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Abstract: For a given connected graph G = (V,E), a set S ⊆ V (G) is a neighborhood set of G, if G =
⋃
v∈S
〈N [v]〉, where 〈N [v]〉 is the

sub graph of G induced by v and all vertices adjacent to v. A neighborhood set S is a split (nonsplit) neighborhood set if

〈V (G) − S〉 is connected (disconnected). The maximum number of a partition of V (G), all of whose are split (nonsplit)

neighborhood sets, is the split(nonsplit) nomatic number Ns(G)(Nns(G)). Our purpose in this paper is to initiate the
study of split(nonsplit) nomatic number of a graph. We first study basic properties and bounds for Ns(G)(Nns(G)). In

addition, we determine the Ns(G)(Nns(G)) of some classes of graphs.
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1. Introduction

Let G = (V,E) be simple, undirected, and nontrivial graph with vertex set V = V (G) and edge set E = E(G). Also |V | = n

and |E| = m denote number of vertices and number of edges in G. The open neighborhood N(v) of vertex v denotes number

of vertices adjacent to v and its closed neighborhood N [v] = N(v) ∪ {v}. The β1(G) is the minimum number of edges in

a maximal independent set of edge of G. The complement G of a graph G defined to be graph which has V as its sets

of vertices and two vertices are adjacent in G if and only if they are not adjacent in G. Further, a graph G is said to be

self-complementary, if G is isomorphic with G. For notation and graph theory terminology we generally follow [6].

A set D ⊆ V is a dominating set if every vertex not in S is adjacent to one or more vertices in D. The cardinality of a

smallest dominating set of G, denoted by γ(G), is the domination number of G. A concept dual in a certain sense to the

domination number is the domatic number, introduced by Cockayne and Hedetniemi [5]. They have defined the domatic

number d(G) of a graph G by means of sets. For some purposes it is more convenient to consider domatic colourings instead

of domatic partitions. A coloring of vertices of a graph G is called domatic, if each vertex of G is adjacent to vertices of

all colors different from its own. (Two vertices of the same color may be adjacent.) Then the domatic number of G is the

maximum number of colors of a domatic coloring of G. In otherwords, a partition of V , all of whose classes are dominating

sets in G, is called a domatic partition of G. The maximum number of classes of a domatic partition of G is the domatic

number d(G) of G. For complete review on the concept of domatic number, we refer [2], [3], [4] and [12].
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In [10], E. Sampathkumar ad P. S. Neeralagi introduce the concepts of neighborhood number as follows. A set S ⊆ V is a

neighborhood set of G, if G =
⋃
v∈S〈N [v]〉, where 〈N [v]〉 is the sub graph of G induced by v and all vertices adjacent to v.

The neighborhood number η(G) of G is the minimum cardinality of a neighborhood set of a graph G. A neighborhood set S

is a split (nonsplit) neighborhood set if 〈V (G)− S〉 is connected (disconnected). The split (nonsplit)neighborhood number

ηs(G)(ηns(G)) of a graph G is the minimum cardinality of a split (nonsplit)neighborhood set of a graph G. For more detail,

we refer , see [1], [7], [9] and [11]. With the help of a neighborhood set, S. R. Jayaram [8] have defined the nomatic number

of a graph. The maximum number of a partition of V (G), all of whose are neighborhood sets, is the nomatic number N(G).

Here, we shall introduce the nomatic analogue of this concept and prove some assertions concerning it. A split (nonsplit)

nomatic partition is a partition of V (G) into split(nonsplit) neighborhood sets, and the split (nonsplit) nomatic number

Ns(G)(Nns(G)) is the largest number of sets in a split (nonsplit) nomatic partition. A neighborhood set S with minimum

cardinality is called η - set of a graph G. Similarly, the other sets can be expected.

The split (nonsplit) nomatic number problem arises in various areas and scenarios. In particular, this problem is related

to the task of distributing resources in a computer network, and also to the task of locating facilities in a communication

network as follows:

Suppose, for example, that resources are to be allocated in a computer network such that expensive services are quickly

accessible in the immediate neighborhood of each vertex. If every vertex has only a limited capacity, then there is a bound

on the number of resources that can be supported. In particular, if every vertex can serve a single resource only, then the

maximum number of resources that can be supported equals the nomatic number of the network graph.

2. Split Nomatic Number

Observation 2.1. Every neighborhood set is a split neighborhood set of a graph G. Clearly, η(G) ≤ ηs(G). Like wise

Ns(G) ≤ N(G).

Observation 2.2. Every domatic partition is a split domatic partition and every split domatic partition is a split nomatic

partition of a graph. Clearly, Ns(G) ≤ ds(G) ≤ d(G).

Theorem 2.3. A neighborhood set S of a graph G is a split neighborhood set if and only if there exist atlest two vertices

x, y ∈ V − S such that every x− y path contains a vertex of S.

Proof. Let S be a ηs- set of a graph G, then 〈V −S〉 is disconnected and its contains atleast two components, say G1 and

G2, let x ∈ G1, y ∈ G2. There is no path in V − S containing x and y. Hence every path in G connecting x and y, which

contains S.

Conversely, suppose that there are vertices x and y(/∈ S) such that S is an path connecting x and y. We shall prove that S

is a split neighborhood set. Let, if possible S be a nonsplit neighborhood set, so 〈V − S〉 is connected, there is a path in G,

which does not contain S. This contradicts to proves that S is a spilt neighborhood set of a graph G.

Theorem 2.4. For every connected graph G with n ≥ 3 vertices,

Ns(G) ≤Min.{δ(G) + 1,
n

ηs(G)
}.

Proof. By Observation 1.1, the desired result follows.

Theorem 2.5. For any non trivial connected graph G,
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(i) Ns(G) = 1 if and only if G = P3 or Cn;n = 2k + 1 for k ≥ 1 or K1,n or Wn or Kr1,r2,r3,...,rt ,

(ii) Ns(G) = 2 if and only if G is bipartite graph with partite set {|V1|, |V2|} ≥ 2, where V1, V2 ∈ V (G).

Proof. Let G be a graph of P3 or Cn;n = 2k + 1 for k ≥ 1 or K1,n or Wn or Kr1,r2,r3,...,rt . If S is a spilt neighborhood

set of G, then V − S is not contain a spilt neighborhood set and Ns(G) = 1.

Let G be a bipartite graph. If V (G) can be partitioned into two sets V1 and V2 so that every edge of G joins a vertex of V1

with a vertex of V2 with {|V1|, |V2|} ≥ 2. Then graph G necessarily has its oddly subscripted vertices in V1 and others in V2,

so that its length n is even that is, for every even cycle {v1v2v3 . . . vnv1}. Otherwise, there exist atleast four vertices of {v1

- v2 - . . . - vn} such that {v1v2 - v2v3 - . . . - vn−1vn} of path length atleast 3. This implies that the set V − S is contain a

spilt neighborhood set with S ⊆ V
2

and Ns(G) = 2. Thus, the converses of (i) and (ii) are obvious.

Theorem 2.6. Let T be a tree with n ≥ 4 vertices. Then Ns(T ) = δ(T ) + 1, provided tree T is not contain K1,n for n ≥ 1.

Proof. Let T be a tree with n ≥ 4 vertices. If tree T is not contain K1,n for n ≥ 1, then Ns(T ) = 2, due to the fact of

Theorem 1. of (ii) and δ(T ) = 1. Thus Ns(T ) = δ(T ) + 1 follows. Conversely, suppose tree T is isomorphic with K1,n for

n ≥ 1 implies that Ns(T ) < δ(T ) + 1, a contradiction. Hence the result follows.

3. Nonsplit Nomatic Number

Observation 3.1. Every neighborhood set is a nonsplit neighborhood set of a graph G. Clearly, η(G) ≤ ηns(G). Like wise

Nns(G) ≤ N(G).

Observation 3.2. Every domatic partition is a nonsplit domatic partition and every nonsplit domatic partition is a nonsplit

nomatic partition of a graph G. Clearly, Nns(G) ≤ dns(G) ≤ d(G).

Proposition 3.3. For any Path Pn, Cycle Cn, Tree T and Complete bipartite graph Kr,s with n ≥ 3 and 1 ≤ r ≤ s vertices,

Nns(Pn) = Nns(Cn) = Nns(T ) = Nns(Kr,s) = 1.

Proposition 3.4. For any complete graph Kn with n ≥ 1 vertices,

Nns(Kn) = n.

Theorem 3.5. For any connected graph G with n ≥ 3 vertices,

(i) γ(G) = Min.{γs(G), γns(G)},

(ii) N(G) = Max.{Ns(G), Nns(G)},

(iii) Nns(G) ≤Min.{δ(G) + 1, n
ηns(G)

}.

Proof. By Observation 1.1 and 2.1, (i)-(iii) follows.

Theorem 3.6. Let G = Kr1,r2,r3,...,rt be a complete multipartite graph with 1 ≤ r1 ≤ r2 ≤ r3, . . . ,≤ rt and t ≥ 3 vertices.

Then Nns(G) = t.
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Proof. Let G = Kr1,r2,r3,...,rt be a complete multipartite graph with 1 ≤ r1 ≤ r2 ≤ r3, . . . ,≤ rt and t ≥ 3 vertices. If

V (G) is a finite set of a graph G with 1 ≤ t ≤ n, where r is an positive integer and S1, S2, ..., St is a partition of V (G), then

there exists a graph G such that Nns(G) = t, since S1, S2, ..., St is a nonsplit nomatic partition of a graph G with Si∩Sj = φ

for i 6= j. Suppose, if t = 2 vertices, which is a complete bipartite graph with partite set V1 and V2. This implies that V −u

is a unique nonsplit neighborhood set of a complete bipartite graph G and hence Nns(G) < t = 2, which is contradiction.

Thus the result follows.

Definition 3.7. The join G1 + G2 of two graphs G1 and G2 is the disjoint union of G1 and G2 together with all possible

edges connecting a vertex of G1 with a vertex of G2.

Theorem 3.8. Let G be a connected graph with n ≥ 2 vertices. Then

1 +Nns(G) ≤ Nns(K1 +G).

Proof. If the partitions {S1, S2, ..., St} of the vertex set V into nonsplit neighborhood sets of a graph G, then the nonsplit

nomatic partitions {S1, S2, ..., St, St+1} of a graph K1 +G, where u ∈ St+1 for u ∈ V (K1). Thus the result follows.

Proposition 3.9. For any Fan Fn = K1 + Pn−1;n ≥ 3 and wheel Wn = K1 + Cn−1;n ≥ 4 vertices,

(i) Nns(Fn) = Nns(W2k+3) = 3,

(ii) Nns(W4) = 4,

(iii) Nns(W2k+4) = 2, where k is an positive integer.

Observation 3.10. For any connected spanning subgraph H of a graph G, that is ηns(G) ≤ ηns(H). But Nns(H) ≤ Nns(G).

By this observation, we have the following Proposition, which is straight forward.

Proposition 3.11. For any connected graph G with n ≥ 3 vertices,

Nns(G)− 1 ≤ Nns(G− x) ≤ Nns(G),

for any edge x ∈ E(G).

Observation 3.12. A nonsplit neighborhood vertex which forms a nonsplit neighborhood set, that is a vertex adjacent to all

other vertices. if u is a nonsplit neighborhood vertex of a nontrivial graph G, then G is isomorphic to (G− u) +K1.

Proposition 3.13. If u is a nonsplit neighborhood vertex of a graph G, then

Nns(G) = Nns(G− u) + 1.

Proof. Since a nonsplit nomatic partition of u forms a nonsplit nomatic partition of G, Nns(G) ≥ Nns(G − u) + 1. On

the otherhand, suppose S1, S2, ..., St is a nonsplit nomatic partition of a graph G, where t = Nns(G). Assume u ∈ S1. Note

that S1 ∪ S2 − {u}, S3, ..., St is a nonsplit nomatic partition of G− u. So Nns(G− u) ≥ t− 1 = Nns(G) + 1. Thus the result

follows.

Theorem 3.14. For any connected graph G,

Nns(G) ≤ ∆(G) + 1.

Further, the bound is attained if and only if G ∼= Kn with n ≥ 2 vertices.
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Proof. By Theorem 2.1 and due to the fact of ηns(G) ≥ n
∆(G)+1

, the desired result follow.

Now we prove the next part. Suppose Nns(G) = ∆(G) + 1 holds. On contrary, suppose given condition is not satisfied, then

there exists atleast three vertices u, v and w such that v is adjacent to both u and w, and u is not adjacent to w. Thus,

V −u or V −w form a unique nonsplit neighborhood set and this implies that Nns(G) < ∆(G) + 1, which is a contradiction.

Converse is easy to cheek.

By above theorem, we obtain a Nordhaus-Gaddum type results.

Theorem 3.15. Let G be a graph such that both G and G are connected with n ≥ 4 vertices. Then

Nns(G) +Nns(G) ≤ n+ 1.

Theorem 3.16. Let G be a connected graph. Then

(i) Nns(G) = n if and only if the graph G ∼= Kn with n ≥ 1 vertices.

(ii) Nns(G) = n− 1 if and only if the graph G ∼= Kn − e, where e is an edge of Kn with n ≥ 3 vertices.

(iii) Nns(G) = n
2

if and only if the graph G is obtained from the complete graph Kn by deleting maximum independent

edges; Provided n is an even integer with n ≥ 4 vertices.

Proof.

(i) Let G be a connected graph with n ≥ 1 vertices. If G is isomorphic with Kn, then each vertex of a complete graph Kn

forms a one-element, which is a nonsplit neighborhood set. Thus nonsplit nomatic partition of the vertex set V (G) into

n-disjoint nonsplit neighborhood sets of a graph G and hence the result follows.

Conversely, suppose Nns(G) = n holds but that G is not isomorphic with Kn;n ≥ 1. Then there exist at least three vertices

u, v and w such that two adjacent vertices u and v. Suppose w is adjacent to v. Then u, v or v, w or u,w is one and only

nonsplit neighborhood set of G, this implies that Nns(G) < n, which is a contradiction.

(ii) If G ∼= Kn − e, where e = uv ∈ E(Kn), then G − e is a graph consisting of an independent vertices u and v. Hence,

every nonsplit nomatic partiton of G must contain u and v in one of the nonsplit neighborhood set. Hence Nns(G) ≥ n− 1.

The inequality Nns(G) ≤ n − 1 follows from the fact that {V − u} is a nonsplit nomatic partition of a graph G. Hence

Nns(G) = n− 1.

Conversely, suppose Nns(G) = n − 1 holds but that the graph G is not isomorphic with Kn − e, where e is an edge of Kn

with n ≥ 3 vertices. Then there exists atleast three vertices u, v and w such that v is adjacent to both u and w, and u is

not adjacent to w. This implies that the removable of any one end vertex of u or v in a graph G which contains atleast

one end vertices, which form a unique nonsplit neighborhood set of a graph G. Thus Nns(G) < n−1, which is a contradiction.

(iii) Suppose dns(G) = n
2

. On contrary, if the graph G is not obtained from the complete graph Kn by deleting maximum

independent edges, where n is an even integer with n ≥ 4 vertices. Then there exist atleast four vertices of complete graph

Kn by deleting set of independent edges X(G) for all X(G) ⊂ E(Kn) such that | X(G) |< β1(G), where β1(G) is a maximum

number of independent set of a graph G. This implies that dns(G) > n
2

, which is a contradiction. Converse is obvious.

Theorem 3.17. Let G be a connected graph. If Nns(G) ≥ 3, then diam(G) ≤ 2, where diam(G) denote the diameter of G.
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Proof. Let Nns(G) = r ≥ 3. Then there exists a nonsplit nomatic partition of {S1, S2, ..., Sr} of a graph G. Let u and v be

two vertices of a graph G. As r ≥ 3, atleast one of the sets S1, S2, ..., Sr contains neither u nor v. Without loss of generality,

let it be D1. We have {u, v} ⊆ V (G)−D1 and therefore there exists a vertex w ∈ D1 such that 〈u, v, w〉 is connected in G.

If u, v are adjacent, then the distance between u and v is one. If u, v are not adjacent, then w must be adjacent to both u

and v and the distance between u and v is two. As u and v were chosen arbitrarily, we have diam(G) ≤ 2.

Now, We have the following observations and properties of global nonsplit nomatic number Ngns(G) of a graph G.

Note that a global nonsplit neighborhood set of G is simultaneously a nonsplit neighborhood set of G and its complement

G. A global nonsplit nomatic partition is a partition of V (G) into global nonsplit neighborhood sets, and the global nonsplit

nomatic number Ngns(G) is the largest number of sets in a global nonsplit nomatic partition.

Theorem 3.18. Let G be a graph such that both G and G are connected. Then

(i) Ngns(G) = Ngns(G),

(ii) Ngns(G) = Min.{Nns(G), Nns(G)},
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