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1. Introduction

Let K be a skew field, C be the complex number field, K™*" be the set of all m x n matrices over K, and I,, be the
n x n identity matrix over K. For a matrix A € K™ " the matrix X € K™ satisfying A*XA = AX XAX = X,
(AX)~ = AX and (XA)~ = XA is called the Minkowski inverse of A and is denoted by X = A™. If A™ exists if and
only if rank(A) = rank(A?) and R(AA™) = R(A™) = R(A). we denote I — AA™ by A™. A matrix A € C™ " is said to
be EP, if AAT = ATA. A matrix A € C™*" is G-unitary, if AA~ = A~A = I. The Minkowski Inverse of block matrices
has numerous applications in Game Theory, matrix theory such as singular differential and difference equation. In 1979, S.

campbell and C. Meyer proposed an open problem to find an explicit representation for the Drazin inverse of a 2 x 2 block

A B
matrix , where the blocks A and D are supposed to be square matrices but their sizes need not be the same. A
C D
A B
simplified problem to find an explicit representation of the Drazin (group) inverse for block matrix (A is square, 0
C 0

is null matrix) was proposed by S. Campbell in 1983. This open problem was motivated in hoping to find general expressions

for the solutions of the second order system of the differential equations
Ez (t) + Fa'(t) + Gz(t) = 0(t > 0),

where E is a singular matrix. Detailed discussions of the importance of the problem can be found in [11].
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In this paper, we give the sufficient conditions or the necessary and sufficient conditions for the existance and the repre-

sentations of the minkowski inverse for block matrix (A, Bn € K™*™) when A and B satisfy one of the following

C D
conditions:
(1) B™ and (B™A)™ exist;
(2) B™ and (AB™)™ exist;
(3) B™ exists and BAB™ = 0;
(4) B™ exists and B"AB = 0.

2. Preliminaries

Lemma 2.1. Let A € K™*™ Then A has a Minkowski Inverse if and only if there exist G-unitary matrices P € K™*" and

A 0 AT 0
Ay € K™ such that A= P P~ and A™ =P P~, where rank(A) =r.
0 0 0 0
A1 0
Proof. Since rank(A) = r, there exists G-unitary matrices P € K™*™ and A € K™*", such that A = P ,
0 0
AT 0
X=P P~
0 0
A1 0 AT 0 A 0 A1AT'A; O A1 0
(1) AXA=P pP~.P P~.P P” =P P~ =P =A
0 0 0 0 0 0 0 0 0 0
AT* 0 A1 0 AT* 0 AT 0
(2) XAX = P P~.P P~ =P P~ =X
0 O 0 0 0 0 0 0
N N Gi 0 AL1ATY 0 G?* 0 L[ Gi(AAT)G 0
@) (AX)~ = (X4)~ = = (P7) =
0 —In-1 0 0 0 -7 0 0
A1ATHY™ 0
Py (A1A7") P
0 0
- (A1 AT)™ 0
Similarly, (XA)~ = (P™)* P*. Therefore (AX)~ = (XA)~. Hence X = A™. O
0 0

Lemma 2.2 ([? ). Let A,G € K™*", ind(A) = K. Then G = AP if and only if AXGA = A®| AG = GA, rank(G) <
rank(AX).

A B
Lemma 2.3. Let S=B"AB™, A,Be X"*".
B 0

(i) B™ and (B™A)™ exist in A then S™ and M™ exist in A .
(i1) If B™ exist in 4 and BAB™ =0, then M™ ewist if and only if (AB™)™ exist in A .

Proof.  Suppose rank(B) = r. Applying Lemma 2.1, there exist unitary matrix P € C™*™ and invertible matrix By € k" *",
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B:1 0 Brt o
such that B =p p~ and B™ =p p~. First we can find B”,

0 0 0 0

B™=1- BB™

I. 0 By 0o\ _ [B'o
= -p p~.p P
0 In_, 0 0 0 0
I. 0 BiB7' 0
= -p p
0 In_r 0 0
I, 0 1o} _
= -p P
0 In_, 00
pp” 0 roy _
= -p P
0 (PP~ )n—r 00
I, 0 N 1o\ _
=p P~ —p P
0 In_, 00
. 0 0 N
B"=p p
0 Inf'r

(i) Because (B™A)™ exist in .#. We have rank(B™A) = rank(B™A)?. That is

. 0 0 | _ (A A
B"A=p P p p
0 In_r Az Ay

0 0 A1 Ao
=p p
0 I, Az Ay

0+0 O0+0
=p p
0+ As 0+ Ay
0o 0\ _
=p p
As Ay
0 0
B™A=p p~
As Ay

Therefore

rank(B"A) = rank(AsA4)

o, 0o 0o) _ (0o o) _
(B"A)" =p p"p P
As Ay As Ay
0 0
=p p~. Therefore
AzAy (Ag)?

rank(B™A)? = rank(Az Ay Ay)
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Equating (1) and (2), we get

rank(As As) = rank(AsAy Ai)
S rank(A4(A3 A4))
< rank(A4) and

rank(As As) > rank(As)

We have rank(As As) = rank(As), so there exist a matrix = € k(™ ~"*" such that Az = A4X. Because order(Az) = (n—7)xr
and order(A44X) = (n —r) x r corresponding entries we also equal. We get rank(A4) = rank(A3). Therefore A™ exist in

. Nothing that

0 0\ _ [A A ) _ [0 o0
=P pp pp p
0 Infr A3 A4 0 Infr

0 O A As 0 O
0 ]n—r AS A4 0 In—r
04+0 040 0 0

=P p
0+A3 0+A4 0 Inf'r

~

0 0 0 0
=p p
Az A4 0 In—r

~

0+0 040\ _ 00) _
=P p =P p
0+0 Ay 0 Ay
00\ _
S=p p
0 Ay
0 0
Therefore rank(S) = rank(A4). Similarly, S* = p p~ = rank(s?) = rank(A3). Hence rank(As4) = rank(A3).
0 Ay
Ay Ay B1 0O
2 A3 Ay 0 O
Which implies rank(s) = rank(s®). Thus rank(s™) exist in .#. Since rank(m) = rank =
B; 0 0 O
0 0 0 O
0 0 B O
0 A4 0 O
rank By using rank(B1) = r. Therefore rank(B1) = r. Also rank(M) = 2r + rank(A4) and we
B: 0 0 0
0O 0 0 O
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can find rank(M?)

, [AB)[AB A*+ B® AB A*+B* AB
M* = = = rank
B 0)\B 0 BA  B? BA  B?

A%2 — ABB™B+ B? 0
= rank
0 B

B%—‘r—AgAg AxAs 00
= rank AsAs A2 00

0 0 00
By As = A4 X, we get,
B 0 0 0
5 0 A7 0 0
rank(M~) =
0 0 B O
0 0 0 0

rank(M?) = 2r + rank(A3) and rank(M) = rank(M?). That is M™ exist.
0 0

(ii) If BAB™ =0, then A = 0.Thus AB™ =p p~
0 Ay
A 0 B1 O 0 0 B O
As Ay 0 0 0 A4+ 0 O
rank(M) = rank = rank = 2r 4+ rank(As).
Bir 0 0 O B: 0 0 O
0 0 0 0 0 0 0 0
B? 0 00
) A%+ B? AB A? -~ ABB™BA 0
Similarly, rank(M?*) = r = rank =rank | AsAs A2 0 0
BA  B? 0 0
0 0 00
get,
B 0 00
) 0 A7 0 0
rank(M~) =
0 0 B?oO
0 0 0 O
B 0 00
) 0 A7 0 0
rank(M~) =
0 0 Bf O
0 0 0 O

rank(M?) = 2r + rank(A3)

As ABTexist in .4, we can get rank(As)=rank(A3). Thus rank(M)=rank(M?). That is M™ exists.

. By A3 = 144)(7 we

Conversely assume that M™ exist if and only if rank(M?) = rank(M). rank(A4) = rank(A3). That is (AB™)™ exist in

A . Hence Proved.

O
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Lemma 2.4. Let A,B € K™*", S = B"AB™ suppose B™ and (B™A)™ exists in M then s™ exist in .# and the following

conclusion holds:
(i) BTAs™A = B"A
(ii) BTAS™ = S™AB™
(i) BS™ =S™B = B"s™ =S"B™ =0.

Proof. Suppose rank(B) = r, Applying Lemma 2.1 there exist G-unitary matrix p € K"*" and By € K"™*" such

B: 0 B 0 A1 Az
that B = p p~ and B™ = p p~. Let A=1p p~, where Ay € K™*", Ay € K™<("=") A4 €
0 0 0 0 As Ay
0 0
Kr=mxr Ay e K=X(=")  From Lemma 2.3 (i), we get S™ exist in .# and S™ =p p~
0 Ay
()
o 0 o\ _ (o o) _ (4 4\ _
BTASTA=p pp pp p

A3 A4 0 AT AS A4

0 O 0 0 A1 Az
=p p
A3 A4 0 AT AS A4

~

0+0 0+0 A1 Ao
0 A4AYT As As

0+0 040 A Ao
0 ALAT Az Ay

0 0 A1 Az
0 ALAT As Ay

0+0 0+0 | _
=p p
0+ AsAT Ay AsAT Ay

0 0
=p p
0+ A4ATA3 A4ATA4

~

0 0
=p P
As Ay
(ii)
o 0o 0o\ _ [0 0 N
B"AS™ =p P p P
As Ay 0 Ay
0 0 0 0 N
=p D
Az Ay 0 Ay
0+0 0+0
=p p~.
040 AsAY
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. 0 0 (A A} _ (o 0 N
S"AB" =p PP PP P
0 AP A Ay 0 Iy
0 0 A A\ [0 o0 N
=p p
0 Ay As Ay 0 In_r
040 0+0 0 0 N
=p P
0+ AT"As 0+ AT Ay 0 In_r
0 0 0 0 N
=p P
AT As A7 A4 \O I,
0+0 040 N
=p P
0+0 0+ A A,
0 0
ST"AB™ =p p~
0 A7 Ay
0 0
Therefore BTAS™ = S™"AB™ =p p~.
0 AT Ay
N B 0oy _ [0 0 N
BS™ =p pp P
00 0 AT
By 0} [0 O N
=p P
0 o)/ \o Ap
0+0 040
=p P =0
0+0 040
Similarly, S™B = 0.
o B o) _ [0 o0 N 00| _
B"S" =p pp pT=p p~ =0.
0 0 0 AT 00

Therefore B™S™ = 0. Similarly, we can obtain S™B™ = 0. Therefore BS™ = S™B = B™S™ = S™B"™. Hence the

Lemma. O

3. Main Results

A B
Theorem 3.1. Let M = , where A,B € K™*". Suppose B™ and (BT A)™ exists in .# then M™ exist in m and
B 0

Uir Uiz
M™ = , where

U1 U2z
U1 =5"+(S"A—-1)BB™AB™AS™ — (S"A—I1I)BB™AB™

Ui = B™ — S™AB™
Uy = B™ — B"AS™ + B™A(S™A — I)BB™AB™ — B"A(S™A — I)BB™AB™ AS™
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Uz = B"AS™AB™ — B™"AB™
S =B"AB".

Proof.  The existence of M™ and S™ in .# have given in Lemma 2.3(i).

Uir Uiz A B Uir Uiz AU + BUay AUz + BUae
Let X = , then M X = =

Uz1 U2z B 0 U21 U2z 0 0
We prove X = M™,

AUy + BUs; = A(S™ + (S™A — I)BB™AB™AS™ — (S™A — I)BB™AB™) + B(B™ — B™AS™
+ B™A(S™A —I)BB™AB™ — B™"A(S™A — I)BB™ AB™AS™)
= AS™ + A(S™A—I)BB™AB"AS™ — A(S™A — I)BB™AB™) + BB™ — BB™AS™
+ BB™A(S™A— I)BB™AB™ — BB™A(S™A — I)BB™ AB™AS™)
= BB™ + (I — BB™)AS™ + (I — BB™)A(S™A — I)BB™AB"AS™ — (I — BB™)(AS™A — I)BB™ AB™
= BB™ + B"AS™ + B"A(S™A — I)BB™AB" AS™ — B"A(S™ — I\BB™ AB"
= BB™ + B"AS™ + B"ABB™AB"AS™ — B"ABB™ AB™AS™ — B"ABB™AB™ + B"ABB™ AB"™
= B"AS™ + BB™ and
Uy A+ UaB = (S™ + (S™A — I)BB™AB™AS™ — (S™ A — I)BB™AB™)A + (B™ — S" AB™)B
=S™A+ (S"A—I)BB"AB"AS™A— (S™A—I)BB"AB"A+ B™B — S"AB™B
=S™A+ S"ABB™AB"AS™A — BB™AB"AS™A — S"ABB™AB"A+ BB"AB"A+ B"B — S"AB™B
= S™A(I — BB™) + S"ABB™AB"A — BB™AB"A — S"ABB™AB"B + BB AB" A+ B™B
— S™AB™ + BB™

= BB™ + BTAS™

Therefore AUy + BUsy = U1 A+ U2 B

AUs + BUzs = A(B™ — S™AB™) 4+ B(B™ AS™AB™ — B™ AB™)
= AB™ — AS"AB™ + BB™AS™AB™ — BB™AB™
— AB™ — B"AS™AB™ — BB™ AB™
= AB™ — B"AB™ — BB™ AB™
= (I - BB™)AB™ — B"AB™
=0
UinB = (S™+ (S™A—I)BB™AB"AS™ — (S™ A — I)BB™AB™)B
=SB+ (S™A—I)BB™AB"AS™B — (S™A — I\BB™ AB"™B
= —(S™A—I)BB™A(I — BB™)B
= —(S™A—I)(BB™AB — BB"ABB™B
= —(S™A—1I)(BB™AB — BB™AB

=0.
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Therefore AU12 + BUz22 = Uy1 B. Similarly, we can get,

Consequently,

(MX)~ =

BU11 = U1 A+ Ux2B =BB™AB™ (I — AS™)

BUi2 = U1 B = BB™.

*

Gi 0 BB™ + BTAS™ 0 Gi 0
0 —I) \BB™AB™(I - AS™) BB™ 0 —I

G, 0 (BB™+ BTAS™)* (BB™AB™(I — AS™))* Gp 0
0 —I 0 (BB™)* 0 —I

Gi(BB™ + B"AS™)* Gi(BB™AB™(I - AS™))*| [G1 ©
0 —(BB™)* 0 —I

G1(BB™ + B"AS™)*Gy —G1(BB™AB™(I — AS™))*

0 (BBnL)*

(BB™ + B"AS™)~ —G1(BB™AB™(I — AS™))*

Therefore (M X)~ =

(XM)~ =

MXM =

. Similarly,
0 (BB™)*

(BB™ + BTAS™)~ —G1(BB™AB™(I — AS™))*
0 (BB™)*
BB™ + BTAS™ 0 A B
BB™AB™(I — AS™) BB™ | \B 0
BB™A+ BTAS™A BB™B + B"AS™B
BB™AB™(I — AS™ A+ BB™B BB™AB™(I — AS™)B
BB™A+ (I — BB™)AS™A B
BB™AB™A — BB"AB"AS™A+ B BB™AB"B — BB™AB"AS™)B
BB™A+ A— BB™)A B
BB™AB"A— BB™AB"AS™A+ B BB™AB"B — BB"AB"AS™B

BB™A+ A— BB™)A B

B BB™AB — BB"ABB™B
A B
B 0

Therefore M XM = M. Suppose rank(B) = r. By Lemma 2.1, there exist G-unitary matrices P € K™*™ and invertible ma-

By 0

B™ 0 A1 Az

trices B = P P~ and B®" =P P~. Let A=P P~ where A; € K™ ", Ay € K™= A3 €

0 0

0 0 As Ay
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KO=mxr oAy e Kmx(=m) Gince X = Un Uiz

U1 Ua2

Uir Uiz
rank(X) = rank
Ua1r Us
S™ 4 (S™A — I)BB™ABTAS™ — (S™A — [\ BB™AB™ B™ — S™AB™
= rank
B™ 0
Ss™ B™—STAB™
= rank
B™ 0
0 0 B/*o
0 T 0 0
= rank ‘
Bf'* 0 0 0
0 0 0 0
= 2r + rank(A}")
rank(X) = 2r + rank(Ay7")
= 2r + rank(A4)
= rank(M)
From Lemma 2.3, we get X = M™. O

A B
Theorem 3.2. Let M = , where A, B € K™*", suppose B™ and (AB™)™ exists in .# then M™ exist in A and
B 0

Uir Uiz
M™ = , where

U1 U2z
Ui =8™+S"AB"ABB™(AS™ ') — BTABB™(AS™ ")
Uiz =B™ —S™AB™ — S"AB™ — S"AB" ABB™(AS™ — I)AB™ + B"ABB™(I — AS™)AB™
Usy = B™ — B™AS™
Usy = B"AS™AB™ — B™ AB™

S =B"AB".

A B
Theorem 3.3. Let M = , where A, B € K™*™, suppose B™ exists in .# and BAB™ = 0 then
B 0

(i). M™ exists in M iff (AB™)™ exists in M .

U 1%
(i). If M™ exists in M, then M™ = , where
B™ —BM™AB™
U=B"A(B™)?> — (AB™)"AB"A(B™)* + (AB™)™

V = —B"A(B™)?AB™ 4 (AB")" AB"A(B™)*AB™ — (AB™)"AB™ + B™.
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Proof.
(i) The existence of M™ has been given in Lemma 2.3 (ii)
U Vv
(ii) Let X = then
B™ —BM™AB™
A B U Vv AU + BB™ AV — BB™AB™
MX = =
B 0 B™ —B™AB™ BU BV
U Vv A B UA+VB UB
XM = =
B™ —B™AB™ B 0 B™AB™ B™B

AU + BB™ = AB"A(B™)? — A(AB™)™AB™ A(B™)? + A(AB™)™ + BB™
= AB"A(B™)? — AB"A(B™)? + A(AB™)™ + BB™
= A(AB™)™ + BB™
UA+VB=(B"A(B™)? — (AB")™AB"A(B™)” + (AB™)™)A+ (-B" A(B™)*AB™
+ (AB™)"AB"A(B™)?AB™ — (AB")"AB™ + B™)B
= B"A(B™)’A — (AB")"ABTA(B™)’A + (AB")™A — B"A(B™)*AB™B
— (AB™)"AB™A(B™)?AB™B — (AB")"AB™B + B™B
= B"A(B™)?A(I — BB™) — (AB™)Y"AB™A(B™)’A(I — BB™) + (AB™)™A(I — BB™) + BB™
= B"A(B™)?AB™ — (AB™)" AB"A(B™)?AB” + (AB™)"AB™ + BB™
= (AB™)"AB™ + BB™

= A(AB™)™ + BB™.

Therefore AU + BB™ =UA + VB.

AV — BB™AB™ = A(~B"A(B™)?AB™ + (AB™)" AB™A(B™)*AB™ — (AB")™AB™ + B™) — BB AB™
= —AB"A(B™)?AB™ 4+ A(AB™)™"AB" A(B™)’AB™ — A(AB™)"AB™ + AB™ — BB™AB™
= —AB"A(B™)?AB™ 4+ AB"A(B™)?AB™ — A(AB™)" AB™ — (I — BB™)AB™
= —A(AB™)"AB™ + B"AB™
UB = [B"A(B™)?> — (AB™)™AB™ A(B™)? + (AB™)™|B
= B"A(B™)’B — (AB™)"AB™ A(B™)*B + (AB™)™B
= B"AB™B — (AB")"AB"AB™B + (AB™)"B
= B"AB™BB™ — (AB")"AB"AB"BB™ 4 (AB™)"B
= B"AB™ — (AB")"AB"AB™ + (AB™)"B
= B"AB™ — A(AB™)"AB™ 4 (AB™)™B

= —A(AB™)"AB™ + B"AB™.
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Hence AV — BB™AB™ =UB.

BU = B|B"A(B™)* — (AB™)™AB™ A(B™)? + (AB™)™]
= BB"A(B™)? — B(AB™)"AB™A(B™)? + B(AB™)™
= B(I — B™)A(B™)?
= BA(B™)® - BB™A(B™)?
= BA(B™)? - BB"BA(B™)*
= BA(B™)* — BA(B™)*
=0.

B™AB™ =0.

Hence BU = B AB™.

BV = B[-B"A(B™)?AB™ + (AB™)"AB" A(B™)?*AB™ — (AB™)™ AB™ + B™]

—BB"A(B™)?AB™ + B(AB™)" AB" A(B™)?AB™ — B(AB")" AB™ 4+ BB™

—B(I — BB™)A(B™)?AB™ + BB™

= —BA(B™)?AB™ + BBB™A(B™)°AB™ + BB™
= —BA(B™)?AB™ + BB"BA(B™)?AB™ + B™B
= —BA(B™)?AB™ + BA(B™)’AB™ + BB

= B™B.

Hence BV = B™ B. Consequently,

*

Gi 0| [A(AB™)™ + BB™ —A(AB™)"AB™ + B"AB™ G 0

(MX)™ =

0 —I 0 B™B 0 —I
G1(A(AB™)™ + BB™)* G4 0

(A(AB™™AB™ + B"AB™)*G, (B™B)"

(A(AB™)™ + BB™)™ 0

(A(AB™Y™AB™ + B"AB™)*G, (B™B)*

(A(AB™)™ + BB™)~ 0
Similarly, (XM)~ =
(A(AB™)™AB™ + B"AB™)*"G, (B™B)"

A(AB™)™ + BB™ —A(AB™)"AB™ + B"AB™\ [A B
MXM =
0 B™B B 0
A(AB™)™ A+ BB™A — A(AB")"AB™B + B"AB™B A(AB™)"B+ BB™B
BB™B 0
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Therefore MXM = M. Suppose rank(B) = r. By Lemma 2.1, there exist G-unitary matrices P € K™*" and invertible

B, 0 BT 0 A A
matrices B1 € K™*" such that B = P ! P~ and B™ = P ! P. Let A= P v P, where A; €

0 0 0 0 As Ay
KTXT, A2 c I('rx(nf'r)7 A3 c [{(n*r)xr7 A4 c K(nfr)x(nf'r)' Then

U 1%
rank(X) = rank
B™ —B™AB™
U B™
= rank
B™ 0
= rank
B™ 0
0 0 Bf*o
0 A" 0 0
= rank
Bf' 0 0 0
0 0 0 0
= 2r + rank(AY").
Since rank(M) = 2r + rank(A4) = rank(r). Then X = M™. O
A B
Theorem 3.4. Let M = , where A, B € K"*™, suppose B™ exists in .# and B"AB = 0 then
B 0
(i). M™ exists in A iff (B"A)™ exists in M .
U B™
(i). If M™ exists in M, then M™ = , where
V. —BM™AB™

U= (B™)?AB™ — (B™)?AB" A(B"A)™ + (B"A)"™,

V =—-B"B™B" + B"A(B™)’AB" A(B"A)™ — B"A(B"A)" + B™.
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