International Journal of Mathematics And its Applications

Minkowski Inverse for the Range Symmetric Block Matrix with Two Identical Sub-blocks Over Skew Fields in Minkowski Space

Research Article

D.Krishnaswamy ${ }^{1}$ and S.Anusuya ${ }^{1 *}$
1 Department of Mathematics, Annamalai University, Annamalai Nagar, Tamilnadu, India.

```
Abstract: Let K be a skew field and K}\mp@subsup{K}{}{n\timesn}\mathrm{ be the set of all n  necessary and sufficient conditions for the existence and the representations of the minkowski inverse of the block matrix \(\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\) under some conditions.
MSC: \(\quad\) 15A09, 65F20.
```

Keywords: Skew fields, Block matrix, Minkowski inverse.
(c) JS Publication.

1. Introduction

Let K be a skew field, C be the complex number field, $K^{m \times n}$ be the set of all $m \times n$ matrices over K, and I_{n} be the $n \times n$ identity matrix over K. For a matrix $A \in K^{n \times n}$, the matrix $X \in K^{n \times n}$ satisfying $A^{k} X A=A^{K}, X A X=X$, $(A X)^{\sim}=A X$ and $(X A)^{\sim}=X A$ is called the Minkowski inverse of A and is denoted by $X=A^{m}$. If A^{m} exists if and only if $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$ and $R\left(A A^{m}\right)=R\left(A^{m}\right)=R(A)$. we denote $I-A A^{m}$ by A^{π}. A matrix $A \in C^{n \times n}$ is said to be EP, if $A A^{\dagger}=A^{\dagger} A$. A matrix $A \in C^{n \times n}$ is G-unitary, if $A A^{\sim}=A^{\sim} A=I$. The Minkowski Inverse of block matrices has numerous applications in Game Theory, matrix theory such as singular differential and difference equation. In 1979, S. campbell and C. Meyer proposed an open problem to find an explicit representation for the Drazin inverse of a 2×2 block matrix $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$, where the blocks A and D are supposed to be square matrices but their sizes need not be the same. A simplified problem to find an explicit representation of the Drazin (group) inverse for block matrix $\left(\begin{array}{ll}A & B \\ C & 0\end{array}\right)$ (A is square, 0 is null matrix) was proposed by S. Campbell in 1983. This open problem was motivated in hoping to find general expressions for the solutions of the second order system of the differential equations

$$
E x^{\prime \prime}(t)+F x^{\prime}(t)+G x(t)=0(t \geq 0)
$$

where E is a singular matrix. Detailed discussions of the importance of the problem can be found in [11].

[^0]In this paper, we give the sufficient conditions or the necessary and sufficient conditions for the existance and the representations of the minkowski inverse for block matrix $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)\left(A, B n \in K^{n \times n}\right)$ when A and B satisfy one of the following conditions:
(1) B^{m} and $\left(B^{\pi} A\right)^{m}$ exist;
(2) B^{m} and $\left(A B^{\pi}\right)^{m}$ exist;
(3) B^{m} exists and $B A B^{\pi}=0$;
(4) B^{m} exists and $B^{\pi} A B=0$.

2. Preliminaries

Lemma 2.1. Let $A \in K^{n \times n}$ Then A has a Minkowski Inverse if and only if there exist G-unitary matrices $P \in K^{n \times n}$ and $A_{1} \in K^{n \times n}$ such that $A=P\left(\begin{array}{rr}A_{1} & 0 \\ 0 & 0\end{array}\right) P^{\sim}$ and $A^{m}=P\left(\begin{array}{rr}A_{1}^{m} & 0 \\ 0 & 0\end{array}\right) P^{\sim}$, where $\operatorname{rank}(A)=r$.
Proof. Since $\operatorname{rank}(A)=r$, there exists G-unitary matrices $P \in K^{n \times n}$ and $A \in K^{n \times n}$, such that $A=P\left(\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right) P^{\sim}$, $X=P\left(\begin{array}{rr}A_{1}^{m} & 0 \\ 0 & 0\end{array}\right) P^{\sim}$
(1) $A X A=P\left(\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right) P^{\sim} . P\left(\begin{array}{cc}A_{1}^{m} & 0 \\ 0 & 0\end{array}\right) P^{\sim} . P\left(\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right) P^{\sim}=P\left(\begin{array}{cc}A_{1} A_{1}^{m} A_{1} & 0 \\ 0 & 0\end{array}\right) P^{\sim}=P\left(\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right) P^{\sim}=A$
(2) $X A X=P\left(\begin{array}{rr}A_{1}^{m} & 0 \\ 0 & 0\end{array}\right) P^{\sim} . P\left(\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right) P^{\sim} . P\left(\begin{array}{cc}A_{1}^{m} & 0 \\ 0 & 0\end{array}\right) P^{\sim}=P\left(\begin{array}{cc}A_{1}^{m} & 0 \\ 0 & 0\end{array}\right) P^{\sim}=X$
(3) $(A X)^{\sim}=(X A)^{\sim}=\left(\begin{array}{cc}G_{1} & 0 \\ 0 & -I_{n-1}\end{array}\right)\left(P\left(\begin{array}{cc}A_{1} A_{1}^{m} & 0 \\ 0 & 0\end{array}\right) P^{\sim}\right)^{*}\left(\begin{array}{cc}G_{1}^{m} & 0 \\ 0 & -I\end{array}\right)=\left(P^{\sim}\right)^{*}\left(\begin{array}{cc}G_{1}\left(A_{1} A_{1}^{m}\right) G_{1} & 0 \\ 0 & 0\end{array}\right) P^{*}=$ $\left(P^{\sim}\right)^{*}\left(\begin{array}{cc}\left(A_{1} A_{1}^{m}\right)^{\sim} & 0 \\ 0 & 0\end{array}\right) P^{*}$.
Similarly, $(X A)^{\sim}=\left(P^{\sim}\right)^{*}\left(\begin{array}{cc}\left(A_{1} A_{1}^{m}\right)^{\sim} & 0 \\ 0 & 0\end{array}\right) P^{*}$. Therefore $(A X)^{\sim}=(X A)^{\sim}$. Hence $X=A^{m}$.
Lemma 2.2 ([?]). Let $A, G \in K^{n \times n}, \operatorname{ind}(A)=K$. Then $G=A^{D}$ if and only if $A^{K} G A=A^{K}, A G=G A, \operatorname{rank}(G) \leq$ $\operatorname{rank}\left(A^{K}\right)$.
Lemma 2.3. Let $\left(\begin{array}{ll}A & B \\ B & 0\end{array}\right) S=B^{\pi} A B^{\pi}, A, B \in X^{n \times n}$.
(i) B^{m} and $\left(B^{\pi} A\right)^{m}$ exist in \mathscr{M} then S^{m} and M^{m} exist in \mathscr{M}.
(ii) If B^{m} exist in \mathscr{M} and $B A B^{\pi}=0$, then M^{m} exist if and only if $\left(A B^{\pi}\right)^{m}$ exist in \mathscr{M}.

Proof. Suppose $\operatorname{rank}(B)=r$. Applying Lemma 2.1, there exist unitary matrix $P \in C^{n \times n}$ and invertible matrix $B_{1} \in k^{r \times r}$,
such that $B=p\left(\begin{array}{cc}B_{1} & 0 \\ 0 & 0\end{array}\right) p^{\sim}$ and $B^{m}=p\left(\begin{array}{cc}B_{1}^{-1} & 0 \\ 0 & 0\end{array}\right) p^{\sim}$. First we can find B^{π},

$$
\begin{aligned}
B^{\pi} & =I-B B^{m} \\
& =\left(\begin{array}{cc}
I_{r} & 0 \\
0 & I_{n-r}
\end{array}\right)-p\left(\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right) p^{\sim} \cdot p\left(\begin{array}{cc}
B_{1}^{-1} & 0 \\
0 & 0
\end{array}\right) p^{\sim} \\
& =\left(\begin{array}{cc}
I_{r} & 0 \\
0 & I_{n-r}
\end{array}\right)-p\left(\begin{array}{cc}
B_{1} B_{1}^{-1} & 0 \\
0 & 0
\end{array}\right) p^{\sim} \\
& =\left(\begin{array}{cc}
I_{r} & 0 \\
0 & I_{n-r}
\end{array}\right)-p\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right) p^{\sim} \\
& =\left(\begin{array}{cc}
p p^{r} & 0 \\
0 & \left(p p^{\sim}\right)_{n-r}
\end{array}\right)-p\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
I_{r} & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim}-p\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right) p^{\sim} \\
B^{\pi} & =p\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim}
\end{aligned}
$$

(i) Because $\left(B^{\pi} A\right)^{m}$ exist in \mathscr{M}. We have $\operatorname{rank}\left(B^{\pi} A\right)=\operatorname{rank}\left(B^{\pi} A\right)^{2}$. That is

$$
\begin{aligned}
B^{\pi} A & =p\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} p\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right)\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0+0 & 0+0 \\
0+A_{3} & 0+A_{4}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} \\
B^{\pi} A & =p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right) p^{\sim}
\end{aligned}
$$

Therefore
$\operatorname{rank}\left(B^{\pi} A\right)=\operatorname{rank}\left(A_{3} A_{4}\right)$

$$
\begin{align*}
\left(B^{\pi} A\right)^{2} & =p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} \tag{1}\\
& =p\left(\begin{array}{cc}
0 & 0 \\
A_{3} A_{4} & \left(A_{4}\right)^{2}
\end{array}\right) p^{\sim} . \text { Therefore }
\end{align*}
$$

$$
\begin{equation*}
\operatorname{rank}\left(B^{\pi} A\right)^{2}=\operatorname{rank}\left(A_{3} A_{4} A_{4}\right) \tag{2}
\end{equation*}
$$

Equating (1) and (2), we get

$$
\begin{aligned}
& \operatorname{rank}\left(A_{3} A_{4}\right)=\operatorname{rank}\left(A_{3} A_{4} A_{4}^{2}\right) \\
& \leq \operatorname{rank}\left(A_{4}\left(A_{3} A_{4}\right)\right) \\
& \leq \operatorname{rank}\left(A_{4}\right) \text { and } \\
& \operatorname{rank}\left(A_{3} A_{4}\right) \geq \operatorname{rank}\left(A_{4}\right)
\end{aligned}
$$

We have $\operatorname{rank}\left(A_{3} A_{4}\right)=\operatorname{rank}\left(A_{4}\right)$, so there exist a matrix $x \in k^{(n-r) \times r}$ such that $A_{3}=A_{4} X$. Because order $\left(A_{3}\right)=(n-r) \times r$ and $\operatorname{order}\left(A_{4} X\right)=(n-r) \times r$ corresponding entries we also equal. We get $\operatorname{rank}\left(A_{4}\right)=\operatorname{rank}\left(A_{4}^{2}\right)$. Therefore A^{m} exist in \mathscr{M}. Nothing that

$$
\begin{aligned}
S & =B^{\pi} A B^{\pi} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} p\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} p\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right)\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0+0 & 0+0 \\
0+A_{3} & 0+A_{4}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{ll}
0+0 & 0+0 \\
0+0 & A_{4}
\end{array}\right) p^{\sim}=p\left(\begin{array}{ll}
0 & 0 \\
0 & A_{4}
\end{array}\right) p^{\sim} \\
S & =p\left(\begin{array}{ll}
0 & 0 \\
0 & A_{4}
\end{array}\right) p^{\sim}
\end{aligned}
$$

Therefore $\operatorname{rank}(S)=\operatorname{rank}\left(A_{4}\right)$. Similarly, $S^{2}=p\left(\begin{array}{ll}0 & 0 \\ 0 & A_{4}\end{array}\right) p^{\sim} \Rightarrow \operatorname{rank}\left(s^{2}\right)=\operatorname{rank}\left(A_{4}^{2}\right)$. Hence $\operatorname{rank}\left(A_{4}\right)=\operatorname{rank}\left(A_{4}^{2}\right)$. Which implies $\operatorname{rank}(s)=\operatorname{rank}\left(s^{2}\right)$. Thus $\operatorname{rank}\left(s^{m}\right)$ exist in \mathscr{M}. Since $\operatorname{rank}(m)=\operatorname{rank}\left(\begin{array}{cccc}A_{1} & A_{2} & B_{1} & 0 \\ A_{3} & A_{4} & 0 & 0 \\ B_{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)=$ $\operatorname{rank}\left(\begin{array}{cccc}0 & 0 & B_{1} & 0 \\ 0 & A_{4} & 0 & 0 \\ B_{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ By using $\operatorname{rank}\left(B_{1}\right)=r$. Therefore $\operatorname{rank}\left(B_{1}\right)=r$. Also $\operatorname{rank}(M)=2 r+\operatorname{rank}\left(A_{4}\right)$ and we
can find $\operatorname{rank}\left(M^{2}\right)$

$$
\begin{aligned}
M^{2} & =\left(\begin{array}{ll}
A & B \\
B & 0
\end{array}\right)\left(\begin{array}{ll}
A & B \\
B & 0
\end{array}\right)=\left(\begin{array}{cc}
A^{2}+B^{2} & A B \\
B A & B^{2}
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cc}
A^{2}+B^{2} & A B \\
B A & B^{2}
\end{array}\right) \\
& =\operatorname{rank}\left(\begin{array}{ccc}
A^{2}-A B B^{m} B+B^{2} & 0 \\
0 & B
\end{array}\right) \\
& =\operatorname{rank}\left(\begin{array}{cccc}
B_{1}^{2}+A_{2} A_{3} & A_{2} A_{4} & 0 & 0 \\
A_{4} A_{3} & A_{4}^{2} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

By $A_{3}=A_{4} X$, we get,

$$
\operatorname{rank}\left(M^{2}\right)=\left(\begin{array}{cccc}
B_{1}^{2} & 0 & 0 & 0 \\
0 & A_{1}^{2} & 0 & 0 \\
0 & 0 & B_{1}^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$\operatorname{rank}\left(M^{2}\right)=2 r+\operatorname{rank}\left(A_{4}^{2}\right)$ and $\operatorname{rank}(M)=\operatorname{rank}\left(M^{2}\right)$. That is M^{m} exist.
(ii) If $B A B^{\pi}=0$, then $A_{2}=0$. Thus $A B^{\pi}=p\left(\begin{array}{cc}0 & 0 \\ 0 & A_{4}\end{array}\right) p^{\sim}$

$$
\operatorname{rank}(M)=\operatorname{rank}\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & 0 \\
A_{3} & A_{4} & 0 & 0 \\
B_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cccc}
0 & 0 & B_{1} & 0 \\
0 & A_{4} & 0 & 0 \\
B_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=2 r+\operatorname{rank}\left(A_{4}\right)
$$

Similarly, $\operatorname{rank}\left(M^{2}\right)=r\left(\begin{array}{cc}A^{2}+B^{2} & A B \\ B A & B^{2}\end{array}\right)=\operatorname{rank}\left(\begin{array}{ccc}A^{2}-A B B^{m} B A & 0 \\ 0 & 0\end{array}\right)=\operatorname{rank}\left(\begin{array}{cccc}B_{1}^{2} & 0 & 0 & 0 \\ A_{4} A_{3} & A_{4}^{2} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. By $A_{3}=A_{4} X$, we get,

$$
\begin{aligned}
& \operatorname{rank}\left(M^{2}\right)=\left(\begin{array}{cccc}
B_{1}^{2} & 0 & 0 & 0 \\
0 & A_{1}^{2} & 0 & 0 \\
0 & 0 & B_{1}^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \operatorname{rank}\left(M^{2}\right)=\left(\begin{array}{cccc}
B_{1}^{2} & 0 & 0 & 0 \\
0 & A_{1}^{2} & 0 & 0 \\
0 & 0 & B_{1}^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \operatorname{rank}\left(M^{2}\right)=2 r+\operatorname{rank}\left(A_{4}^{2}\right)
\end{aligned}
$$

As $A B^{\pi}$ exist in \mathscr{M}, we can get $\operatorname{rank}\left(A_{4}\right)=\operatorname{rank}\left(A_{4}^{2}\right)$. Thus $\operatorname{rank}(M)=\operatorname{rank}\left(M^{2}\right)$. That is M^{m} exists.

Conversely assume that M^{m} exist if and only if $\operatorname{rank}\left(M^{2}\right)=\operatorname{rank}(M) . \operatorname{rank}\left(A_{4}\right)=\operatorname{rank}\left(A_{4}^{2}\right)$. That is $\left(A B^{\pi}\right)^{m}$ exist in \mathscr{M}. Hence Proved.

Lemma 2.4. Let $A, B \in K^{n \times n}, S=B^{\pi} A B^{\pi}$ suppose B^{m} and $\left(B^{\pi} A\right)^{m}$ exists in \mathscr{M} then s^{m} exist in \mathscr{M} and the following conclusion holds:
(i) $B^{\pi} A s^{m} A=B^{\pi} A$
(ii) $B^{\pi} A S^{m}=S^{m} A B^{\pi}$
(iii) $B S^{m}=S^{m} B=B^{m} s^{m}=S^{m} B^{m}=0$.

Proof. Suppose $\operatorname{rank}(B)=r$, Applying Lemma 2.1 there exist G-unitary matrix $p \in K^{n \times n}$ and $B_{1} \in K^{r \times r}$ such that $B=p\left(\begin{array}{cc}B_{1} & 0 \\ 0 & 0\end{array}\right) p^{\sim}$ and $B^{m}=p\left(\begin{array}{cc}B_{1}^{m} & 0 \\ 0 & 0\end{array}\right) p^{\sim}$. Let $A=p\left(\begin{array}{cc}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right) p^{\sim}$, where $A_{1} \in K^{r \times r}, A_{2} \in K^{r \times(n-r)}, A_{3} \in$ $K^{(n-r) \times r}, A_{4} \in K^{(n-r) \times(n-r)}$. From Lemma $2.3(\mathrm{i})$, we get S^{m} exist in \mathscr{M} and $S^{m}=p\left(\begin{array}{ll}0 & 0 \\ 0 & A_{4}\end{array}\right) p^{\sim}$
(i)

$$
\begin{aligned}
& B^{\pi} A S^{\pi} A=p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} p\left(\begin{array}{cc}
0 & 0 \\
0 & A_{4}^{m}
\end{array}\right) p^{\sim} p\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right)\left(\begin{array}{lc}
0 & 0 \\
0 & A_{4}^{m}
\end{array}\right)\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0+0 & 0+0 \\
0 & A_{4} A_{4}^{m}
\end{array}\right)\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0+0 & 0+0 \\
0 & A_{4} A_{4}^{m}
\end{array}\right)\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) p^{2} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
0 & A_{4} A_{4}^{m}
\end{array}\right)\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0+0 & 0+0 \\
0+A_{4} A_{4}^{m} A_{3} & A_{4} A_{4}^{m} A_{4}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
0+A_{4} A_{4}^{m} A_{3} & A_{4} A_{4}^{m} A_{4}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right) p^{\sim}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
B^{\pi} A S^{m} & =p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} p\left(\begin{array}{cc}
0 & 0 \\
0 & A_{4}^{m}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
A_{3} & A_{4}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & A_{4}^{m}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{ll}
0+0 & 0+0 \\
0+0 & A_{4} A_{4}^{m}
\end{array}\right) p^{\sim}
\end{aligned}
$$

$$
\begin{aligned}
S^{m} A B^{\pi} & =p\left(\begin{array}{ll}
0 & 0 \\
0 & A_{4}^{m}
\end{array}\right) p^{\sim} p\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) p^{\sim} p\left(\begin{array}{ll}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{ll}
0 & 0 \\
0 & A_{4}^{m}
\end{array}\right)\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0+0 & 0+0 \\
0+A_{4}^{m} A_{3} & 0+A_{4}^{m} A_{4}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
0 & 0 \\
A_{4}^{m} A_{3} & A_{4}^{m} A_{4}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{l}
0+0 \\
0+0 \\
0+0
\end{array}\right) p^{\sim} \\
S^{\sim} A B^{\pi} & =p\left(\begin{array}{ll}
0 & 0 \\
0 & A_{4}^{m} A_{4}^{m}
\end{array}\right) p_{4}^{\sim}
\end{aligned}
$$

Therefore $B^{\pi} A S^{m}=S^{m} A B^{\pi}=p\left(\begin{array}{cc}0 & 0 \\ 0 & A_{4}^{m} A_{4}\end{array}\right) p^{\sim}$.

$$
\begin{aligned}
B S^{m} & =p\left(\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right) p^{\sim} p\left(\begin{array}{cc}
0 & 0 \\
0 & A_{4}^{m}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & A_{4}^{m}
\end{array}\right) p^{\sim} \\
& =p\left(\begin{array}{ll}
0+0 & 0+0 \\
0+0 & 0+0
\end{array}\right) p^{\sim}=0
\end{aligned}
$$

Similarly, $S^{m} B=0$.

$$
B^{m} S^{m}=p\left(\begin{array}{cc}
B_{1}^{m} & 0 \\
0 & 0
\end{array}\right) p^{\sim} p\left(\begin{array}{cc}
0 & 0 \\
0 & A_{4}^{m}
\end{array}\right) p^{\sim}=p\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) p^{\sim}=0
$$

Therefore $B^{m} S^{m}=0$. Similarly, we can obtain $S^{m} B^{m}=0$. Therefore $B S^{m}=S^{m} B=B^{m} S^{m}=S^{m} B^{m}$. Hence the Lemma.

3. Main Results

Theorem 3.1. Let $M=\left(\begin{array}{cc}A & B \\ B & 0\end{array}\right)$, where $A, B \in K^{n \times n}$. Suppose B^{m} and $\left(B^{\pi} A\right)^{m}$ exists in \mathscr{M} then M^{m} exist in m and $M^{m}=\left(\begin{array}{cc}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$, where
$U_{11}=S^{m}+\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}-\left(S^{m} A-I\right) B B^{m} A B^{\pi}$
$U_{12}=B^{m}-S^{m} A B^{m}$
$U_{21}=B^{m}-B^{m} A S^{m}+B^{m} A\left(S^{m} A-I\right) B B^{m} A B^{\pi}-B^{m} A\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}$
$U_{22}=B^{m} A S^{m} A B^{m}-B^{m} A B^{m}$
$S=B^{\pi} A B^{\pi}$.

Proof. The existence of M^{m} and S^{m} in \mathscr{M} have given in Lemma 2.3(i).
Let $X=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$, then $M X=\left(\begin{array}{ll}A & B \\ B & 0\end{array}\right)\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)=\left(\begin{array}{cc}A U_{11}+B U_{21} & A U_{12}+B U_{22} \\ 0 & 0\end{array}\right)$.
We prove $X=M^{m}$,

$$
\begin{aligned}
A U_{11}+B U_{21}= & A\left(S^{m}+\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}-\left(S^{m} A-I\right) B B^{m} A B^{\pi}\right)+B\left(B^{m}-B^{m} A S^{m}\right. \\
& \left.+B^{m} A\left(S^{m} A-I\right) B B^{m} A B^{\pi}-B^{m} A\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}\right) \\
= & \left.A S^{m}+A\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}-A\left(S^{m} A-I\right) B B^{m} A B^{\pi}\right)+B B^{m}-B B^{m} A S^{m} \\
& \left.+B B^{m} A\left(S^{m} A-I\right) B B^{m} A B^{\pi}-B B^{m} A\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}\right) \\
= & B B^{m}+\left(I-B B^{m}\right) A S^{m}+\left(I-B B^{m}\right) A\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}-\left(I-B B^{m}\right)\left(A S^{m} A-I\right) B B^{m} A B^{\pi} \\
= & B B^{m}+B^{\pi} A S^{m}+B^{\pi} A\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}-B^{\pi} A\left(S^{m}-I\right) B B^{m} A B^{\pi} \\
= & B B^{m}+B^{\pi} A S^{m}+B^{\pi} A B B^{m} A B^{\pi} A S^{m}-B^{\pi} A B B^{m} A B^{\pi} A S^{m}-B^{\pi} A B B^{m} A B^{\pi}+B^{\pi} A B B^{m} A B^{\pi} \\
= & B^{\pi} A S^{m}+B B^{m} \text { and }
\end{aligned}
$$

$$
\begin{aligned}
U_{11} A+U_{12} B & =\left(S^{m}+\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}-\left(S^{m} A-I\right) B B^{m} A B^{\pi}\right) A+\left(B^{m}-S^{m} A B^{m}\right) B \\
& =S^{m} A+\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m} A-\left(S^{m} A-I\right) B B^{m} A B^{\pi} A+B^{m} B-S^{m} A B^{m} B \\
& =S^{m} A+S^{m} A B B^{m} A B^{\pi} A S^{m} A-B B^{m} A B^{\pi} A S^{m} A-S^{m} A B B^{m} A B^{\pi} A+B B^{m} A B^{\pi} A+B^{m} B-S^{m} A B^{m} B \\
& =S^{m} A\left(I-B B^{m}\right)+S^{m} A B B^{m} A B^{\pi} A-B B^{m} A B^{\pi} A-S^{m} A B B^{m} A B^{\pi} B+B B^{m} A B^{\pi} A+B^{m} B \\
& =S^{m} A B^{\pi}+B B^{m} \\
& =B B^{m}+B^{\pi} A S^{m}
\end{aligned}
$$

Therefore $A U_{11}+B U_{21}=U_{11} A+U_{12} B$

$$
\begin{aligned}
A U_{12}+B U_{22} & =A\left(B^{m}-S^{m} A B^{m}\right)+B\left(B^{m} A S^{m} A B^{m}-B^{m} A B^{m}\right) \\
& =A B^{m}-A S^{m} A B^{m}+B B^{m} A S^{m} A B^{m}-B B^{m} A B^{m} \\
& =A B^{m}-B^{\pi} A S^{m} A B^{m}-B B^{m} A B^{m} \\
& =A B^{m}-B^{\pi} A B^{m}-B B^{m} A B^{m} \\
& =\left(I-B B^{m}\right) A B^{m}-B^{m} A B^{m} \\
& =0 \\
U_{11} B & =\left(S^{m}+\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}-\left(S^{m} A-I\right) B B^{m} A B^{\pi}\right) B \\
& =S^{m} B+\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m} B-\left(S^{m} A-I\right) B B^{m} A B^{\pi} B \\
& =-\left(S^{m} A-I\right) B B^{m} A\left(I-B B^{m}\right) B \\
& =-\left(S^{m} A-I\right)\left(B B^{m} A B-B B^{m} A B B^{m} B\right. \\
& =-\left(S^{m} A-I\right)\left(B B^{m} A B-B B^{m} A B\right. \\
& =0 .
\end{aligned}
$$

Therefore $A U_{12}+B U_{22}=U_{11} B$. Similarly, we can get,

$$
\begin{aligned}
& B U_{11}=U_{21} A+U_{22} B=B B^{m} A B^{\pi}\left(I-A S^{m}\right) \\
& B U_{12}=U_{21} B=B B^{m} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& (M X)^{\sim}=\left(\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right)\left(\begin{array}{cc}
B B^{m}+B^{\pi} A S^{m} & 0 \\
B B^{m} A B^{\pi}\left(I-A S^{m}\right) & B B^{m}
\end{array}\right)^{*}\left(\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right) \\
& =\left(\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right)\left(\begin{array}{cc}
\left(B B^{m}+B^{\pi} A S^{m}\right)^{*} & \left(B B^{m} A B^{\pi}\left(I-A S^{m}\right)\right)^{*} \\
0 & \left(B B^{m}\right)^{*}
\end{array}\right)\left(\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right) \\
& =\left(\begin{array}{cc}
G_{1}\left(B B^{m}+B^{\pi} A S^{m}\right)^{*} & G_{1}\left(B B^{m} A B^{\pi}\left(I-A S^{m}\right)\right)^{*} \\
0 & -\left(B B^{m}\right)^{*}
\end{array}\right)\left(\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right) \\
& =\left(\begin{array}{cc}
G_{1}\left(B B^{m}+B^{\pi} A S^{m}\right)^{*} G_{1} & -G_{1}\left(B B^{m} A B^{\pi}\left(I-A S^{m}\right)\right)^{*} \\
0 & \left(B B^{m}\right)^{*}
\end{array}\right)
\end{aligned}
$$

Therefore $(M X)^{\sim}=\left(\begin{array}{cc}\left(B B^{m}+B^{\pi} A S^{m}\right)^{\sim} & -G_{1}\left(B B^{m} A B^{\pi}\left(I-A S^{m}\right)\right)^{*} \\ 0 & \left(B B^{m}\right)^{*}\end{array}\right)$. Similarly,

$$
\begin{aligned}
(X M)^{\sim} & =\left(\begin{array}{cc}
\left(B B^{m}+B^{\pi} A S^{m}\right)^{\sim} & -G_{1}\left(B B^{m} A B^{\pi}\left(I-A S^{m}\right)\right)^{*} \\
0 & \left(B B^{m}\right)^{*}
\end{array}\right) \\
M X M & =\left(\begin{array}{cc}
B B^{m}+B^{\pi} A S^{m} & 0 \\
B B^{m} A B^{\pi}\left(I-A S^{m}\right) & B B^{m}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
B & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
B B^{m} A+B^{\pi} A S^{m} A & B B^{m} B+B^{\pi} A S^{m} B \\
B B^{m} A B^{\pi}\left(I-A S^{m}\right) A+B B^{m} B & B B^{m} A B^{\pi}\left(I-A S^{m}\right) B
\end{array}\right) \\
& =\left(\begin{array}{cc}
B B^{m} A+\left(I-B B^{m}\right) A S^{m} A & B \\
B B^{m} A B^{\pi} A-B B^{m} A B^{\pi} A S^{m} A+B & \left.B B^{m} A B^{\pi} B-B B^{m} A B^{\pi} A S^{m}\right) B
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left.B B^{m} A+A-B B^{m}\right) A \\
B B^{m} A B^{\pi} A-B B^{m} A B^{\pi} A S^{m} A+B & B B^{m} A B^{\pi} B-B B^{m} A B^{\pi} A S^{m} B
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left.B B^{m} A+A-B B^{m}\right) A & B B^{m} A B-B B^{m} A B B^{m} B
\end{array}\right) \\
& =\left(\begin{array}{cc}
A & B \\
B & 0
\end{array}\right) .
\end{aligned}
$$

Therefore $M X M=M$. Suppose $\operatorname{rank}(B)=r$. By Lemma 2.1, there exist G-unitary matrices $P \in K^{n \times n}$ and invertible matrices $B=P\left(\begin{array}{rr}B_{1} & 0 \\ 0 & 0\end{array}\right) P^{\sim}$ and $B^{m}=P\left(\begin{array}{rr}B_{1}^{m} & 0 \\ 0 & 0\end{array}\right) P^{\sim}$. Let $A=P\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right) P^{\sim}$, where $A_{1} \in K^{r \times r}, A_{2} \in K^{r \times(n-r)}, A_{3} \in$
$K^{(n-r) \times r}, A_{4} \in K^{(n-r) \times(n-r)}$. Since $X=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$

$$
\begin{aligned}
\operatorname{rank}(X) & =\operatorname{rank}\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right) \\
& =\operatorname{rank}\binom{S^{m}+\left(S^{m} A-I\right) B B^{m} A B^{\pi} A S^{m}-\left(S^{m} A-I\right) B B^{m} A B^{\pi}}{B^{m}} \\
& =\operatorname{rank}\left(\begin{array}{ccc}
S^{m} & B^{m}-S^{m} A B^{m} \\
B^{m} & 0
\end{array}\right) \\
& =\operatorname{rank}\left(\begin{array}{cccc}
0 & 0 & B_{1}^{-1} & 0 \\
0 & A_{4}^{m} & 0 & 0 \\
B_{1}^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& =2 r+\operatorname{rank}\left(A_{4}^{m}\right) \\
\operatorname{rank}(X) & =2 r+\operatorname{rank}\left(A_{4}^{m}\right) \\
& =2 r+\operatorname{rank}\left(A_{4}\right) \\
& =\operatorname{rank}(M)
\end{aligned}
$$

From Lemma 2.3, we get $X=M^{m}$.
Theorem 3.2. Let $M=\left(\begin{array}{ll}A & B \\ B & 0\end{array}\right)$, where $A, B \in K^{n \times n}$, suppose B^{m} and $\left(A B^{\pi}\right)^{m}$ exists in \mathscr{M} then M^{m} exist in \mathscr{M} and $M^{m}=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$, where

$$
\begin{aligned}
U_{11} & =S^{m}+S^{m} A B^{\pi} A B B^{m}\left(A S^{m-I}\right)-B^{\pi} A B B^{m}\left(A S^{m-I}\right) \\
U_{12} & =B^{m}-S^{m} A B^{m}-S^{m} A B^{\pi}-S^{m} A B^{\pi} A B B^{m}\left(A S^{m}-I\right) A B^{m}+B^{\pi} A B B^{m}\left(I-A S^{m}\right) A B^{m} \\
U_{21} & =B^{m}-B^{m} A S^{m} \\
U_{22} & =B^{m} A S^{m} A B^{m}-B^{m} A B^{m} \\
S & =B^{\pi} A B^{\pi} .
\end{aligned}
$$

Theorem 3.3. Let $M=\left(\begin{array}{ll}A & B \\ B & 0\end{array}\right)$, where $A, B \in K^{n \times n}$, suppose B^{m} exists in \mathscr{M} and $B A B^{\pi}=0$ then
(i). M^{m} exists in \mathscr{M} iff $\left(A B^{\pi}\right)^{m}$ exists in \mathscr{M}.
(ii). If M^{m} exists in \mathscr{M}, then $M^{m}=\left(\begin{array}{cc}U & V \\ B^{m} & -B^{m} A B^{m}\end{array}\right)$, where

$$
\begin{aligned}
& U=B^{\pi} A\left(B^{m}\right)^{2}-\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2}+\left(A B^{\pi}\right)^{m} \\
& V=-B^{\pi} A\left(B^{m}\right)^{2} A B^{m}+\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A B^{m}-\left(A B^{\pi}\right)^{m} A B^{m}+B^{m}
\end{aligned}
$$

Proof.
(i) The existence of M^{m} has been given in Lemma 2.3 (ii)
(ii) Let $X=\left(\begin{array}{cc}U & V \\ B^{m} & -B^{m} A B^{m}\end{array}\right)$ then

$$
\begin{aligned}
& M X=\left(\begin{array}{ll}
A & B \\
B & 0
\end{array}\right)\left(\begin{array}{cc}
U & V \\
B^{m} & -B^{m} A B^{m}
\end{array}\right)=\left(\begin{array}{cc}
A U+B B^{m} & A V-B B^{m} A B^{m} \\
B U & B V
\end{array}\right) \\
& X M=\left(\begin{array}{cc}
U & V \\
B^{m} & -B^{m} A B^{m}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
B & 0
\end{array}\right)=\left(\begin{array}{cc}
U A+V B & U B \\
B^{m} A B^{\pi} & B^{m} B
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
A U+B B^{m}= & A B^{\pi} A\left(B^{m}\right)^{2}-A\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2}+A\left(A B^{\pi}\right)^{m}+B B^{m} \\
= & A B^{\pi} A\left(B^{m}\right)^{2}-A B^{\pi} A\left(B^{m}\right)^{2}+A\left(A B^{\pi}\right)^{m}+B B^{m} \\
= & A\left(A B^{\pi}\right)^{m}+B B^{m} \\
U A+V B= & \left(B^{\pi} A\left(B^{m}\right)^{2}-\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2}+\left(A B^{\pi}\right)^{m}\right) A+\left(-B^{\pi} A\left(B^{m}\right)^{2} A B^{m}\right. \\
& \left.+\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A B^{m}-\left(A B^{\pi}\right)^{m} A B^{m}+B^{m}\right) B \\
= & B^{\pi} A\left(B^{m}\right)^{2} A-\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A+\left(A B^{\pi}\right)^{m} A-B^{\pi} A\left(B^{m}\right)^{2} A B^{m} B \\
& -\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A B^{m} B-\left(A B^{\pi}\right)^{m} A B^{m} B+B^{m} B \\
= & B^{\pi} A\left(B^{m}\right)^{2} A\left(I-B B^{m}\right)-\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A\left(I-B B^{m}\right)+\left(A B^{\pi}\right)^{m} A\left(I-B B^{m}\right)+B B^{m} \\
= & B^{\pi} A\left(B^{m}\right)^{2} A B^{\pi}-\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A B^{\pi}+\left(A B^{\pi}\right)^{m} A B^{\pi}+B B^{m} \\
= & \left(A B^{\pi}\right)^{m} A B^{\pi}+B B^{m} \\
= & A\left(A B^{\pi}\right)^{m}+B B^{m} .
\end{aligned}
$$

Therefore $A U+B B^{m}=U A+V B$.

$$
\begin{aligned}
A V-B B^{m} A B^{m} & =A\left(-B^{\pi} A\left(B^{m}\right)^{2} A B^{m}+\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A B^{m}-\left(A B^{\pi}\right)^{m} A B^{m}+B^{m}\right)-B B^{m} A B^{m} \\
& =-A B^{\pi} A\left(B^{m}\right)^{2} A B^{m}+A\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A B^{m}-A\left(A B^{\pi}\right)^{m} A B^{m}+A B^{m}-B B^{m} A B^{m} \\
& =-A B^{\pi} A\left(B^{m}\right)^{2} A B^{m}+A B^{\pi} A\left(B^{m}\right)^{2} A B^{m}-A\left(A B^{\pi}\right)^{m} A B^{m}-\left(I-B B^{m}\right) A B^{m} \\
& =-A\left(A B^{\pi}\right)^{m} A B^{m}+B^{m} A B^{m} \\
U B & =\left[B^{\pi} A\left(B^{m}\right)^{2}-\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2}+\left(A B^{\pi}\right)^{m}\right] B \\
& =B^{\pi} A\left(B^{m}\right)^{2} B-\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} B+\left(A B^{\pi}\right)^{m} B \\
& =B^{\pi} A B^{m} B-\left(A B^{\pi}\right)^{m} A B^{\pi} A B^{m} B+\left(A B^{\pi}\right)^{m} B \\
& =B^{\pi} A B^{m} B B^{m}-\left(A B^{\pi}\right)^{m} A B^{\pi} A B^{m} B B^{m}+\left(A B^{\pi}\right)^{m} B \\
& =B^{\pi} A B^{m}-\left(A B^{\pi}\right)^{m} A B^{\pi} A B^{m}+\left(A B^{\pi}\right)^{m} B \\
& =B^{\pi} A B^{m}-A\left(A B^{\pi}\right)^{m} A B^{m}+\left(A B^{\pi}\right)^{m} B \\
& =-A\left(A B^{\pi}\right)^{m} A B^{m}+B^{\pi} A B^{m} .
\end{aligned}
$$

Hence $A V-B B^{m} A B^{m}=U B$.

$$
\begin{aligned}
B U & =B\left[B^{\pi} A\left(B^{m}\right)^{2}-\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2}+\left(A B^{\pi}\right)^{m}\right] \\
& =B B^{\pi} A\left(B^{m}\right)^{2}-B\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2}+B\left(A B^{\pi}\right)^{m} \\
& =B\left(I-B^{m}\right) A\left(B^{m}\right)^{2} \\
& =B A\left(B^{m}\right)^{2}-B B^{m} A\left(B^{m}\right)^{2} \\
& =B A\left(B^{m}\right)^{2}-B B^{m} B A\left(B^{m}\right)^{2} \\
& =B A\left(B^{m}\right)^{2}-B A\left(B^{m}\right)^{2} \\
& =0 . \\
B^{m} A B^{\pi} & =0 .
\end{aligned}
$$

Hence $B U=B^{m} A B^{\pi}$.

$$
\begin{aligned}
B V & =B\left[-B^{\pi} A\left(B^{m}\right)^{2} A B^{m}+\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A B^{m}-\left(A B^{\pi}\right)^{m} A B^{m}+B^{m}\right] \\
& =-B B^{\pi} A\left(B^{m}\right)^{2} A B^{m}+B\left(A B^{\pi}\right)^{m} A B^{\pi} A\left(B^{m}\right)^{2} A B^{m}-B\left(A B^{\pi}\right)^{m} A B^{m}+B B^{m} \\
& =-B\left(I-B B^{m}\right) A\left(B^{m}\right)^{2} A B^{m}+B B^{m} \\
& =-B A\left(B^{m}\right)^{2} A B^{m}+B B B^{m} A\left(B^{m}\right)^{2} A B^{m}+B B^{m} \\
& =-B A\left(B^{m}\right)^{2} A B^{m}+B B^{m} B A\left(B^{m}\right)^{2} A B^{m}+B^{m} B \\
& =-B A\left(B^{m}\right)^{2} A B^{m}+B A\left(B^{m}\right)^{2} A B^{m}+B^{m} B \\
& =B^{m} B .
\end{aligned}
$$

Hence $B V=B^{m} B$. Consequently,

$$
\begin{aligned}
(M X)^{\sim} & =\left(\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right)\left(\begin{array}{cc}
A\left(A B^{\pi}\right)^{m}+B B^{m} & -A\left(A B^{\pi}\right)^{m} A B^{m}+B^{\pi} A B^{m} \\
0 & B^{m} B
\end{array}\right)^{*}\left(\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right) \\
& =\left(\begin{array}{cc}
G_{1}\left(A\left(A B^{\pi}\right)^{m}+B B^{m}\right)^{*} G_{1} & 0 \\
\left(A\left(A B^{\pi}\right)^{m} A B^{m}+B^{\pi} A B^{m}\right)^{*} G_{1} & \left(B^{m} B\right)^{*}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(A\left(A B^{\pi}\right)^{m}+B B^{m}\right)^{\sim} & 0 \\
\left(A\left(A B^{\pi}\right)^{m} A B^{m}+B^{\pi} A B^{m}\right)^{*} G_{1} & \left(B^{m} B\right)^{*}
\end{array}\right) .
\end{aligned}
$$

Similarly, $(X M)^{\sim}=\left(\begin{array}{cc}\left(A\left(A B^{\pi}\right)^{m}+B B^{m}\right)^{\sim} & 0 \\ \left(A\left(A B^{\pi}\right)^{m} A B^{m}+B^{\pi} A B^{m}\right)^{*} G_{1} & \left(B^{m} B\right)^{*}\end{array}\right)$.

$$
\begin{aligned}
M X M & =\left(\begin{array}{cc}
A\left(A B^{\pi}\right)^{m}+B B^{m}-A\left(A B^{\pi}\right)^{m} A B^{m}+B^{\pi} A B^{m} \\
0 & B^{m} B
\end{array}\right)\left(\begin{array}{ll}
A & B \\
B & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
A\left(A B^{\pi}\right)^{m} A+B B^{m} A-A\left(A B^{\pi}\right)^{m} A B^{m} B+B^{\pi} A B^{m} B & A\left(A B^{\pi}\right)^{m} B+B B^{m} B \\
B B^{m} B
\end{array}\right) \\
& =\left(\begin{array}{ll}
A & B \\
B & 0
\end{array}\right) .
\end{aligned}
$$

Therefore $M X M=M$. Suppose $\operatorname{rank}(B)=r$. By Lemma 2.1, there exist G-unitary matrices $P \in K^{n \times n}$ and invertible matrices $B_{1} \in K^{r \times r}$ such that $B=P\left(\begin{array}{cc}B_{1} & 0 \\ 0 & 0\end{array}\right) P^{\sim}$ and $B^{m}=P\left(\begin{array}{cc}B_{1}^{m} & 0 \\ 0 & 0\end{array}\right) P$. Let $A=P\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right) P$, where $A_{1} \in$ $K^{r \times r}, A_{2} \in K^{r \times(n-r)}, A_{3} \in K^{(n-r) \times r}, A_{4} \in K^{(n-r) \times(n-r)}$. Then

$$
\begin{aligned}
\operatorname{rank}(X) & =\operatorname{rank}\left(\begin{array}{cc}
U & V \\
B^{m} & -B^{m} A B^{m}
\end{array}\right) \\
& =\operatorname{rank}\left(\begin{array}{cc}
U & B^{m} \\
B^{m} & 0
\end{array}\right) \\
& =\operatorname{rank}\left(\begin{array}{ccc}
\left(A B^{\pi}\right)^{m} & B^{m} \\
B^{m} & 0
\end{array}\right) \\
& =\operatorname{rank}\left(\begin{array}{cccc}
0 & 0 & B_{1}^{-1} & 0 \\
0 & A_{4}^{m} & 0 & 0 \\
B_{1}^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& =2 r+\operatorname{rank}\left(A_{4}^{m}\right) .
\end{aligned}
$$

Since $\operatorname{rank}(M)=2 r+\operatorname{rank}\left(A_{4}\right)=\operatorname{rank}(r)$. Then $X=M^{m}$.
Theorem 3.4. Let $M=\left(\begin{array}{ll}A & B \\ B & 0\end{array}\right)$, where $A, B \in K^{n \times n}$, suppose B^{m} exists in \mathscr{M} and $B^{\pi} A B=0$ then
(i). M^{m} exists in \mathscr{M} iff $\left(B^{\pi} A\right)^{m}$ exists in \mathscr{M}.
(ii). If M^{m} exists in \mathscr{M}, then $M^{m}=\left(\begin{array}{cc}U & B^{m} \\ V & -B^{m} A B^{m}\end{array}\right)$, where

$$
\begin{aligned}
& U=\left(B^{m}\right)^{2} A B^{\pi}-\left(B^{m}\right)^{2} A B^{\pi} A\left(B^{\pi} A\right)^{m}+\left(B^{\pi} A\right)^{m} \\
& V=-B^{m} B^{m} B^{\pi}+B^{m} A\left(B^{m}\right)^{2} A B^{\pi} A\left(B^{\pi} A\right)^{m}-B^{m} A\left(B^{\pi} A\right)^{m}+B^{m}
\end{aligned}
$$

References

[^1][7] C.Bu, K.Zhang and J.Zhao, Some results on the group inverse of the block matrix with a sub-block of linear combination or product combination of matrices over skew fields, Linear and Multilinear Algebra, 58(8)(2010), 957-966.
[8] C.Cao, Some results of group inverses for partitioned matrices over skew fields, J. of Natural Science of Heilongjiang University, 18(3)(2001), 5-7.
[9] C.Cao and X.Tang, Representations of the group inverse of some 2×2 block matrices, International Mathematical Forum, 31(2006), 1511-1517.
[10] N.Castro-Gonzalez and E.Dopazo, Representations of the Drazin inverse of a class of block matrices, Linear Algebra Appl., 400(2005), 253-269.
[11] N.Castro-Gonzalez, E.Dopazo and M.F.Martinez-Scrrano, On the Drazin inverse of the sum of two operators and its application to operator matrices, J. Math. Anal. Appl., 350(2009), 207-215.

[^0]: * E-mail: @mail.com

[^1]: [1] A.Ben-Israel and T.N.E.Greville, Generalized inverses: Theory and applications, Second ed., Springer-Verlag, New York, (2003).
 [2] K.P.S.Bhaskara Rao, The theory of generalized inverses over commutative rings, Taylor and Francis, London and New York, (2002).
 [3] R.Bru, C.Coll and N.Thome, Symmetric singular linear control systems, Appl. Math. Letters, 15(2002), 671-675.
 [4] C.Bu, J.Zhao and J.Zheng, Group inverse for a Class 2×2 block matrices over skew fields, Applied Math. Comput., 24(2008), 45-49.
 [5] C.Bu, J.Zhao and K.Zhang, Some results on group inverses of block matrices over skew fields, Electronic Journal of Linear Algebra, 18(2009), 117-125.
 [6] C.Bu, M.Li, K.Zhang and L.Zheng, Group inverse for the block matrices with an invertible subblock, Appl. Math. Comput., 215(2009), 132-139.

