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Abstract: The cut method demonstrates its usefulness especially for the topological indices that are based on the distances in the
molecular graphs without actually calculating the distances between pairs of vertices. The Wiener index is equal to the

sum of distances between all pairs of vertices of the connected graph G, whereas the Edge-Wiener index is the sum of

distances between all pairs of edges of the connected graph G. In this paper we calculate the Edge-Wiener indices of
Circum-polyacenes, Circum-pyrenes and Circum-trizenes.
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1. Introduction

A benzenoid system or hexagonal system, honeycomb system is a finite connected subgraph of the infinite hexagonal lattice

with no cut vertices or non-hexagonal internal face [1]. Topological indices are designed basically by transforming a molecular

graph into a number. The oldest and one of the most thoroughly studied distance-based molecular structure-descriptors is the

Wiener index was introduced by the Chemist Harold Wiener in 1947, to analyze the chemical properties of alkanes(paraffins).

Since then, numerous articles were published [2–9] in the chemical and mathematical literature, devoted to the Wiener index

and various methods for its calculation and edge-version [12–15] of the Wiener index eluded the attention of both pure

and applied graph theoreticians. The Wiener index is equal to the sum of distances between all pairs of vertices of the

connected graph G, whereas the Edge-Wiener index is the sum of distances between all pairs of edges of the connected

graph G. Distance properties of molecular graphs play a vital role in chemical graph theory. Topological indices are used in

theoretical chemistry for the design of quantitative structure-property relations (QSPR) and quantitative structure-activity

relations (QSAR). The cut method demonstrates its usefulness especially for the topological indices that are based on the

distances in the molecular graphs without actually calculating the distances between pairs of vertices [10, 11].

2. Basic Concepts and Terminology

A molecular graph is a representation of the structural formula of the chemical compound. Let G be a simple molecular

graph which consists of vertices V (G) and a set of edges E(G) respectively such that a collection of vertices representing
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the atoms in the molecule and a set of edges representing the chemical bonds between the carbon atoms.

Proposition 2.1 ([11]). Let G be a connected graph. Then G admits a partition of E(G) into convex cuts if and only if G

is a partial cube.

Theorem 2.2 ([11]). Let G be a partial cube and let F1, ..., Fk be its Θ-classes. Let m1(Fi) and m2(Fi) be the number of

edges in the two connected components of G− Fi. Then We(G) =
k∑

i=1

m1(Fi)m2(Fi).

Corollary 2.3 ([10]). Let B be a benzenoid graph and C the set of its orthogonal cuts. For C ∈ C, let η1(C) and η2(C) be

the number of edges in the two components of G− C, respectively. Then We(G) =
∑
C∈C

η1(C)η2(C).

We rewrite the above corollary for ease of calculation.

Corollary 2.4. Let G be a benzenoid graph and let {S1, S2, S3, ..., Sp}, be a partition of E(G) such that each Si is an edge

cut of G and the removal of edges of Si leaves G into two components, then the Edge-Wiener index of the graph G is given

by We(G) =
p∑

i=1

|m1(Si)||m2(Si)|, where |m1(Si)| is the number of edges in the first component and |m2(Si)| is the number

of edges in the second component.

3. Edge-Wiener Indices of Circum-polyacenes

In this section, we compute exact analytical expressions for the Edge-Wiener indices of various n-Circum-polyacenes. Par-

ticular cases of interest are Circum-naphthalenes(n), Circum-anthracenes(n), Circum-tetracenes(n), Circum-pentacenes(n),

Circum-hexacenes(n). As detailed proofs for each of these structures take up a large amount of space, we only show one case

for each class in sufficient details with mathematical proofs; in this case the proof is given in depth for Circum-hexacenes(n).

The proofs of the remaining structures are similar and we have shown the final simplified expressions in Table 1. In the

ensuing paragraphs we show mathematical details of how we obtain the final results exemplifying with Circum-hexacenes(n).

Let Lm denote a linear chain of m hexagons. See Figure 1(a). Adding k layers of hexagons to the boundary of Lm gives rise

to various chemical structures. The structures when m=6 and k=1,2 are Circum-hexacene(1) and Circum-hexacene(2). See

Figure 1(b) and Figure 1(c).

(b) 

(a) 

 (c)

Figure 1 : (a)Linear chain of 6 hexagons (b) Circum-hexacene(1)

(c) Circum-hexacene(2)
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(b)(a)

(c) (d)

(e)

Figure 2 : (a) Circum-naphthalene(1) (b) Circum-anthracene(1)

(c) Circum-tetracene(1) (d) Circum-pentacene(1) (e) Circum-hexacene(1)

3.1. Circum-hexacenes(n) and Linear Polyacenes

Theorem 3.1. The Edge-Wiener indices of Circum− hexacenes(n) is given by

We =
[738n5 + 8820n4 + 38020n3 + 72855n2 + 60687n+ 17920)]

10
.

Proof. We use horizontal and diagonal cuts shown in Figure 3 in the edge set of Circum − hexacene(1). Now let S0 be

the horizontal center cut, {Si : 1 ≤ i ≤ n}, {S−i : 1 ≤ i ≤ n} be the horizontal cuts which are parallel to S0 from the top

and bottom respectively as shown in the Figure 3. For i = 1, 2, let {Sj
i : 1 ≤ j ≤ n+ 1} be the diagonal edge cuts from the

upper and lower left corners as shown in the Figure 3. Similarly, for i = 1, 2, let {Sj
−i : 1 ≤ j ≤ n+ 1} be the diagonal edge

cuts from the upper and lower right corners as shown in the Figure 3. Let {Sj
±i : 1 ≤ i ≤ 2, j = n+ 2} be the diagonal cuts

as shown in the Figure 1.1. Let {Sj
±i : 1 ≤ i ≤ 2, j = n+ 3} be the diagonal cuts as shown in the Figure 3.

Removal of S0 leaves Circum-hexacenes(n) into two components GSi and G
′
Si

where |E(GSi)| = 1
2
[9n2+43n+24], |E(G

′
Si

)| =
1
2
[9n2 + 43n + 24]. For 1 ≤ i ≤ n, the removal of Si leaves Circum-hexacenes(n) into two components GSi and G

′
Si

where

|E(GSi)| =
∑n

i=1
1
2
[5i2 + 3i(2n+ 9)− 2n− 8], |E(G

′
Si

)| =
∑n

i=1
1
2
[18n2 + 90n− 5i2 − i(6n+ 29) + 58] .

1S−

1S

1
1S 1

1S−

1
2S

1
2S−

3
1S−

3
1S

3
2S 3

2S−

4
1S4

1S−
4
2S−

4
2S

0S

Figure 3 : Circum- hexacene(1) with cuts
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For 1 ≤ i ≤ n, the removal of S−i leaves Circum-hexacenes(n) into two components |GS−i and G
′
S−i

where |E(GS−i)| =∑n
i=1

1
2
[5i2 + 3i(2n+ 9)− 2n− 8], |E(G

′
S−i

)| =
∑n

i=1
1
2
[18n2 + 90n− 5i2 − i(6n+ 29) + 58].

For Sj
i , i = 1, 2, 1 ≤ j ≤ n+ 1, removal of the edges in Sj

i , leaves Circum-hexacenes(n) into two components G
S
j
i

and G
′

S
j
i

where |E(G
S
j
i
)| =

∑n+1
i=1 [3i2 + 3i(2n+ 1)− 2n− 2], |E(G

′

S
j
i

)| =
∑n+1

i=1 [18n2 + 90n− 3i2 − i(6n+ 5) + 62].

Similar results hold good when Sj
−i, i = 1, 2, 1 ≤ j ≤ n+ 1.

For {Sj
±i : 1 ≤ i ≤ 2, j = n + 2}, removal of the edges in Sj

±i, leaves Circum-hexacenes(n) into two components G
S
j
±i

and

G
′

S
j
±i

where |E(G
S
j
±i

)| = 2[9n2 + 25n+ 14], |E(G
′

S
j
±i

)| = 2[9n2 + 61n+ 44].

For {Sj
±i : 1 ≤ i ≤ 2, j = n + 3}, removal of the edges in Sj

±i, leaves Circum-hexacenes(n) into two components G
S
j
±i

and

G
′

S
j
±i

where |E(G
S
j
±i

)| = 2[9n2 + 37n+ 24], |E(G
′

S
j
±i

)| = 2[9n2 + 49n+ 34].

We(Circum− hexacenes(n)) =
1

2
[9n2 + 43n+ 24]2 +

n+1∑
i=1

[(3i2 + 6ni+ 3i− 2n− 2)(18n2

+ 90n+ 62− 6ni− 3i2 − 5i)] +
1

2

n∑
i=1

[(5i2 + 27i+ 6ni− 2n

− 8)(18n2 − 5i2 + 90n+ 58− 6ni− 29i)] + [(9n2 + 25n

+ 14)(9n2 + 61n+ 44)] + [(9n2 + 37n+ 24)(9n2 + 49n+ 34)]

=
[738n5 + 8820n4 + 38020n3 + 72855n2 + 60687n+ 17920)]

10

We have employed cuts similar to the ones shown in Figure 3 for simple linear polyacenes containing m hexagons which we

denote by Lm. On the basis of the same procedure we obtain the following expression for the Edge-Weiner index, We for

any Lm as

We(Lm) =
1

6
[50m3 − 6m2 + 28m]

This result matches with a recent result obtained by Chen et al.[16] for the Wiener index of the associated line graph of Lm

by the following simplification:

W (LG(Lm)) =
1

6
[50m3 + 69m2 + 43m]

= We(Lm) +

 me

2


where me = number of edges of Lm = 5m+1, by substituting this value for me back into above equation we get the result

for We(Lm) as

W (LG(Lm)) = We(Lm) +

 me

2


=

1

6
[50m3 − 6m2 + 28m] +

5m(5m+ 1)

2

=
1

6
[50m3 + 69m2 + 43m]

Thus we obtain We for the first 5 members of linear polyacene series as 72, 230, 536, 1040, 1792 for naphthalene, anthracene,

tetracene, pentacene and hexacene, respectively. These numbers are identical to the constant terms in our expressions
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for Circum-Lm listed in Table 1 obtained using cut methods, as the order of circumscribing goes to 0 we get the We for

linear polyacenes, providing independent confirmations to our technique. These confirmations provide further proof to our

technique. We note that the Edge-Wiener index We of graphs considered here and the associated Wiener index of the line

graph differ by a factor of me(me−1)
2

.

4. Edge-Wiener Indices of Circum-pyrenes and Circum-trizenes

In this section, we find Edge-Wiener indices of the structures Circum-pyrenes(n) and Circum-trizenes(n), out of which the

proof is given in detail for Circum-pyrenes(n). The proof of the Circum-trizenes(n) is similar and we have given their

results in Table 2. Figure 4(a) depicts the graph of Circum-pyrene(1). Circum-pyrene(2) is obtained by adding a layer of

hexagons to the boundary of Circum-pyrenes(1) as shown in Figure 4(b). Inductively, Circum-pyrenes(n) is obtained from

Circum-pyrenes(n− 1) by adding a layer of hexagons around the boundary of Circum-pyrenes(n− 1). Similar construction

follows for Circum-trizenes(n). See Figure 4(c) and Figure 4(d).

(a) (b)

(c) (d)

Figure 4 : (a) Circum-pyrene(1) (b) Circum-pyrene(2)

(c) Circum-trizene(1) (d) Circum-trizene(2)

4.1. Circum-pyrenes(n)

Theorem 4.1. The Edge-Wiener indices of Circum-pyrenes(n) is given by

We =
[738n5 + 5130n4 + 13960n3 + 18615n2 + 12207n+ 3160)]

10

Proof. We use horizontal and diagonal cuts shown in Figure 5 that yield an I-partition of the edge set of Circum-pyrene(1).

Now let S0 be the horizontal center cut, {Si : 1 ≤ i ≤ n + 1}, {S−i : 1 ≤ i ≤ n + 1} be the horizontal cuts which are

parallel to S0 from the top and bottom respectively as shown in the Figure 5. For i = 1, 2, let {Sj
i : 1 ≤ j ≤ n + 1}
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be the diagonal edge cuts from the upper and lower left corners as shown in the Figure 5. Similarly for i = 1, 2, let

{Sj
−i : 1 ≤ j ≤ n+1} be the diagonal edge cuts from the upper and lower right corners as shown in the Figure 5. We observe

that S0, {Si : 1 ≤ i ≤ n + 1}, {S−i : 1 ≤ i ≤ n + 1}, {Sj
i : 1 ≤ i ≤ 2, 1 ≤ j ≤ n + 1} and {Sj

−i : 1 ≤ i ≤ 2, 1 ≤ j ≤ n + 1}

forms an edge set of Circum-pyrenes(n). Removal of S0 leaves Circum-pyrenes(n) into two components GSi and G
′
Si

where

|E(GSi)| = 1
2
[9n2 + 25n+ 16], |E(G

′
Si

)| = 1
2
[9n2 + 25n+ 16].

0S

1S

1
1S 1

1S−

1
2S

1
2S−

1S−

Figure 5 : Circum-pyrene(1)with cuts

For 1 ≤ i ≤ n + 1, the removal of Si leaves Circum-pyrenes(n) into two components GSi and G
′
Si

where |E(GSi)| =∑n+1
i=1 [ 1

2
(3i2 + 3i(2n+ 1)− 2n− 2)] |E(G

′
Si

)| =
∑n+1

i=1 [ 1
2
(18n2 + 54n− 3i2 − i(6n+ 5) + 38)].

For 1 ≤ i ≤ n + 1, the removal of S−i leaves Circum-pyrenes(n) into two components GS−i and G
′
S−i

where |E(GS−i)| =∑n+1
i=1 [ 1

2
(3i2 + 3i(6n+ 1)− 2n− 2)], |E(G

′
S−i

)| =
∑n+1

i=1 [ 1
2
(18n2 + 54n− 3i2 − i(6n+ 5) + 38)].

For Sj
i , i = 1, 2, 1 ≤ j ≤ n + 1, removal of the edge cuts Sj

i , leaves Circum-pyrenes(n) into two components G
S
j
i

and G
′

S
j
i

where |E(G
S
j
i
)| =

∑n+1
i=1 [3i2 + i(6n + 1) − 2n + 4], |E(G

′

S
j
i

)| =
∑n+1

i=1 [18n2 + 54n − 3i2 − 3i(2n + 1) + 30]. Similar results

hold good when Sj
−i, i = 1, 2, 1 ≤ j ≤ n+ 1. Hence,

We(Circum− pyrenes(n)) =
1

2
[9n2 + 25n+ 16]2 +

n+1∑
i=1

[3i2 + i(6n+ 1)− 2n+ 4][18n2

+ 54n− 3i2 − 3i(2n+ 1) + 30] +
1

2

n+1∑
i=1

[3i2 + 3i(2n+ 1)− 2n

− 2][18n2 + 54n− 3i2 − i(6n+ 5) + 38]

=
[738n5 + 5130n4 + 13960n3 + 18615n2 + 12207n+ 3160)]

10

Table 1. We of Circum-polyacenes

Fig. No Structural Name Formula

2.a Circum-naphthalenes(n)
[738n5+3900n4+7940n3+7815n2+3767n+720)]

10

2.b Circum-anthracenes(n)
[738n5+5130n4+13480n3+16785n2+10017n+2300)]

10

2.c Circum-tetracenes(n)
[738n5+6360n4+20340n3+30135n2+20787n+5360)]

10

2.d Circum-pentacenes(n)
[738n5+7590n4+28520n3+48585n2+37277n+10400)]

10

2.e Circum-hexacenes(n)
[738n5+8820n4+38020n3+72855n2+60687n+17920)]

10
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Table 2. We of Circum-pyrenes and Circum-trizenes

Fig.No. Structure Name Formula

4.a Circum-pyrenes(n)
[738n5+5130n4+13960n3+18615n2+12207n+3160)]

10

4.c Circum-trizenes(n)
[738n5+4515n4+10770n3+12540n2+7167n+1620)]

10

5. Concluding Remarks

In this paper, we have obtained exact analytical expressions for the Edge-Wiener indices of a number of circumscribed

peri-condensed polycyclic aromatic benzenoid hydrocarbons. We have employed cut methods to obtain these expressions

which are shown to be polynomials of 5-th degree as a function of n, where n is the order of circumscribing. The current

techniques can be extended to obtaining other topological indices such as the Edge-Szeged index, Gutman index, Schultz

index etc.,
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