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1. Introduction

In this section we consider an 2n X 2n matrix M partitioned in the form,

A B
M = (1)

C D
where A and D are nxn matrices. If a partitioned matrix M of the form (1) is q-k-EP, then is general, Schur complement
of Ain M, ie., (M | A) is not q-k-EP. Here, necessary and sufficient conditions for (M | A) to be q-k-EP are obtained for
both the cases p(M) = p(A) and p(M) # p(A). As an application, a decomposition of a partitioned matrix into a sum of

q-k-EP matrices is obtained. Throughout this section let k = k1k2 as in [5].

2. Schur Complements in gq-k-EP Matrices

A B
Definition 2.1. If M € Hay,x2n is of the partitioned form M = , then a schur complement of A in M denoted by

C D
(M|A) is defined as, D — CA™ B where A~ is a generalized inverse of A satisfying AXA = A.

A B
Theorem 2.2. Let M = with N (A) C N (C) and N (M A) C N (B) then the following are equivalent.
C D

(i) M is a ¢-k-EP matriz with k=Fk, ko

(ii) A is a q-ki-EP (MA) is q-ko-EP, N (A*) C N (B*) and N (MA)*) C N (C*)

* E-mail: gbalamaths@gmail.com
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A 0 A B
(#ii) Both the matrices and are ¢-k-EP.
¢ (M]A) 0 (M|A)
Proof. (i) = (i4)
Ky 0
(i) Since M is a q-k-EP with k = kiks, KM is EP and K = where K7 and K5 are associated permutation
0 K>
I 0 I B(M|A)™ A 0
matrices of k1 and k2. Consider, P = , Q= and L = . It is clear that P,Q are
CA™ T 0 I 0 (M|A)
non-singular. )
Ki 0 I 0 I B(M|A)™ A 0
KPQL =
0 Ko ||cA 1| ]o I 0 (M]A)
KA KiB(M|A)(M|A)~
Ky;CA™A KCA™B(M|A)™ (M|A) +K2(M|A)

Since N (A) C N(C), by [8], we have C =CA~A. Thus K.C = K,CA~A. Also, since N(M|A) C N(B),
B =B(M|A)” (M|A). So, KaCA™B(M|A)™ (M]A)+K> (M|A)=K,>D, (since (MA)=D — CA™ B). Thus,

KiA K\B Ki 0 A B
KPQL = = = KM.
K>C K»D 0 K, | |C D

Thus KM is factorized as KM = KPQL. Hence p(KM) = (L) and N(KM) = N(L). But M is g-k-EP. Therefore,

KM is EP. N(KM) =N ((KM)*) = N(L) =N(M*K) [8]. By using, M*K =M*KL™L holds for all L~. Choose,

A~ 0
L = —
0 (M]A)
. A B K1 0 A*K: C*'K,
MK = =
C D 0 Ko B*K, D*K,
Since M*K =M*KL"L,
A'K, C*Ks> A'K, C*Ks A~ 0 A 0
B*K, DK, BK, DKy || 0 (M]A) 0 (M]A)

A*K A=A C"Ky(M|A)™ (M|A)

B*Ki1A™A D*Kx(M|A)™ (M]|A)
From the above, A*K1=A*"K1A™ A

= (K, A)*=(K,A)* A" A

= N(A) C N(K,A)" = N(A"K))

Since, p(K,A)"=p(K,A) = p(A"K1)=p(A). Thus, N(A) = N(A*K1). Hence A is a q-ki-EP. Similarly, we can prove
(M|A) is q-ka-EP. Further, C*Ky = C*Ko(M | A)~(M | A) = N(M | A) C N(C*K2) = N(K2(M | A)*N(C*EK>) =

N(M | A)*N(C*). Thus (ii) holds.
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(id) = (4)
Since N (A) C N (C), N (A*) C N (B*), N (M|A) C N (B),N (M | A)*) C N (C*) holds. By [2],

(K = (K1 A) (K1 A)T (K1 B)(M|A) Ko (K1 AT — (K1 A) (K1 B) K2 (M|A)T
- — Ko (M|A) KaC (KL A)' Ka(M|A)!

From [§], N(A) C€ N(C),N(A*) C N((B") = (M|A) is invariant for every choice of A~. Hence
K>D =K»(M|A)+K>C(K; A)' (K1 B). Further using KoC =K»(M | A)K (M | A)'K>C and K, B =K, A(K, A)' K1 B. Now,

(KM)(KM)'= KA ’
0 Ka(M|AK,(M|A)

Again using, K>C =(K,C)(K,A)(K1A)" and K1B =(K1B)K, (M | A) K,(M | A)

(K1A)TK A 0
(KM)'KM) =
0 Kao(M | AT Ky (M | A)

Since A is q-k1-EP, (M|A) is q-ko-EP [5]. We have (KM)(KM)'=(KM)'KM =M'MK = KMM'= Mis o-k-EP [5].
Thus (i) holds.

(1) = (iii)

KA 0 K, 0 A 0
is EP &K1 A and Ky (M | A) are EP. is EP& KA and K, (M | A) are

K>C Ky (M| A) 0 Ky | | C (M]A)

A 0
EP. is g-k-EP< A is q-k1-EP and (M | A) is g-ko-EP. Further N (4) C N (C), N ((M]A)*) C N (C*).
¢ (M| A)

KA KB A B
Also is EP <K A and Ky (M | A) are EP. is q-k-EP< A is q-k1-EP and (M | A) is
0 Ky(M|A) 0 (M|A)

q-ko-EP. Further, N (A*) C N (B*), N (M|A) C N (B). Hence the equivalence of (ii) and (iii).

A B

Theorem 2.3. Let M be a matriz, M = with N (A*) C N (B*), N ((M]A)*) C N (C*) then the following are
C D

equivalent.

(i). M is g-k-EP with k =kik>.

(ii). A is ¢-k1-EP and (M | A) is ¢-k2-EP. Further, N (A) C N (C), N (M|A) C N (B).

A 0 A B
(#ii). Both the matrices and are g-k-EP.
C (M]A) 0 (M]A)
Proof.  Applying the fact M is q-k-EP< M* is q-k-EP from Theorem 2.2, the proof is obvious. O

A C”
Corollary 2.4. Let M = with N (A) C N (C),N (M]A) C N (C*) then the following are equivalent.
C D

(i). M is g-k-EP with k =k1k2
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(i1). A is ¢-k1-EP and (M | A) is g-ko-EP. Further, N (A) C N (C), N (M|A) C N (B).

A 0
(@ii). The matriz is g-k-EP.
¢ (M]A)

Remark 2.5. The conditions on M in Theorem 2.2 and Theorem 2.4 are essential.

For example,

1 ¢ @ 1 1000 1 ¢ ¢ 1
- 1 5 3 0100 - 1 5 i
Let M = , K = and KM*"K = =M = M is q-k-EP and rank 2 =M is
-5 -5 1 k 0010 —i —j 1 k
- —i —k 1 0001 —i — —k 1

11 0 0 0 0
q-k-EP2. More over, A=B=C = (M| A)=D—-CA'B = s Ko (M| A)= is EP = (M | A)
11 0 -1 0 -1

11
is q-ko-EP. K1 A = is EP = Ais q-k1-EP. N (A) C N (C),N (A*) C N (B*), but N (M|A) ¢ N (B), N ((M]A)*) C

10
110 0
A 0 110 0 A 0 A B
N (C*). Further, K = is not EP. is not g-k-EP. Similarly, K
C (M]A) 110 0 C (M]A) 0 (M|A)
110 -1
A B
is not EP. is not g-k-EP. Thus, Theorem 2.2 and Theorem 2.3 as well as Corollary 2.4 fails.
0 (M]A)

A B
Remark 2.6. For a ¢-k-EP matrizc M = with k =k1kz, the following are equivalent.

C D
N (4) € N (C), N (M]A) € N (B) (2)
N (A%) € N (B"), N (M|4)") € N (C7) (3)

If we omit the condition, M is q-k-EP then the above fails.

For example, let

1 1 10
1410
M= (4)
11k1
0000O0
1000
0100
K =
0010
0001
1110
1510 11 10
KM = is not EP. Therefore, M is not g-k-EP. Here A = is k1-EP. B =KC*Ky= . Thus
11k1 11 10
0000
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N(A)CN(C),N(A*) C N (B"). Hence (M|A) is independent of the choice of A™.

10|01 01
Ka(M]A) = =

01 00 00

K>(M|A) is not EP. (M]A) is not g- k2-EP. Thus N ((M | A)*) C N (C*) but N (M|A) C N (B). Thus (3) holds while (2)

fails.

Remark 2.7. For a k-EP matriz M, the Formula 2.3 gives (KM)' if and only if either (2) or (3) holds.

A B

Corollary 2.8. M = with k =k1ka for which (K'M)Jr s given by the Formula 2.3. Then M is q-k-EP if and only
C D

if A is ¢-k1-EP and (M | A) is q-ko-EP.

Proof. This follows from Theorem 2.2 and using Remark 2.11 O

A B
Theorem 2.9. Let M = with p( M )=p( A)= r, then M is q-k-EP, with k =kik2 if and only if A is ¢-ki1-EP;

C D
and CATK,=(A"BK>)".
Kl 0 K1A K1B
Proof. Let K = , KM = . Since p(M) = p(A) =r, p(KM) = p(K1A) =r. By [5], N(A) C
0 K, K>,C K2D

N (C),N(A*) C N(B*) and (KM | K1 A)=K> (M | A)= 0. From [8], these relations are equivalent to KoC' =K>CA'A,
K1B =K1BAA" and K;D =K,CA'B.

I 0 I A'B
Consider, P = , Q= and L = . P, Q are non-singular. By assumption,

CA' 1 0 I
CA'K\=(A"BK;)", we have KP =(KQ)",

KA K1AA'B Ki1A K.B
KPLQ = = =KM
K,CATA K,CA'B K>C KsD

Since, KP =(KQ)*, KP*K =Q, we have KM = KPLKP*K = KM = (KP)(LK)(KP)" (KP)(KL)(KP)*, since

KiA 0
KL=LK. Since A is q-k1-EP,, K1A is EP,. KL= ! is EP, = L is q-k-EP,. Therefore, N(L) =

0 0
N (L*K)N(KL) = N(KL)*. By [1],

N((KP)(KL)(KP)") = N (KP)(KL)" (KP)") N (KM) = N(KM)*

N(M)= N(M*K)M is q-k-EP,. [5]. Since p(M) =r, M is q-k-EP,..
AT 0

Conversely, let us assume that M is g-k-EP,. Thus KM is EP,and KM = KPLQ, (KM) =Q~ P K is EP
0 0

= N(KM)=N(KM)* [8]

(KM)" = (KM)"(KM)™ (KM)

KiA KB KiA KB At o KiA KB
= Q P K
K>C KD K>C KD 0 0 K>C K2D
(K, A)" (K20)" (K,A)*ATA (K,A)"A'B
(K1B)" (K,D)" (K1B)*ATA (K\B)*A'B
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(K,A)* = (K,A)*ATAN (A)= N((K,A)") and

(K20)* = (K, A)*ATBK>C =B*(A")" (K, A)

Hence N (A)= N(A*K1)A is q-k1-EP, since p( A)=r, A is q-k1-EP,

(AJTAKI) ([5], Theorem 2.4)

(AT (AT A4) (Kl)*) (Since A" A is hermitian)

(5,)")

K>CA" = B*(A")"(K,)"=(K,A"B)"=(A"B)" K,

*

Also, CATK1=K2(A'B)"=(ATBK3)". The theorem is proved. O

A B
Corollary 2.10. Let M = , with A is a non-singular matriz and p(A) = p(M), then M is ¢-k-EP with
C D

k =kiks ©CAT K=K, (A'B)"=(A"BK>)".

Remark 2.11. The condition on rank of M 1is essential in Theorem 2.13.

1110 0100 1110
1110 1000 1110
For example, Consider M = K = and KM = , o(KM) = p(M) = 2, but p(K1A) =
1111 0010 1111
0000 0001 0000
01 11 11
p(A) = 1. Hence p(KM)#p(K1A) = p(M)#p(A)KM is not EP. M is not q-k-EP. K1 A = = is
10 11 11
EP. A is q-k1-EP.
1 *
AT:% , CATKlzi :(ATBKQ)
11 00

Thus Theorem 2.13 fails.

Corollary 2.12. Let M be a 2n x 2n matriz of rank r. Then M is ¢-k-EP, with k =ki1ks < FEvery principal sub matriz of

rank r is ¢-k1-EPy.

Proof.  Suppose M is g-k-EP,., KM is EP,.. Let K1 A be any principal sub matrix of KM such that p(KM) = p(K1A) =7
/ r | K1A KiB /
then there exists a permutation matrix P such that (KM) = P(KM)P , with (KM) =(K1A) = r. By
K>C KD
[1], (KM)I is EP,. By Theorem 2.13, K1 A is EP, = A is q-k1-EP,.. Since A is arbitrary, every principal sub matrix of rank

ris q-k1-EP,-. O

Definition 2.13. M; and Ms are called complementary summands of M if M = My + Mz and p(M) = p(M1) + p(Ms).

A B
Theorem 2.14. Let M = , with p(M) = p(A) + p(M|A) where (M|A) = D — CATB. If A is ¢-ki-EP and (M|A)
C D

is q-k2-EP such that CATK1=(ATBK2)* and B(M|A) Ko=((M | A)'CK,)" then M can be decomposed into complementary

summands of q-k-EP matrices.
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A AA'B 0 (I —AAY) B
Proof. Consider, M;= , M
CATA CA'B C(I-AA"Y) (M| A)

N(A*K1)N((AA'B)" K1) and

such that N(A)N(CATA),

(My | A)= CATB— (CATA) A (AA'B) = CATB—CAT(AA” A)ATB) =0
By [3], p(M,) = p(A). Since A is q-k:1-EP and
(CA*A) ATK = C(ATAAT) K = Cfmrg:(AHBKQ)*:(AT (AATB)KQ)*
By Theorem 2.13, M; is q-k1-EP. Since, p(M)=p(A)+ p(M|A). By [3], N(M|A) C N(C(I-A'A)B)
N(M|A)* C N(C (I—ATA)*) and (1 - AA*) B(M | A)f C (I—A*A) =0
Therefore, (M2 |(M | A)) = 0. By [3], (M,)=p(M|A). Hence, (M) =(M,)+ (M,). Further, AATK1=K, A" A

(1-44") B(M|A) K> = (1 - A4T) (M14) €)= ((M]4)' CK, (1 - AAT)*)*

= (M)A C(I - ATA)K,)*

By Theorem 2.13, M> is q-ko-EP. Clearly, M =M1+ M, and p(M) = p(M1)+ p(Mz). Hence M; and M, are complementary

summands of g-k-EP matrices. O

Remark 2.15. Any matriz represented as the sum of complementary summands of ¢-k-EP matrices is g-k-EP. If M = > M,
i=1

such that M; is g-k-EP and (M) = (i M) Then N (M)= () N(M;)= () N(M;*K)(M, is ¢-k-EP). N (M) = N(M*K).
=1 =1 =1

Thus M is g-k-EP.

3. Factorization of q-k-EP matrices

Throughout this section, M is a 2n X 2n matrix of the form,

A B
M= with p(M) = p(A)=r (5
C D

~

Where Aisn x nand D is n x n. If M is q-k-EP with k =k1k2 then the associated permutation matrix K is of the form,

K1 0
K= (6)
0 K

where K is the associated permutation n x n matrix of k1 and K> is the associated permutation n x n matrix of k.

KA KB
KM = and p(A) =p(M)=r (7)
K>C K>D
By [3],

N (K1A) C N (K»C), N(A*K,)C N(B*K,), D=CA'B (8)
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Also let
AK: BK;
MK = and p(A) =p(M)=r 9)
CKy; DK,
Again by [3],
N (AK,) C N (CK1), N (K1A*) C N(K2B*), D=CA'B (10)

Lemma 3.1. If M is q-k-EP, of the form (5) with k =ki1k2 then there exists a (p X 2n — p) matriz X such that

KiA K AX
KM = (11)
X*"K1A X*K1AX

And A is ¢-k1-EP;.

Proof.  Since KM is of the form (7) and p(A) = p(M) then (8) holds. Hence there is an (p X 2n — p) matrix X such that
K>C =YK A and B= AX. By [8], since M is q-k-EP,. , By Theorem 2.13, A is g-k1-EP, and

CATKF(ATBKQ)*
Also by Theorem 2.4 [5], A is q-k1-EP,. K1AAT= AATK1 AATK1=K,AA'. Since, CATK1=(A'BK,)"
KQCA*KF(ATB) YEKIA=X"K A

Also, K2D =K,CA'B=YK,AX = X*K,AX. Hence, KM is of the form (11). O

Lemma 3.2. If M is ¢-k-EP, of the form (5) with k =k1k2 then there exists a (p X 2n — p) matriz X such that

AK, AKX
MK = (12)
X*AK) X*AK\ X

And A is q-k1-EP;.
Proof.  Since MK is of the form (9) and p(A) = p(M) then (10) holds. Hence there is an (2n — p X p) matrix Y such that
BK,;=AK;X and C=Y A. By [8], since M is q-k-EP,, by Theorem 2.13, A is g-k:-EP, and

CATK: = (A'BE,)

YAATK, = (ATAK, X) Y AK,\=X"AK,

Also,
DKy = CA'BK»
=YAK: X
= X"AK1X
Hence, M K is of the form (12). O

Theorem 3.3. If M is g-k-EP, of the form (5) and A is g-k1-EPr, then M is a product of q-k-EP, matrices.
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Proof. 1If M is g-k-EP, of the form (5) then it satisfiess N(A) C N(C), N(A*) C N(B*), D=CA'B,
hence there exists X and Y such that C =Y A, B=AX, D=CA'B= YAA'AX=YAX. Consider the matrices,

ATAK,  AA'Y*K, K14 0 ATAK, AATX K,
SK = , KL = and TK = . By Theorem 2.13, S, L

YAATK, YAA'Y*K, 0 0 X*ATAK, X*ATAXK,
and T are g-k-EP,.. Also,

AK, AXK: AK, BK,
(SK)(KL)(TK)= = =MK
YAK, YAXK, CKi1 DK,
Thus, MK is a product of SK, KL and TK are all g-k-EP, matrices. Therefore, M = SLT. O
I,
Lemma 3.4. Let L = be a 2n X 2n matriz of rank r. If E is an n X n non-singular matriz, then L = S T,
G H 00
where S, T are ¢-k-EP, matrices.
I. 0 Ky 0
Proof. L=KP KQ@Q, where P,Q are non-singular matrix and K is the permutation matrix
00 0 K
A, B A, B K, A (K, A) (K,A) (K, By) _
If we write P=| | , P=|_ | then L= (H A 1/\) (H A 1/\) and (K, A)(K,A)=E
Ci D Cy D (K,C1)(K A1) (K,Ci)(K Bi)
— KiA; — —
is non-singular. Thus, K;A, (K;A) are non-singular. So, and [KlAl K2B1] have rank r. Thus
KyCh
there is an 2n — r X r matrix X and r X 2n — r matrix Y such that XK,14:=K>C7 and 1/4\1Y :1/3\1. Put
KA KA X" KA KiAY
S = s T = _ _ . NOW,
XKiA1 XK1A X™ Y*K1A1 Y*K1AY
I. 0 KA KA X* I. 0 KA KiAY
S T = =L

XK1A1 XKiAX* 00| |Y'KiA YK ALY

o
o

By [1], KS and KT are EP, matrices. Hence, S, T are q-k-EP, matrices. Any matrix AHo,x2n of rank r is called a P,

matrix if it has a principal r X r non-singular matrix. O
Lemma 3.5. Let M be a 2n x 2n matrix of order r. If M is a P, matriz then M is a product of q-k-EP, matrices.

Proof. Let M be a 2n x 2n matrix of order r having E as a principal 7 x r non-singular sub matrix, there is a permutation

E E F I. 0
matrix P such that PMPT= . By Lemma 3.12, =5 T, where S, T are q-k-EP, matrices.
G H G H 00
Hence,
PMP" =8 T
00
- I, 0
M=P S TP
0 0
T I, 0
M = (P SP)P P(PTP)
0 0

Since S, T are q-k-EP, matrices, PTSP and P'TP are q-k-EP, matrices. Thus, M is a product of q-k-EP, matrices. 0O
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Remark 3.6. The converse of Theorem 3.18 need not be true.

0 00 00 j 1 0 1 010
Example 3.7. LetA=| 0 0|, B=|00 —j|,C=|0 k 0. ForK=|1 0 0| where A, B, C are ¢-k-EP
- 00 110 0 -k 0 001

000
matrices of rank 2. But ABC = | § j —i | has rank 2, does not have a P> matrices. More over, ABC' is not q-k-EP.

01 0
E F
Lemma 3.8. Let A = be a q-k-EP, matriz with k =kiks. K1 FE is an r x v matriz and { KiE K.F ] has rank
G H
r, then K1 FE is non-singular. .
I, 0 Ki 0 E F K\FE K.\ F
Proof. = where I, is the r x r identity matrix. By [2],
00 0 Ko G H 0 0
Ky 0 E F I. 0 KiE 0
= has rank r. By [8], K1 F has rank r. Thus K1 E is non-singular. O
0 Ko G H 00 KG 0

Theorem 3.9. Let A and B be 2n x 2n g-k-EP matrices with k =k1ks. If AB has rank r, then AB is unitarily similar to

a P, matriz.

Proof. Since A is g-k-EP,, by [5], there is a unitary matrix U such that A is unitarily k-similar to a diagonal block

q-k-EP, matrix where D is a r X r non-singular matrix.
00
D o . 0
A=KUK U =U"(KAU=K
00 00
F
Put U* (BK)U = where E is r x r matrix. Then
H G
. Do E F
U'(KA)(BK)U = K
00 H G
Ki\DE KiDF
(KU)*"AB(KU) = has rank r.
0 0

Thus K1D { E F } has rank r, it follows { E F } has rank r. By Lemma 3.16, K1 F is non-singular. Thus (KU)*AB(KU)
O

is a P, matrix. AB is unitarily similar to a P, matrix.

Theorem 3.10. Let A and B be n X n matrices. If A has rank r, B and AB are ¢-k-EP, matrices, then A is a product

q-k-EP, of matrices.

D 0
Proof.  Since B is q-k-EP,., BK is EP,.. By [5], B=U KU*K, D isr x r non-singular and U is a unitary matrix.
00

D 0 DK, 0
U"BKU = K,U"BKU =
0 0 0 O
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F
Put U*(KA)U = where E is r x r matrix and U is unitary. Then
H G
) ) E F| | DK 0
(U*KAU) (U*BKU) =
H G 0 0
EDK; 0
= U"KABKU =
GDK, 0
) EDK; 0
= (KU)*AB (KU) =
GDK; 0

Since AB is q-k-EP,, by [5], GDK1= 0. Hence G = 0. E is non-singular. Applying Lemma 3.12, A is a product of q-k-EP,

matrices. O

Remark 3.11. The condition on p(A) = r is essential. If p(A)#r then Theorem 3.18 fails.

00 00 01
For example, Let A = , B= and let K = . Here p(A) =1, p(B) = 0. Bis q-k-EPy. AB =
01 00 10 00

is q-k-EPg. Here B = AB. Hence the Statement of 3.18 fails.

A B P Q
Theorem 3.12. Let M = , L= be g-k-EP, matrices with k =ki1ke and ML be of rank r. Then the

C D R S

following are equivalent.
(1). ML is g-k-EP,
(2). AP is ¢-k1-EP, and CATK,=K>RP!

(3). AP is ¢-k1-EP, and ATBK.=K,P'Q

Proof.
AK1 BKQ K1P KlQ
MK = , KL=
CKl DK2 K2R KZS
AKi(1+XY")K, P AK, (14 XY*)K,PY
(MK) (KL) =
X"AK:(1+ XY")K P X"AK:(1+ XY")K\PY
AK\ZK.P AK, ZK,PY
ML = , Z=1+XY"
X*AK\ZK\P X*AK\ZK:PY
Clearly,

N (AK,ZK,P) C N(X*AK,ZK,PY)

N(AK1ZK:1P)* C N(X"AK:1ZK,1PY)"
Schur complement of AK; ZK1P in ML,

(ML|AK\ZK P )= (X*AK,ZK\PY) — (X*AK, ZK,P) (AK, ZK, P)' (AK, ZK,PY) =0
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By [3], p(AK1ZK1P) = p(ML) = r. Hence by Theorem 2.13, A and P are both g-k:-EP, matrices.

CA'K\=(A'BK,)", RP*K,=(P'QK,)" (13)

R(AK,ZK,P) C R(AK,) = R(A)
R(AK\ZK,P)* C R(P*K,) = R(P*)= R(K,P) (Since P is q-ki-EP)

and p(AK\ZK1P) = p(A)=p(K\P) =r
Hence, R (AK,ZK,P)= R(A); R(AK\ZK1P)*= R (K, P)
(AK\ZK P)(AK\ZK P)! = (AK,)(AK,)' (14)
By [2],

(AK1ZK1P) (AK1ZK,P) = (K1 P)(K.P)! (15)

ML is g-k-EP, & (MK) (KL) is EP, & AK\ZK P is EP, (By Theorem 2.13)

(X*AK\ZK\P)(AK\ZK,\P)' = (AK,ZK,P)' (AK, ZK,PY)*
& R(AK,\ZK,\P) = R(AK,\ZK,P)* (By (15))
X*(AK ) (AK) = Y™ (K, P) (K, P)!
R(A) = R(K1P) and by (14)
(X*AK;) (KlAT) = (Y'K,P)(P'Ky)
Since A and P are both q-ki-EP, matrices, <& AP is q-ki-EP,, CK 1 Ki1A'=KsRPTK, & AP is q-k1-EP, and
CA'K\=K>RP' & AP is q-ki-EP, and (A'BK:)" = Ky(P'QK2)" & AP is q-k1-EP, and A'BK,=K,P'Q. Thus,

ML is q-k-EP, < AP is q-k1-EP, and ATBK,=K,P'Q. O

4. Pivotal Transform on g-k-EP Matrices

Let M = then a principal re-arrangement of square matrix M (i.e) PTMP, where P is a permutation matrix,
C D

P "MP = , where P is a permutation matrix P = . Let us consider a system of Linear equations, Mz = ¢,
B A 10

A B
where M = satisfying N (A) C N (C), N (A*) C N (B"). If z and t are partitioned conformably as z =
C D Yy

u
and t = . Then Az + By = u, Cz 4+ Dy = v. Then by [7, P.21] we can solve for z and v as

e =Atu= AT By, v = CATut (D - CATB) y
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A B
Thus a matrix M = satisfying N (A) N (C'), N (A*) N (B") can be transformed into the matrix,
C D

— AT —A'B
CAT (M|A)

M is called a principal pivot transform of M.

A B
Lemma 4.1. Let M = with N (A) C N (C),N(D) C N(B) then the following are equivalent.
C D

(i). M is q-k-EP with k =kiks, N (M]A) C N (B), N(M|D) C N(C)
(). A and M|D are ¢-ki-EP and D and (M|A) are q-ka-EP.
Further, N (A)= N(M|D) C N (B*K)) and N (D)= N (M|A) C N (C*K>).

Proof. (i) = (i) : Since M is q-k-EP with k =k1k2, N (A) C N (C),N (M|A) C N (B). By Theorem 2.2, A is q-k1-EP

and (M|A) is q-k2-EP; N (A*K1) C N (B*K1) and N ((M|A)*K2) C N (C*K3). Since A is g-k1-EP, N (A* K1) = N(A) (By

Definition of g-k-EP). Therefore, N (A)= N (B*K1). Since M is q-k-EP, KM is EP , implies the principal rearrangement
KiD KC

PTKMP = is also EP.
K1B KA

Further N(K,D) C N(K1B) and N(K,(M|D)) C N(K>C) holds. Hence by Theorem 2.2, K2D is EP. Ki(M|D)
is EP. N((K,D)") € N((K,C)") and N(K,(M|D)) € N((K,B)"). Thus We have, D is q-ko-EP, (M|D) is q-ki-
EP. N(D*Ks) C N(C*Ks) and N(K,(M|D)) C N(B*K1). Since, D is q-ko-EP, by Definition, N (D*K>)= N(D).
Thus, N (D) C N(C*K,). Since the relations, N(A) C N(C),N(A*K,) C N(B*K;), N(MJ|A) C N (B) and
N ((M]A)*K2) C N (C*K3) holds for K1 A. According to the assumptions and from [7],

(K1 A4) (K1 A) (K1 B) (M| A) Ko (K A)' — (K, A) (K0 B) K2 (M| A)!

(KM)! = (A7)
— Ko (M]A) K2 C(Ky A)f K> (M|A)T

Using K2C =(K,(M|A)(K2(M|A)'(K,C) and K1 B =(K, A)(K,A))"(K.B)

; (K, A)(K.1A)! 0
(KM)TKM) = (18)
0 (K2 (M | A)) (K2(M | A))'

Since the relations, N (D) C N (B), N (D*K>2) C N (C*Kz), N((M|D)) € N(C) and N ((M|D)"K;) C N (B*K1) holds
for K1 D, according to the assumptions by Theorem 1.2,
(K, (M|D))" —(K1A)'(K1B)K2(M]A)'

(KM)' = (19)
~(K2D) KC (K, (M|D))! Ko(M|A)!

Using K2C =(K,D)(K2(D)'(K,C), C = DD'C and KB =(K,A)(K,A)'(K1B), B= AA"B in (19)

| Ki(M|D)(K1(M]|D))" 0
(KM)(KM)'= (20)
0 Ko (M | A)K,(M | A)f
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Comparing (18) and (20),
(K, A) (K, A)' =K1 (M|D)(K1(M|D))" = KiAA'K1=K\(M|D)(K,(M|D)' K,

Thus, AA'= (M|D)(M|D)". Since A and (M|D) are q-ki-EP, (K, A) (K A)=(K (M |D)"(K:(M|D)) ;
AT A =(M|D)'(M|D). Thus, N (A)= N(M|D) [3]. Similarly, we can obtain the expressions for (K M)"(KM). Comparing
DD =(M|A)"(M|A)= N (D)= N(M|A).

(i) = (i) : N(M]A) C N (B) follows directly from N (M | A)= N (D) C N(B). Similarly, N (M | D) C N(C) fol-
lows from N (M | D)= N (A) C N(C). Now A is q-ki-EP and (M | A) is q-ko-EP satisfying the relations N (A) C
N(C), N(A*K1) C N(B*K1), N(M|A) C N (B) and N (M|A)*K>) C N (C*K3). Hence by Theorem 2.2, M is q-k-EP.
Thus (i) holds. O

A B
Theorem 4.2. Let M = be a g-k-EP, matriz with k =kik2, N (A) C N(C), N(D) C N(B), N(M|A) C
C D

N (B) and N (M|D) C N(C). Then the following are hold.

(i). Principal sub-matriz A is q-k1-EP and principal sub-matriz D is q-k2-EP.

(i1). The schur complement (M|A) is g-ko-EP and the schur complement (M|D) is q-k1-EP.
(@ii). Each principal pivot transforms of M is ¢-k-EPy.

Proof. (i) and (ii) are consequences of Lemma 4.1
(iii): By Lemma 4.1, KM satisfies N (A) C N (C),N (A*K1) C N (B*K1) hence by pivoting the block K1 A, the principal

. —— . —— (K1A)" —(K1A)'(K1B)
pivot transform KM of KM is of the form KM=
(K2C) (K1 AT Ka(M|A)

_ AYK, —-A'B
KM= (21)
K:CATK, Ko(M|A)

In KM,N(A'K1)N (K2CAYK ) = N (CATK:1), N((A"K1)")CN((ATB)"). Further,

(RID)|(K1A)') = Kz (M | A)+ (K2CATE ) (ATKI)T(A*B)
= K> (M | A)+K:CA'K K, AA'B
= Ksy((M | A)+ CA'B)
= K2D

= (KM)|(K1A)") = K2D
By the assumption, N (K> (]\/4\|AT)) = N(K2D) which implies
—
N((M]A")) = N (D) € N(B).

From Lemma 4.1, A is g-ki-EP andD is g-ko-EP. Therefore, A" is q-k1-EP and (M|AT) is q-k2-EP(By [5], Theorem 2.4).
Hence, D = (M]A'). Also, N(K>(M|A")) = N (K.D)*)

N((M|AY K2) = N (D" K,) € N (C°K>)
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Now applying Theorem 2.2, we see that M is q-k-EP. Now,

r = p(M) =p(A)+(M|A) (By [3))
= p(A")+(D) (By [2))
= p(A)+ (3] A")

= (M) (By [3)

Thus M is -k-EP,. Similarly, under the conditions given on M, M can be transformed to its principal pivot transform by

pivoting the block K2 D without changing the rank. Hence the Theorem. O
Remark 4.3. For k(i) =1, (the identity transposition), Theorem 4.2 reduces to the Theorem 1 of [6].

Remark 4.4. In the special case when M is non-singular with A and D non-singular, then the conditions N (A) N(C) and
N (D) N(B). Automatically hold and by [3], (M|A) and (M|D) are non-singular. Further, p(]/\/[\): p(A)+ p(D). Hence it
follows that each principal pivot transform of M is non-singular. We note that the non-singularity of M need not imply M

is non-singular.

0110 0100
1010 01 1000
Example 4.5. Let M = with A = and the associated permutation matric K = and
0011 10 0001
1131 0010
1010
0110 01 10 31
KM = . Here K1A = . (K1B) =(K,C)"'= , KoD = . Here KiA and K>D are non-
1131 10 10 11
0011

11
singular and Ko (M | A) = is EP1. Therefore, (M | A) is q-k2-EP1.

11
p(M) = p(A) + p(M|A) = 3
10 -10
e 01 -10
Since KM is symmetric, KM 1is EPs which itmplies M is ¢- k EPs. By (21), (KM )= s non-singular. Thus
11 1 1
00 1 1

@ is EPy which implies ]\//f is ¢-k EPy.

Remark 4.6. By considering the matrix M in Exzample 4.5, we note that the conditions N (M|A) C N(B) and N (M|D) C
N(C) fail and the statement (iii) of Theorem 4.2 does not hold.
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