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1. Introduction and Preliminaries

Grossman and Katz [5] introduced non-Newtonian calculus as an alternative to classical calculus. It provides differentiation

and integration tools based on non-Newtonian operations instead of classical operations. Every property in classical calculus

has an analogue in non-Newtonian calculus. Non-Newtonian calculus consists of many calculi such as classical, geometric,

anageometric, bigeometric calculus etc. In [1] the results with applications of multiplicative calculus corresponding to the

well-known properties of derivatives and integrals in classical calculus are presented. Uzer [11] has extended the multiplicative

calculus to the complex valued functions. We find the applications of non-Newtonian calculus in the field of Probability,

Physics, Image Analysis, Numerical Analysis, Non-Linear Dynamical Systems etc.. The field R(N) of non-Newtonian real

numbers and the the concept of non-Newtonian metric is introduced in [2]. In [4] exponential complex numbers and ∗-

complex number systems are introduced. Some sequence spaces defined over the non-Newtonian complex field C∗ and

corresponding results for these spaces are proved in [10].

Before proceeding further first we introduce the basic terms used in this paper.

Definition 1.1. A complete ordered field is a system consisting of a set A with four binary operations +̇, −̇, ×̇, ÷̇ for

A and an order relation <̇ for A all of which behave with respect to A exactly as +,−,×,÷, < behave with respect to the

set of Real numbers (R). We call A the realm of the complete ordered field and a complete ordered field is called arithmetic

if its realm is a subset of R.

Definition 1.2. A bijective function with domain in R and range a subset of R is called a generator.

Example 1.3. The identity function I, exp, −exp, x3, −x3 etc. are generators (exp denotes the exponential function).
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Definition 1.4. Let α be a generator with range A. By α-arithmetic we mean the arithmetic whose realm is A and whose

operations and ordering are defined as follows:

α− addition : y +̇ z = α{α−1(y) + α−1(z)};

α− subtraction : y −̇ z = α{α−1(y)− α−1(z)};

α−multiplication : y ×̇ z = α{α−1(y)× α−1(z)};

α− division : y(z 6= 0̇) ÷̇ z = α

{
α−1(y)

α−1(z)

}
;

α− ordering : y ≤̇ z ⇔ α−1(y) ≤ α−1(z), ∀ y, z ∈ A.

The set Rα(N) of non-Newtonian real numbers generated by α is defined as: Rα(N) = {α(x) : x ∈ R} and we say that

α-generates α-arithmetic.

Remark 1.5. All concepts in classical arithmetic have natural counterparts in α-arithmetic
(
A, +̇, −̇, ×̇, ÷̇, <̇

)
. For

instance, α- zero and α- one turn out to be α(0) and α(1) respectively.

Example 1.6. Consider α = − exp as a generator. So, A = {−ex ∀ x ∈ R} = (−∞, 0), α − zero( 0̇) = − exp(0) = −1,

α− positive numbers =
{
x ∈ A : 0̇ >̇ x

}
= (∞,−1), α− negative numbers =

{
x ∈ A : 0̇ <̇ x

}
= (−1, 0).

Remark 1.7. The α-square of a number ȧ ∈ A denoted ȧ 2̇ will have value:

ȧ 2̇ = α
{
α−1( ȧ)× α−1( ȧ)

}
= α

{[
α−1( ȧ)

]2}
.

Similarly, ȧ ṗ = α
{[
α−1( ȧ)

]p}
.

Definition 1.8. The α-absolute value of a number ȧ ∈ A is defined as α
(
|α−1( ȧ)|

)
. For each positive number ȧ ∈ A, we

have,

.
√
ȧ 2̇
1 = α

(
|α−1( ȧ)|

)
.

Remark 1.9. In the rest of this paper ȧ ∈ (A, +̇, −̇, ×̇, ÷̇, <̇ ), b̈ ∈ (B, +̈, −̈, ×̈, ÷̈, <̈ ) and
...
g ∈ (G,

...
+,

...
−,

...
×,

...
÷,

...
< )

will denote the arbitrarily chosen elements from α−arithmatic, β−arithmatic and γ−arithmatic respectively.

Definition 1.10. The isomorphism from α−arithmatic to β-arithmatic is the unique function ıAB that posses the following

three properties:

(1) ıAB is one-to-one,

(2) ıAB is onto,

(3) For any numbers ȧ1, ȧ2 ∈ A,

(a) ıAB( ȧ1 +̇ ȧ2 ) = ıAB( ȧ1 ) +̈ ıAB( ȧ2 ),

(b) ıAB( ȧ1 −̇ ȧ2 ) = ıAB( ȧ1 ) −̈ ıAB( ȧ2 ),

(c) ıAB( ȧ1 ×̇ ȧ2 ) = ıAB( ȧ1 ) ×̈ ıAB( ȧ2 ),

(d) ıAB( ȧ1 ÷̇ ȧ2 ) = ıAB( ȧ1 ) ÷̈ ıAB( ȧ2 ), ȧ2 6= 0̇,

(e) ȧ1 <̇ ȧ2 if and only if ıAB( ȧ1) <̈ ıAB( ȧ2).
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Remark 1.11.

(1) ı−1
AB will be the isomorhism from β−arithmatic to α−arithmatic.

(2) In this paper the isomorphisms from α−arithmatic to γ−arithmatic and β−arithmatic to γ−arithmatic are denoted by

ıAG and ıBG respectively.

Definition 1.12. The ordered pair ( ȧ, b̈ ) is called a α∗β-point. (The subscript α and β denote the underlying arithmetic).

In [4], Grossman has introduced the exponential complex numbers and has defined *-complex number system. In [10],

non-Newtonian Complex numbers (C∗) are defined as the set of all α∗β-points and it is proved that (C∗) is a field with the

following operations:

(1) ⊕ : C∗ × C∗ → C∗ defined as ⊕ (z1
∗, z2

∗) 7−→ (z1
∗ ⊕ z2

∗) = ( ȧ1 +̇ ȧ2, b̈1 +̈ b̈2 ) and

(2) � : C∗ × C∗ → C∗ defined as � (z1
∗, z2

∗) 7−→ (z1
∗ � z2

∗) =

(
α( ¯̇a1 ¯̇a2 − ¯̈

b1
¯̈
b2), β( ¯̇a1

¯̈
b2 +

¯̈
b1 ¯̇a2)

)
.

where ȧ1, ȧ2 ∈ A and b̈1, b̈2 ∈ B with, ¯̇a1 = α−1( ȧ1) = α−1(α(a1)) = a1 ∈ R and
¯̈
b1 = β−1( b̈1) = β−1(β(b1)) = b1 ∈ R.

Remark 1.13. We denote the set of all α∗β-points as αC∗β .

The main purpose of this paper is to develop a vector spaces of non-Newtonian numbers over different fields of non-Newtonian

numbers. The concept of distance is generalized and generalized metric and generalized norm are defined for these spaces.

Finally some order and convergence structures are studied on the vector spaces of non-Newtonian complex numbers.

2. Main Results

First we prove that the set of non-Newtonian complex numbers is a Commutative Algebra with identity over field of reals

and extend this concept from real field to an arbitrary field of non-Newtonian numbers.

Theorem 2.1. αC∗β is a commutative algebra with identity over R with operations:

(1) ⊕ : αC∗β × αC∗β → αC∗β defined as ⊕ (z1
∗, z2

∗) 7−→ (z1
∗ ⊕ z2

∗) = ( ȧ1 +̇ ȧ2, b̈1 +̈ b̈2)

(2) � : αC∗β × αC∗β → αC∗β defined as � (z1
∗, z2

∗) 7−→ (z1
∗ � z2

∗) =
(
α( ¯̇a1 ¯̇a2 − ¯̈

b1
¯̈
b2), β( ¯̇a1

¯̈
b2 +

¯̈
b1 ¯̇a2)

)
and

(3) ⊗ : R× αC∗β → αC∗β defined as ⊗ (r, z1
∗) 7−→ (r ⊗ z∗) =

(
r ⊗ ( ȧ, b̈)

)
=
(
α(r) ×̇ ȧ, β(r) ×̈ b̈

)
=
(
ṙ ×̇ ȧ, r̈ ×̈ b̈

)
.

Proof. First we prove that αC∗β is a vector space over R with the above defined operations. It has been proved that

( αC∗β , ⊕ ) is a commutative group see [10]. We prove here the operations of scalar multiplication. For r, s ∈ R, z∗ =

( ȧ, b̈) ∈ αC∗β

r ⊗ (s ⊗ z∗) = r ⊗
(
s ⊗ ( ȧ, b̈)

)
= r ⊗ ( ṡ ×̇ ȧ, s̈ ×̈ b̈)

= ( (̇s) ×̇ ṙ ×̇ ȧ, s̈ ×̈ (̈r) ×̈ b̈) = s ⊗ ( ṙ ×̇ ȧ, r̈ ×̈ b̈) = s ⊗ (r ⊗ z∗) .

Thus, multiplication by scalars is associative. For 1 ∈ R, ∀z∗ = ( ȧ, b̈) ∈ αC∗β 1 ⊗ z∗ = 1 ⊗ ( ȧ, b̈) = ( 1̇ ×̇ ȧ, 1̈ ×̈ b̈) =

( ȧ, b̈) = z∗. Thus 1 ⊗ z∗ = z∗ ∀z∗ ∈ αC∗β . For r ∈ R and z∗1 = ( ȧ1, b̈1), z∗2 = ( ȧ2, b̈2) ∈ αC∗β ,

r ⊗ (z∗1 ⊕ z∗2) = r ⊗ (( ȧ1, b̈1) ⊕ ( ȧ2, b̈2))

=
(
ṙ ×̇( ȧ1 + ȧ2), r̈ ×̈( b̈1 + ḃ2)

)
=
(

( ṙ ×̇ ȧ1, r̈ ×̈ b̈1) + ( ṙ ×̇ ȧ2, r̈ ×̈ ḃ2)
)

= (r ⊗ z∗1) ⊕ (r ⊗ z∗2) .
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Thus Multiplication by scalars is distributive with respect to vector addition. For r, s ∈ R and z∗1 = ( ȧ1, b̈1) ∈ αC∗β ,

(r + s) ⊗ z∗1 = (r + s) ⊗
(

( ȧ1, b̈1)
)

=
((

( ṙ ×̇ ȧ1) +̇( ṡ ×̇ ȧ1)
)
,
(

( r̈ ×̈ b̈1) +̈( s̈ ×̈ b̈1)
))

=
(
r ⊗ ( ȧ1, b̈1)

)
⊕
(
s ⊗ ( ȧ1, b̈1)

)
= (r ⊗ z∗) + (s ⊗ z∗).

Thus Multiplication by a vector is distributive with respect to scalar addition. This proves that αC∗β is a Vector space over

R. Further we have , ( αC∗β − {0∗}, � ) is a commutative group so,

(1) (z1 � z2) � z3 = z1 � (z2 � z3),

(2) z1 � (z2 ⊕ z3) = (z1 � z2) ⊗ (z1 � z3),

(3) (z1 ⊕ z2) � z3 = (z1 � z3) ⊗ (z2 � z3) and

(4) Multiplicative identity exists.

Now we prove that r ⊗ (z1 � z2) = (r ⊗ z1) � z2 = z1 � (r ⊗ z2). For r, s ∈ R and z∗1 = ( ȧ1, b̈1) ∈ αC∗β ,

r ⊗ (z1 � z2) = r ⊗
(
α( ¯̇a1 ¯̇a2 − ¯̈

b1
¯̈
b2), β( ¯̇a1

¯̈
b2 +

¯̈
b1 ¯̇a2)

)
=
(
α(r) ×̇α( ¯̇a1 ¯̇a2 − ¯̈

b1
¯̈
b2), β(r) ×̈β( ¯̇a1

¯̈
b2 +

¯̈
b1 ¯̇a2)

)
=
(
α(¯̇r ¯̇a1 ¯̇a2 − ¯̈r

¯̈
b1

¯̈
b2), β(¯̇r ¯̇a1

¯̈
b2 + ¯̈r

¯̈
b1 ¯̇a2)

)
=
(
ṙ ×̇ ȧ1, r̈ ×̈ b̈1

)
� z2 = (r ⊗ z1) � z2.

Similarly, we can show that r ⊗ (z1 � z2) = z1 � (r ⊗ z2). Thus, we have r ⊗ (z1 � z2) = (r ⊗ z1) � z2 = z1 � (r ⊗ z2).

Hence, αC∗β is a commutative Algebra with identity over R with operations defined as above.

In the same manner we can also prove that αC∗β is a commutative algebra with identity over non-Newtonian real numbers

Rγ(N) (with an arbitrary realm γ) and scalar product:

⊗ : Rγ(N)× αC∗β → αC∗β defined as

⊗ (r, z∗) 7−→ r ⊗ z∗ =
(
r ⊗ ( ȧ, b̈)

)
=
(
α(γ−1(r)) ×̇ ȧ, β(γ−1(r)) ×̈ b̈

)
for r ∈ G.

Remark 2.2.

(1) For a fixed α, β we can produce infinitely many vector spaces over different fields (infinitely many γ as generator).

(2) For α = β = γ = I(identity function) this space will be the complex vector space over the field of reals..

Theorem 2.3. The set αC∗β of all α∗β-points of non-Newtonian numbers is a vector space over field (γC∗δ , ⊗ , � ) with

operations:

(1) ⊕ : αC∗β × αC∗β → αC∗β defined as ⊕ (z1
∗, z2

∗) 7−→ (z1
∗ ⊕ z2

∗) = ( ȧ1 +̇ ȧ2, b̈1 +̈ b̈2)

(2) ◦ : γC∗δ × αC∗β −→ αC∗β defined as ◦
(

(
...
g ,

....
d ), ( ȧ , b̈)

)
7−→

(
(

...
g ,

....
d ) ◦ ( ȧ , b̈)

)
= (α(ga), β(db)) .

Proof. (αC∗β , ⊕ ) is a commutative group and the scalar product operations can be verified in a similar way (as above).
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Example 2.4.

(1) If α = β = I(identity map) then we get a family of vector space of complex numbers over the field of non-Newtonian

complex numbers.

(2) If γ = δ = I(identity map) then we get a family of vector space of non-Newtonian complex numbers over the field of

complex numbers.

In the same way we can generate different families of vector spaces. In non-Newtonian calculus the distance concept is

generalized to ∗-distance concept between the α∗β-points. We further generalize the concept of ∗-distance to ∗γ-distance,

where the distances between α∗β-points depends on the arithmetic used to measure the distances. We define the ∗γ-distance

(distance in γ-arithmetic) between two α∗β-points z∗1 = ( ȧ1, b̈1), z∗2 = ( ȧ2, b̈2) ∈ αC∗β as,

γd
∗ : ( αC∗β)× ( αC∗β)→

...
[

...
0 ,∞

...
) = G′ ⊂ G as γd

∗(z∗1 , z
∗
2) =

...

√[
ı−1
AC( ȧ1 −̇ ȧ2)

] ...
2 ...

+
[
ı−1
BC( b̈1 −̈ b̈2)

] ...
2
.

Remark 2.5.

(1) Informally the distance is measured using an arbitrary γ − ruler.

(2) ∗γ-distance is not a metric in the usual sense but is a generalized metric. Where the metric attains the value in more

general ordered field (as the range of this function is γ-positive real numbers in place of the set of positive real numbers.

If we take γ = − exp then
...
0 = − exp(0) = −1).

Example 2.6.

(1) For γ = I(identity function), define Id
∗ : ( αC∗β)× ( αC∗β)→ [0,∞) = non-negative reals, as

Id
∗(z∗1 , z

∗
2) = γ−1

(
...

√[
ı−1
AC( ȧ1 −̇ ȧ2)

] ...
2 ...

+
[
ı−1
BC( b̈1 −̈ b̈2)

] ...
2
)
.

In this case the ∗I-distance satisfies the property of metric.

(2) For γ = β, define βd
∗ : ( αC∗β)× ( αC∗β)→ [̈ 0̈,∞ )̈ = B′ ⊂ B as

βd
∗(z∗1 , z

∗
2) =

..

√[
ıAB( ȧ1 −̇ ȧ2)

] 2̈
+̈
[
( b̈1 −̈ b̈2)

] 2̈

.

In this case the ∗γ-distance coincides with the distance as used in [10].

Definition 2.7. We define ∗γ-absolute value γ|.|∗ of z∗ ∈ αC∗β in the following manner:

γ|.|∗ : αC∗β −→
...
[

...
0 ,∞

...
) ∈ G as γ |z|∗ = γd

∗(z∗, 0∗), where z∗, 0∗ ∈ αC∗β .

Definition 2.8 (Generalized Metric). We call a function γd
∗ : ( αC∗β) × ( αC∗β) →

...
[

...
0 ,∞

...
) = G′ ⊂ G, a ∗γ-metric if

for z∗1 , z
∗
2 , z
∗
3 ∈ αC∗β it satisfies the following:

(i) γ

∗
d(z∗1 , z

∗
2)

...
≥

...
0 ,

(ii) γ

∗
d(z∗1 , z

∗
2) =

...
0 if and only if z∗1 = z∗2 ,

(iii) γ

∗
d(z∗1 , z

∗
2) = γ

∗
d(z∗2 , z

∗
1),

13
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(iv) γ

∗
d(z∗1 , z

∗
2)

...
+ γ

∗
d(z∗2 , z

∗
3)

...
≥ γ

∗
d(z∗1 , z

∗
2).

Theorem 2.9. γd
∗ is a ∗γ-metric on αC∗β for, γd

∗(z∗1 , z
∗
2) =

...

√[
ı−1
AC( ȧ1 −̇ ȧ2)

] ...
2 ...

+
[
ı−1
BC( b̈1 −̈ b̈2)

] ...
2

.

Proof. As γd
∗ : ( αC∗β) × ( αC∗β) → A′ ⊂ A where A′ is the set of positive numbers in γ-arithmetic and this implies

γd
∗(z∗1 , z

∗
2)

...
≥

...
0 , where

...
0 is the zero element of G. For z∗1 = ( ȧ1, b̈1), z∗2 = ( ȧ2, b̈2) ∈ αC∗β

γd
∗(z∗1 , z

∗
2) =

...
0 ⇔

...

√[
ı−1
AC( ȧ1 −̇ ȧ2)

] ...
2 ...

+
[
ı−1
BC( b̈1 −̈ ḃ2)

] ...
2

=
...
0 ,

⇔ γ

(√
(a1 − a2)2 + (b1 − b2)2

)
= γ(0),

⇔ a1 − a2 = 0, b1 − b2 = 0 ⇔ ȧ1 = ȧ2, b̈1 = b̈2 ⇔ z∗1 = z∗2 .

So γd
∗(z∗1 , z

∗
2) =

...
0 iff z∗1 = z∗2 . For z∗1 = ( ȧ1, b̈1), z∗2 = ( ȧ2, b̈2) ∈ αC∗β

γd
∗(z∗1 , z

∗
2) =

...

√[
ı−1
AC( ȧ1 −̇ ȧ2)

] ...
2 ...

+
[
ı−1
BC( b̈1 −̈ ḃ2)

] ...
2

= γ

(√
(a2 − a1)2 + (b2 − b1)2

)
= γd

∗(z∗2 , z
∗
1).

So, γd
∗(z∗1 , z

∗
2) = γd

∗(z∗2 , z
∗
1). Consider z∗1 = ( ȧ1, b̈1), z∗2 = ( ȧ2, b̈2), z∗3 = ( ȧ3, b̈3) ∈ αC∗β . Then,

γd
∗(z∗1 , z

∗
2)

...
+ γd

∗(z∗2 , z
∗
3) =

...

√[
ı−1
AC( ȧ1 −̇ ȧ2)

] ...
2 ...

+
[
ı−1
BC( b̈1 −̈ b̈2)

] ...
2 ...

+
...

√[
ı−1
AC( ȧ2 −̇ ȧ3)

] ...
2 ...

+
[
ı−1
BC( b̈2 −̈ ḃ3)

] ...
2

= γ

(√
(a1 − a2)2 + (b1 − b2)2 +

√
(a2 − a3)2 + (b2 − b3)2

)
...
≥γ
(√

(a1 − a3)2 + (b1 − b3)2
)

= γd
∗(z∗1 , z

∗
3).

So γd
∗ is a ∗γ-metric on αC∗β .

Remark 2.10. For γ = α and γ = β we get αd
∗ and βd

∗ is a ∗γ-metric on αC∗β .

Theorem 2.11. For any g
...
>

...
0 ∈ G and z∗1 ∈ αC∗β. Let γB

∗(z∗1 , g) =
{
z∗2 ∈ αC∗β : γd

∗(z∗1 , z
∗
2)

...
< g

}
and γB

∗(z∗1 , g) denotes

the ∗γ-open ball centered at z1 and radius g. Here,

γd
∗(z∗1 , z

∗
2) =

...

√[
ı−1
AC( ȧ1 −̇ ȧ2)

] ...
2 ...

+
[
ı−1
BC( b̈1 −̈ b̈2)

] ...
2
.

We denote B =
{
γB
∗(z∗1 , g); ∀ z∗1 ∈ αC∗β , g

...
>

...
0
}

the family of all ∗γ-open balls. Then, B is a base for a topology on

αC∗γ .

Proof. For any point z1 ∈ αC∗β , z1 ∈ γB
∗(z∗1 ,

...
1 ), and γB

∗(z∗1 ,
...
1 ) ∈ B. Hence the sets in B covers αC∗β . Let

z1, z2, z3, z4 ∈ αC∗β and g1, g2, g3 be γ-positive numbers in G. Suppose,

z3 ∈ {γB∗(z∗1 , g1) ∩ γB∗(z∗2 , g2)} and g3 = min{g1
...
−γd∗(z1, z3), , g2

...
−γd∗(z2, z3)}.

Since z3 ∈ γB
∗(z1, g1) and z1 ∈ γB

∗(z2, g2) so, γd
∗(z1, z3)

...
< g1 and γd

∗(z2, z3) <̈ g2. For any point z4 ∈ B(z3, g3), we have

γd
∗(z3, z4)

...
< g3, by ∗γ-triangle inequality

γd
∗(z1, z4)

...
≤ γd

∗(z1, z2)
...
+ γd

∗(z2, z4)
...
< γd

∗(z1, z3)
...
+ g3

...
≤ γd

∗(z1, z3)
...
+ (g1

...
− γd

∗(z1, z3)) = g1.

γd
∗(z2, z4)

...
≤ γd

∗(z2, z3)
...
+ γd

∗(z3, z4)
...
< γd

∗(z2, z3)
...
+ g3

...
≤ γd

∗(z2, z3)
...
+(g2

...
− γd

∗(z2, z3)) = g2.

14
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Hence, z4 ∈ γB
∗(z1, g1) and z4 ∈ γB

∗(z2, g2). So, γB
∗(z3, g3) ⊆

(
γB
∗(z1, g1) ∩ γB

∗(z2, g2)

)
. Thus, B is a base for a

topology and hence generates a topology T on αC∗β as follows: T = {
⋃
{B} ∪ φ}, where

⋃
{B} represents the all unions of

elements of B.

Definition 2.12. A sequence (z∗n) in ( αC∗β , γd∗) is said to be ∗γ-convergent to z∗ if for every ε(∈ G)
...
>

...
0 there is an

n0 = n0(ε) ∈ N such that, γd
∗(z∗n, z

∗)
...
< ε ∀ n > n0. We denote this as z∗n

∗−→ z∗.

Definition 2.13. A sequence (z∗n) in ( αC∗β , γd∗) is said to be ∗γ-Cauchy sequence if for every ε(∈ G)
...
>

...
0 there is an

n0 = n0(ε) ∈ N such that, γd
∗(z∗n, z

∗
m)

...
< ε ∀ m,n > n0 and a space X is said to be ∗γ-complete if every ∗γ-Cauchy

sequence in X is ∗γ-convergent.

Theorem 2.14. ( αC∗β , γd∗) is ∗γ-complete with,

γd
∗(z∗1 , z

∗
2) =

...

√[
ı−1
AC( ȧ1 −̇ ȧ2)

] ...
2 ...

+
[
ı−1
BC( b̈1 −̈ b̈2)

] ...
2
.

Proof. Consider an arbitrary ∗γ-Cauchy sequence z∗ = (z∗n) ∈ ( αC∗β , γd
∗). For every ε(∈ G)

...
>

...
0 there is an

n0 = n0(ε) ∈ N such that, γd
∗(z∗n, z

∗
m)

...
< ε ∀ m,n > n0 so,

γd
∗(z∗m, z

∗
n) =

...

√[
ı−1
AC ( ȧm −̇ ȧn)

] ...
2 ...

+
[
ı−1
BC ( b̈m −̈ b̈n)

] ...
2 ...
< ε,

[
ı−1
AC( ȧm −̇ ȧn)

] ...
2 ...

+
[
ı−1
BC( b̈m −̈ b̈n)

] ...
2 ...

< ε
...
2 , by γ−squaring ⇒

[
ı−1
AC( ȧm −̇ ȧn)

] ...
2 ...

< ε
...
2 and[

ı−1
BC( b̈m −̈ b̈n)

] ...
2 ...
< ε

...
2 ⇒ |am − an| < ε′ and |bm − bn| < ε′ where ε′ = γ−1(ε

...
2 ). ∀ m,n > n0. From this we get

that (an) and (bn) are Cauchy sequences with real terms. Hence, (an) and (bn) are convergent sequences. Thus, for every

ε′ > 0 there exist n1, n2 ∈ N such that |an − a| < ε′

2
∀ n ≥ n1 and |bn − b| < ε′

2
∀ n ≥ n2. So;

γd
∗(z∗n, z∗) =

...

√[
ı−1
AC( ȧn −̇ ȧ)

] ...
2 ...

+
[
ı−1
BC( b̈n −̈ b̈)

] ...
2

...
≤γ
(√

(a1 − a2)2 +
√

(b1 − b2)2
)

= γ

(
|(an − a)|+ |(bn − b)|

)
...
≤γ
(
ε′

2
+
ε′

2

)
= γ(ε′) = ε.

Therefore, every ∗γ-Cauchy sequence is ∗γ-Convergent in ( αC∗β , γd∗) and hence ( αC∗β , γd∗) is ∗γ-complete.

Definition 2.15 (Generalized norm). A function γ‖.‖∗ : αC∗β →
...
[

...
0 ,∞

...
) (= G′ ⊂ (G,

...
+,

...
−,

...
×,

...
÷,

...
< )) is called

∗γ-norm if it satisfies the following axioms:

(1) γ‖z∗1‖∗ =
...
0 ⇔ z∗1 =

...
0 ,

(2) γ‖g ⊗ z∗1‖∗ = γ|g|
...
× γ‖z∗1‖∗,

(3) γ‖z∗1 ⊕ z∗2‖∗
...
≤ γ‖z∗1‖∗

...
+ γ‖z∗2‖∗ . ∀ z∗1 , z∗2 ∈ αC∗β and g ∈ G′ :,

Remark 2.16. Any vector space together with a ∗γ-norm is called ∗γ-normed space and a complete ∗γ-normed space is a

∗γ-Banach space.

Theorem 2.17. For z∗ ∈ αC∗β define γ‖.‖∗ : αC∗β −→ G′ ⊂ G as

γ‖z∗‖∗ =
...

√[
ı−1
AC( ȧ1)

] ...
2 ...

+
[
ı−1
BC( b̈1)

] ...
2

Then, γ‖.‖ is a ∗γ-norm.
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Proof. The proof of (i) and (iii) will be on the same lines as in [10]. Now, we prove the condition (ii),

γ‖g ⊗ z∗1‖
∗

= γ

∥∥∥g ⊗ ( ȧ1, b̈1)
∥∥∥∗ = γ

∥∥∥∥(α (γ−1(g)× a1
)
, β
(
γ−1(g)× b1

))∥∥∥∥∗ = γ|g|
...
× γ

(√
a21 + b21

)
= γ|g|

...
× γ‖z∗1‖

∗
.

Thus, γ‖g ⊗ z∗1‖∗ = γ|g|
...
× γ‖z∗1‖∗ . Hence, the vector space αC∗β (over any field) together with a γ‖.‖∗ is a ∗γ-normed

space.

Remark 2.18. We call a γ‖.‖∗ over a vector space non-decreasing if γ‖g ⊗ z∗‖∗
...
≤γ‖z∗‖∗ for

...
0

...
≤

...
1 . We can easily

prove that the norm γ‖z∗‖∗ =
...

√[
ı−1
AC( ȧ1)

] ...
2 ...

+
[
ı−1
BC( b̈1)

] ...
2

is a non decreasing norm.

Theorem 2.19. The vector space αC∗β (over any field) together with γ‖.‖∗ is a ∗γ-Banach space, where γ‖.‖∗ is defined as

follows:

γ‖z∗‖∗ =
...

√[
ı−1
AC( ȧ1)

] ...
2 ...

+
[
ı−1
BC( b̈1)

] ...
2
, 0∗
(
= ( 0̇, 0̈)

)
∈ αC∗β .

Proof. The norm γ‖.‖∗ induces a ∗γ-metric γd
∗ on αC∗β defined as γd

∗(z∗1 , z
∗
2) = γ‖z∗1 − z2‖∗ . With this ∗γ-metric the

space is complete and hence the result.

Definition 2.20. Let F be an ordered field. An ordered F -vector space [6] is an ordered set (V,≤) where V is a vector

space over F and ≤ satisfies the following conditions:

(i) For all u, v, w ∈ V such that u ∈ v, we have u+ w ≤ v + w and

(ii) For all u ∈ V and all λ ∈ F such that 0 ≤ u and 0 ≤ λ, we have 0 ≤ λu.

Further if S the set of all infinite sequences in V . A binary relation → between S and Y is called a convergence on V if it

satisfies the following axiom:

(i) If xn → x and yn → y, then xn + yn → x+ y,

(ii) If xn → x and λ ∈ F , then λxn → λx and

(iii) If λn → λ in F , then λnx→ λx.

The pair (V,→) is said to be a vector space with convergence and ≤ is called vector ordering on ordered vector space

(V (F ),≤) with convergence, if it is compatible with the convergence structure on V .

We define the ordering [3] for non-Newtonian Complex numbers and prove some results on this basis.

Theorem 2.21. Let z∗1 = ( ȧ1, b̈1), z∗2 = ( ȧ2, b̈2) ∈ αC∗β . We define

z∗1 ≤∗ z∗2 ⇔ ( ȧ1 <̇ ȧ2) ∪
[
( ȧ1 = ȧ2) ∩ ( b̈1 ≤̈ b̈2)

]
and z∗1 ≥∗ z∗2 ⇔ ( ȧ1 >̇ ȧ2) ∪

[
( ȧ1 = ȧ2) ∩ ( b̈1 ≥̈ b̈2)

]
.

Then, αC∗β is totally ordered set with ≤∗ as ordering relation.

Proof. Reflexive: z∗1 ≤ z∗1 so ≤∗ is reflexive.

Symmetric: Consider, {(z∗1 ≥∗ z∗2) ∩ (z∗1 ≤∗ z∗2)}

⇔
{

( ȧ1 >̇ ȧ2) ∪
[
( ȧ1 = ȧ2) ∩ ( b̈1 ≥̈ b̈2)

]}
∩
{

( ȧ1 <̇ ȧ2) ∪
[
( ȧ1 = ȧ2) ∩ ( b̈1 ≤̈ b̈2)

]}
⇔ {( ȧ1 >̇ ȧ2) ∩ ( ȧ1 <̇ ȧ2)} ∪

{
[( ȧ1 = ȧ2) ∩ ( b̈1 ≥̈ b̈2)]

}
∩
{

[( ȧ1 = ȧ2) ∩ ( b̈1 ≤̈ b̈2)]
}

∪
{

( ȧ1 >̇ ȧ2) ∩ [( ȧ1 = ȧ2) ∩ ( b̈1 ≤̈ b̈2)]
}
∪
{

[( ȧ1 = ȧ2) ∩ ( b̈1 ≤̈ b̈2)]
}
∩ ( ȧ1 <̇ ȧ2)

⇔
{

[( ȧ1 = ȧ2) ∩ ( b̈1 ≥̈ b̈2)]
}
∩ [( ȧ1 = ȧ2) ∩ ( b̈1 ≤̈ b̈2)]

⇔ ( ȧ1 = ȧ2) ∩ ( b̈1 = b̈2) ⇔ z∗1 = z∗2 .
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So, [(z∗1 ≥∗ z∗2) and (z∗1 ≤∗ z∗2)]⇔ (z∗1 = z∗2).

Transitive: For z∗1 , z
∗
2 , z
∗
3 ∈ αC∗β , consider z∗1 ≤∗ z∗2 and z∗2 ≤∗ z∗3 .

⇔
{

[ ȧ1 <̇ ȧ2] ∪ [( ȧ1 = ȧ2) ∩ ( b̈1 ≤̈ b̈2)]
}
∩
{

[ ȧ2 <̇ ȧ3] ∪ [( ȧ2 = ȧ3) ∩ ( b̈2 ≤̈ b̈3)]
}

⇔ {[ ȧ1 <̇ ȧ2] ∩ [ ȧ2 <̇ ȧ3]} ∪
{

[( ȧ1 = ȧ2) ∩ ( b̈1 ≤̈ b̈2)] ∩ [( ȧ2 = ȧ3) ∩ ( b̈2 ≤̈ b̈3)]
}

∪
{

[ ȧ1 <̇ ȧ2] ∩ ( ȧ2 = ȧ3) ∩ ( b̈2 ≤̈ b̈3)]
}
∪
{

[( ȧ1 = ȧ2) ∪ ( b̈1 ≤̈ b̈2)] ∩ [ ȧ2 <̇ ȧ3]
}

⇔ {[ ȧ1 <̇ ȧ3]} ∪
{

[ ȧ1 <̇ ȧ3) ∩ ( b̈2 ≤̈ b̈3)]
}
∪
{

[( ȧ1 <̇ ȧ3) ∩ ( b̈1 ≤̈ b̈2)]
}
∪
{

( ȧ1 = ȧ3) ∩ ( b̈1 ≤̈ b̈3)
}

⇔ {[ ȧ1 <̇ ȧ3]} ∪
{

( ȧ1 = ȧ3) ∩ ( b̈1 ≤̈ b̈3)
}
⇔ z∗1 ≤∗ z∗3 .

Comparability: For every z∗1 , z
∗
2 ∈ αC∗β atleast one of the relations z∗1 ≤∗ z∗2 or z∗1 ≥∗ z∗2 holds. So, αC∗β is totally

ordered set with ≤∗ as ordering relation.

Theorem 2.22. ( αC∗β(Rγ(N)),≤∗) is an ordered (Rγ(N))-Vector space.

Proof. First we prove that z∗1 + z∗3 ≤∗ z∗2 + z∗3 iff z∗1 ≤∗ z∗2 . We have, z∗1 + z∗3 ≤∗ z∗2 + z∗3 ⇔{
( ȧ1 +̇ ȧ3 <̇ ȧ2 +̇ ȧ3) ∪

[
( ȧ1 +̇ ȧ3 = ȧ2 +̇ ȧ3) ∩ ( b̈1 +̈ b̈3 ≤̈ b̈2 +̈ b̈3)

]}
⇔

{
( ȧ1 <̇ ȧ2) ∪

[
( ȧ1 = ȧ2) ∩ ( b̈1 ≤̈ b̈2)

]}
⇔

z∗1 ≤∗ z∗2 . Next, we prove that for g > 0, and g � z∗1 ≤∗ g � z∗2 ⇔ z∗1 ≤∗ z∗2 . Suppose g > 0, we have g � z∗1 ≤∗ g � z∗2

⇔
(
α
(

(γ−1(g)) ȧ1
)
<̇ α

(
(γ−1(g)) ȧ2

))
∪
[(
α
(

(γ−1(g)) ȧ1
)

= α
(

(γ−1(g)) ȧ2
))
∩
(
β
(

(γ−1(g)) b̈1
)
<̈ β

(
(γ−1(g)) b̈2

))]
⇔ ( ȧ1 <̇ ȧ2) ∩ [( ȧ1 = ȧ2) ∪ ( b̈1 ≤̈ b̈2)], ⇔ z∗1 ≤∗ z∗2 .

Theorem 2.23. γ‖.‖∗ produces a convergence on αC∗β(Rγ(N)) in the following sense. A sequence (zn)∗ ∈ αC∗β(R(N)) is

convergent if αC∗β(Rγ(N)) contains a z such that lim∗n→∞ γ‖(zn)∗ − z∗‖∗ =
...
0
(

We say
(
αC∗β(R(N)), γ‖z∗‖∗

)
is a vector

space with convergence
)

. Further ≤∗ is a vector ordering on ( αC∗β(Rγ(N)), γ‖.‖∗).

Proof. First part can be verified using the properties of the ∗γ-norm. We prove that ≤∗ is a vector ordering on

( αC∗β(Rγ(N)), ≤∗). Consider convergent sequences Z1 = (z1
∗)n, Z2 = (z2

∗)n, Z3 = (z3
∗)n ∈ αC∗β(Rγ(N)) with limits

z1
∗, z2

∗, z3
∗ respectively. Let (z1

∗)n ≤∗ (z2
∗)n ∀n and (z3

∗)n =

(
(z2
∗)n 	 (z1

∗)n

)
. As (z1

∗)n ≤∗ (z2
∗)n ∀n, so

(z3
∗)n ≥∗ 0∗. Using properties of the norm we get (z3

∗) = limn→∞(z1
∗)n ≥∗ 0∗ and hence 0∗ ≤∗ lim(z3

∗)n = lim(z2
∗)n 	

lim(z1
∗)n. Thus, z1

∗ ≤∗ z2
∗.

Further we define the extended non-Newtonian real number system (realm G)[8]: The extended non newtonian real number

system (realm G) denoted (Rextγ (N)) consists of the non newtonian real numbers (Rγ(N)) and two symbols +∞ and −∞.

We preserve the original order in (Rγ(N)), and define (−∞)
...
< g

...
< (+∞) for every g ∈ (Rextγ (N)). (Rextγ (N)) does not

form a field, but following conventions are made:

(1) For g ∈ G, g
...
+ ∞ = +∞, g

...
− ∞ = −∞, g

...
÷ (+∞) = g

...
÷ (−∞) =

...
0 ,

(2) If g
...
>

...
0 then g

...
× (+∞) = (+∞), g

...
× (−∞) = (−∞) and

(3) If g
...
<

...
0 then g

...
× (+∞) = (−∞), g

...
× (−∞) = (+∞).
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Definition 2.24 (Generalized modular). A function, γρ
∗ : αC∗β(R) →

...
[

...
0 ,∞

...
] = G′

(
where G′ denote the γ-positive

numbers in (Rextγ (N))
)

is called ∗γ-modular if it satisfy the following conditions:

(1) γρ
∗(z∗1) =

...
0 if and only if z∗1 = 0∗,

(2) γρ
∗(g ⊗ z∗1) = γρ

∗(z∗1) provided g =
...
1 ,

(3) γρ
∗(g1 ⊗ z∗1 + g2 ⊗ z∗2)

...
≤ γρ

∗(z∗1) + γρ
∗(z∗2), provided g1, g2

...
≤

...
0 , g1

...
+g2 =

...
1 .

(4) γρ
∗(gn ⊗ z∗1)→

...
0 if gn →

...
0 and γρ

∗(z∗1)
...
< ∞.

Theorem 2.25. Let C∗
γρ∗ denotes the set of all z∗ ∈ αC∗β such that, γρ

∗(g ⊗ z∗)
...
< ∞ for some g ∈

...
[

...
0 ,∞

...
] (= G′ext).

The set C∗
γρ∗ is a subspace of αC∗β.

Proof. Let z∗ ∈ C∗
γρ∗ and g1(∈ G) be a scalar. So, γρ

∗(g ⊗ z∗) = γρ
∗
[(

g

γ |t|∗

) ...
×γ |t|∗ ⊗ z∗

]
= γρ

∗(g ⊗ z∗)

= γρ
∗
[(

g

γ |t|∗

) ...
×t ⊗ z∗

] ...
< ∞. (Here

(
g

γ |t|∗

)
means g

...
÷ γ |t|∗) So, γρ

∗(t ⊗ z∗) ∈ C∗
γρ∗ . Let z∗1 , z

∗
2 ∈ C∗

γρ∗ , then there

are g1, g2 ∈ G′ext such that, γρ
∗(g1 ⊗ z∗1)

...
< ∞ and γρ

∗(g2 ⊗ z∗2)
...
< ∞. Let k(∈ G) = min(g1, g2) then we have,

γρ
∗ ( k...

2
⊗ (z∗1 ⊕ z∗2)

) ...
≤γρ∗(k ⊗ z∗1)

...
≤γρ∗(g1 ⊗ z∗1)

...
+γρ

∗(g1 ⊗ z∗1)
...
< ∞. Hence, z∗1 ⊕ z∗2 ∈ C∗

γρ∗ .

Remark 2.26. γρ
∗(.) produces a convergence on C∗

γρ∗ as; A sequence (zn)∗ ∈ C∗
γρ∗ is convergent if C∗

γρ∗ contains a z∗ such

that, lim∗n→∞ γρ
∗g ⊗

(
(zn)∗ − z∗

)∗
=

...
0 for some g ∈ G (we say (C∗

γρ∗ , γρ
∗(.)) is a vector space with convergence).

Further this convergence is equivalent to the convergence generated by the norm γ‖.‖∗ on C∗
γρ∗ .
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