proof. Let M be a 2n×2n matrix of order r having E as a principal r× r non-singular sub matrix, there is a permutation

matrix P such that PMPT =

 E F

G H

. By Lemma 3.12,

 E F

G H

= S

 Ir 0

0 0

T , where S,T are q-k-EPr matrices.

Hence,

PMPT = S

 Ir 0

0 0

T
M = PTS

 Ir 0

0 0

TP
M = (PTSP )P

 Ir 0

0 0

P (P TP )

Since S, T are q-k-EPr matrices, PTSP and P †TP are q-k-EPr matrices. Thus, M is a product of q-k-EPr matrices.
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Remark 3.6. The converse of Theorem 3.13 need not be true.

Example 3.7. Let A =


0 0 0

0 0 i

−i 0 0

 , B =


0 0 j

0 0 −j

1 1 0

 , C =


1 0 1

0 k 0

0 −k 0

. For K=


0 1 0

1 0 0

0 0 1

 where A, B, C are q-k-EP

matrices of rank 2. But ABC =


0 0 0

i j −i

0 1 0

 has rank 2, does not have a P2 matrices. More over, ABC is not q-k-EP.

Lemma 3.8. Let A =

 E F

G H

 be a q-k-EPr matrix with k =k1k2. K1E is an r x r matrix and

[
K1E K1F

]
has rank

r, then K1E is non-singular.

Proof.

 Ir 0

0 0


 K1 0

0 K2


 E F

G H

=

 K1E K1F

0 0

 where Ir is the r × r identity matrix. By [2],

 K1 0

0 K2


 E F

G H


 Ir 0

0 0

=

 K1E 0

K2G 0

 has rank r. By [8], K1E has rank r. Thus K1E is non-singular.

Theorem 3.9. Let A and B be 2n× 2n q-k-EP matrices with k =k1k2. If AB has rank r, then AB is unitarily similar to

a Pr matrix.

Proof. Since A is q-k-EPr, by [5], there is a unitary matrix U such that A is unitarily k-similar to a diagonal block

q-k-EPr matrix

 D 0

0 0

 where D is a r x r non-singular matrix.

A = KUK

 D 0

0 0

U
∗

⇒ U∗ (KA)U = K

 D 0

0 0



Put U∗ (BK)U =

 E F

H G

 where E is r x r matrix. Then

U∗ (KA) (BK)U = K

 D 0

0 0


 E F

H G


(KU)∗AB(KU) =

 K1DE K1DF

0 0

 has rank r.

Thus K1D

[
E F

]
has rank r, it follows

[
E F

]
has rank r. By Lemma 3.16, K1E is non-singular. Thus (KU)∗AB(KU)

is a Pr matrix. AB is unitarily similar to a Pr matrix.

Theorem 3.10. Let A and B be n × n matrices. If A has rank r, B and AB are q-k-EPr matrices, then A is a product

q-k-EPr of matrices.

Proof. Since B is q-k-EPr, BK is EPr. By [5], B = U

 D 0

0 0

KU∗K, D is r x r non-singular and U is a unitary matrix.

U∗BKU =

 D 0

0 0

K,U∗BKU =

 DK1 0

0 0


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Put U∗(KA)U =

 E F

H G

 where E is r x r matrix and U is unitary. Then

(U∗KAU) ((U∗BKU) =

 E F

H G


 DK1 0

0 0


⇒ U∗KABKU =

 EDK1 0

GDK1 0


⇒ (KU)∗AB (KU) =

 EDK1 0

GDK1 0


Since AB is q-k-EPr, by [5], GDK1= 0. Hence G = 0. E is non-singular. Applying Lemma 3.12, A is a product of q-k-EPr

matrices.

Remark 3.11. The condition on ρ(A) = r is essential. If ρ(A)6=r then Theorem 3.18 fails.

For example, Let A =

 0 0

0 1

, B =

 0 0

0 0

 and let K =

 0 1

1 0

. Here ρ(A) = 1, ρ(B) = 0. B is q-k-EP0. AB =

 0 0

0 0


is q-k-EP0. Here B = AB. Hence the Statement of 3.18 fails.

Theorem 3.12. Let M =

 A B

C D

 , L =

 P Q

R S

 be q-k-EPr matrices with k =k1k2 and ML be of rank r. Then the

following are equivalent.

(1). ML is q-k-EPr

(2). AP is q-k1-EPr and CA†K1=K2RP
†

(3). AP is q-k1-EPr and A†BK2=K1P
†Q

Proof.

MK =

 AK1 BK2

CK1 DK2

 , KL =

 K1P K1Q

K2R K2S


(MK) (KL) =

 AK1(1 +XY ∗)K1P AK1 (1 +XY ∗)K1PY

X∗AK1(1 +XY ∗)K1P X∗AK1(1 +XY ∗)K1PY


ML =

 AK1ZK1P AK1 ZK1PY

X∗AK1ZK1P X∗AK1ZK1PY

 , Z = 1 +XY ∗

Clearly,

N (AK1ZK1P ) ⊆ N(X∗AK1ZK1PY )

N(AK1ZK1P )∗ ⊆ N(X∗AK1ZK1PY )
∗

Schur complement of AK1ZK1P in ML,

(ML |AK1ZK1P ) = (X∗AK1ZK1PY )− (X∗AK1ZK1P ) (AK1ZK1P )† (AK1 ZK1PY ) = 0
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By [3], ρ(AK1ZK1P ) = ρ(ML) = r. Hence by Theorem 2.13, A and P are both q-k1-EPr matrices.

CA†K1=(A†BK2)
∗
, RP ∗K1=(P †QK2)

∗
(13)

R (AK1ZK1P ) ⊆ R (AK1) = R(A)

R(AK1ZK1P )∗ ⊆ R (P ∗K1) = R (P ∗) = R (K1P ) (Since P is q-k1-EP)

and ρ (AK1ZK1P ) = ρ (A) =ρ(K1P ) = r

Hence, R (AK1ZK1P ) = R (A) ; R(AK1ZK1P )∗= R (K1P )

(AK1ZK1P )(AK1ZK1P )† = (AK1)(AK1)† (14)

By [2],

(AK1ZK1P )†(AK1ZK1P ) = (K1P )(K1P )† (15)

ML is q-k-EPr ⇔ (MK) (KL) is EPr ⇔ AK1ZK1P is EPr (By Theorem 2.13)

(X∗AK1ZK1P )(AK1ZK1P )† = (AK1ZK1P )† (AK1ZK1PY )∗

⇔ R (AK1ZK1P ) = R (AK1ZK1P )∗ (By (15))

X∗(AK1)(AK1)† = Y ∗ (K1P ) (K1P )†

R(A) = R(K1P ) and by (14)

(X∗AK1)
(
K1A

†
)

= (Y ∗K1P )(P †K1)

Since A and P are both q-k1-EPr matrices, ⇔ AP is q-k1-EPr, CK1K1A
†=K2RP

†K1 ⇔ AP is q-k1-EPr and

CA†K1=K2RP
† ⇔ AP is q-k1-EPr and (A†BK2)

∗
= K2(P †QK2)

∗ ⇔ AP is q-k1-EPr and A†BK2=K1P
†Q. Thus,

ML is q-k-EPr ⇔ AP is q-k1-EPr and A†BK2=K1P
†Q.

4. Pivotal Transform on q-k-EP Matrices

Let M =

 A B

C D

 then a principal re-arrangement of square matrix M (i.e) PTMP, where P is a permutation matrix,

PTMP =

 D C

B A

, where P is a permutation matrix P =

 0 1

1 0

. Let us consider a system of Linear equations, Mz = t,

where M =

 A B

C D

 satisfying N (A) ⊆ N (C) , N (A∗) ⊆ N (B∗). If z and t are partitioned conformably as z =

 x
y


and t =

 u
v

. Then Ax+By = u, Cx+Dy = v. Then by [7, P.21] we can solve for x and v as

x =A†u−A†By, v = CA†u+
(
D − CA†B

)
y
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Thus a matrix M =

 A B

C D

 satisfying N (A)N (C) , N (A∗) N (B∗) can be transformed into the matrix,

M̂=

 A† −A†B

CA† (M |A)

 (16)

M̂ is called a principal pivot transform of M .

Lemma 4.1. Let M =

 A B

C D

 with N (A) ⊆ N (C) , N(D) ⊆ N(B) then the following are equivalent.

(i). M is q-k-EP with k =k1k2, N (M |A) ⊆ N (B) , N(M |D) ⊆ N(C)

(ii). A and M |D are q-k1-EP and D and (M |A) are q-k2-EP.

Further, N (A) = N(M |D) ⊆ N (B∗K1) and N (D) = N (M |A) ⊆ N (C∗K2).

Proof. (i) ⇒ (ii) : Since M is q-k-EP with k =k1k2, N (A) ⊆ N (C) , N (M |A) ⊆ N (B). By Theorem 2.2, A is q-k1-EP

and (M |A) is q-k2-EP; N (A∗K1) ⊆ N (B∗K1) and N ((M |A)∗K2) ⊆ N (C∗K2). Since A is q-k1-EP, N (A∗K1) = N(A) (By

Definition of q-k-EP). Therefore, N (A) = N (B∗K1). Since M is q-k-EP, KM is EP , implies the principal rearrangement

PTKMP =

 K1D K2C

K1B K1A

 is also EP.

Further N(K2D) ⊆ N(K1B) and N(K1(M |D)) ⊆ N(K2C) holds. Hence by Theorem 2.2, K2D is EP. K1(M |D)

is EP. N((K2D)∗) ⊆ N((K2C)∗) and N(K1(M |D)) ⊆ N((K1B)∗). Thus We have, D is q-k2-EP, (M |D) is q-k1-

EP. N (D∗K2) ⊆ N (C∗K2) and N(K1(M |D)) ⊆ N(B∗K1). Since, D is q-k2-EP, by Definition, N (D∗K2) = N(D).

Thus, N (D) ⊆ N (C∗K2). Since the relations, N (A) ⊆ N (C),N (A∗K1) ⊆ N (B∗K1) , N (M |A) ⊆ N (B) and

N ((M |A)∗K2) ⊆ N (C∗K2) holds for K1A. According to the assumptions and from [7],

(KM)† =

 (K1A)†+(K1A)†(K1B)(M |A)†K2(K1A)† −(K1A)†(K1B)K2(M |A)†

−K2(M |A)†K2C(K1A)† K2(M |A)†

 (17)

Using K2C =(K2(M |A)(K2(M |A)†(K2C) and K1B =(K1A)(K1A))†(K1B)

(KM)†KM) =

 (K1A)(K1A)† 0

0 (K2 (M | A)) (K2(M | A) )†

 (18)

Since the relations, N (D) ⊆ N (B), N (D∗K2) ⊆ N (C∗K2) , N((M |D)) ⊆ N(C) and N ((M |D)∗K1) ⊆ N (B∗K1) holds

for K1D, according to the assumptions by Theorem 1.2,

(KM)† =

 (K1(M |D))† −(K1A)†(K1B)K2(M |A)†

−(K2D)†K2C (K1(M |D))† K2(M |A)†

 (19)

Using K2C =(K2D)(K2(D)†(K2C), C = DD†C and K1B =(K1A)(K1A)†(K1B), B = AA†B in (19)

(KM)(KM)†=

 K1(M |D)(K1(M |D))† 0

0 K2 (M | A)K2(M | A)†

 (20)
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Comparing (18) and (20),

(K1A)(K1A))†=K1(M |D)(K1(M |D))† ⇒ K1AA
†K1=K1(M |D)(K1(M |D)†K1

Thus, AA†= (M |D)(M |D)†. Since A and (M |D) are q-k1-EP, (K1A)†(K
1
A) =(K1(M | D)†(K1 (M | D) ) ;

A†A =(M |D)†(M |D). Thus, N (A) = N(M |D) [3]. Similarly, we can obtain the expressions for (KM)†(KM). Comparing

D†D =(M |A)†(M |A)⇒ N (D) = N(M |A).

(ii) ⇒ (i) : N (M |A) ⊆ N (B) follows directly from N (M | A) = N (D) ⊆ N(B). Similarly, N (M | D) ⊆ N(C) fol-

lows from N (M | D) = N (A) ⊆ N(C). Now A is q-k1-EP and (M | A) is q-k2-EP satisfying the relations N (A) ⊆

N (C) , N (A∗K1) ⊆ N (B∗K1) , N (M |A) ⊆ N (B) and N ((M |A)∗K2) ⊆ N (C∗K2). Hence by Theorem 2.2, M is q-k-EP.

Thus (i) holds.

Theorem 4.2. Let M =

 A B

C D

 be a q-k-EPr matrix with k =k1k2, N (A) ⊆ N (C) , N (D) ⊆ N (B) , N (M |A) ⊆

N (B) and N (M |D) ⊆ N(C). Then the following are hold.

(i). Principal sub-matrix A is q-k1-EP and principal sub-matrix D is q-k2-EP.

(ii). The schur complement (M |A) is q-k2-EP and the schur complement (M |D) is q-k1-EP.

(iii). Each principal pivot transforms of M is q-k-EPr.

Proof. (i) and (ii) are consequences of Lemma 4.1

(iii): By Lemma 4.1, KM satisfies N (A) ⊆ N (C),N (A∗K1) ⊆ N (B∗K1) hence by pivoting the block K1A, the principal

pivot transform K̂M of KM is of the form K̂M=

 (K1A)† −(K1A)†(K1B)

(K2C)(K1A)† K2(M |A)



K̂M=

 A†K1 −A†B

K2CA
†K1 K2(M |A)

 (21)

In K̂M,N(A†K1)N
(
K2CA

†K1

)
= N

(
CA†K1

)
, N((A†K1)

∗
)⊆N((A†B)

∗
). Further,

(K̂M)|(K1A)†) = K2 (M | A) +
(
K2CA

†K1

)(
A†K1

)†
(A†B)

= K2 (M | A) +K2CA
†K1K1AA

†B

= K2( (M | A) + CA†B)

= K2D

⇒ (K̂M)|(K1A)†) = K2D

By the assumption, N(K2(M̂ |A
†
)) = N(K2D) which implies

N((M̂ |A
†
)) = N (D) ⊆ N(B).

From Lemma 4.1, A is q-k1-EP andD is q-k2-EP. Therefore, A† is q-k1-EP and (M̂ |A
†
) is q-k2-EP(By [5], Theorem 2.4).

Hence, D = (M̂ |A
†
). Also, N(K2(M̂ |A

†
))
∗
= N (K2D)∗)

N((M̂ |A
†
)
∗
K2) = N (D∗K2) ⊆ N (C∗K2)
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Now applying Theorem 2.2, we see that M̂ is q-k-EP. Now,

r = ρ(M) =ρ(A)+(M |A) (By [3])

= ρ(A†)+(D) (By [2])

= ρ(A†)+(M̂ |A
†
)

= (M̂) (By [3])

Thus M̂ is q-k-EPr. Similarly, under the conditions given on M , M can be transformed to its principal pivot transform by

pivoting the block K2D without changing the rank. Hence the Theorem.

Remark 4.3. For k (i) = i, (the identity transposition), Theorem 4.2 reduces to the Theorem 1 of [6].

Remark 4.4. In the special case when M is non-singular with A and D non-singular, then the conditions N (A)N(C) and

N (D)N(B). Automatically hold and by [3], (M |A) and (M |D) are non-singular. Further, ρ(M̂)= ρ(A)+ ρ(D). Hence it

follows that each principal pivot transform of M is non-singular.We note that the non-singularity of M̂ need not imply M

is non-singular.

Example 4.5. Let M =



0 1 1 0

1 0 1 0

0 0 1 1

1 1 3 1


with A =

 0 1

1 0

 and the associated permutation matrix K =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


and

KM =



1 0 1 0

0 1 1 0

1 1 3 1

0 0 1 1


. Here K1A =

 0 1

1 0

. (K1B) =(K2C)∗=

 1 0

1 0

, K2D =

 3 1

1 1

. Here K1A and K2D are non-

singular and K2 (M | A) =

 1 1

1 1

 is EP1. Therefore, (M | A) is q-k2-EP1.

ρ(M) = ρ(A) + ρ(M |A) = 3

Since KM is symmetric, KM is EP3 which implies M is q- k EP3. By (21), (K̂M)=



1 0 −1 0

0 1 −1 0

1 1 1 1

0 0 1 1


is non-singular. Thus

K̂M is EP4 which implies M̂ is q-k EP4.

Remark 4.6. By considering the matrix M in Example 4.5, we note that the conditions N (M |A) ⊆ N(B) and N (M |D) ⊆

N(C) fail and the statement (iii) of Theorem 4.2 does not hold.
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