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1. Introduction

Predator-prey models are arguably the building blocks of the bio- and ecosystems as biomasses are grown out of their

resource masses. Species compete, evolve and disperse simply for the purpose of seeking resources to sustain their struggle

for their very existence. Depending on their specific settings of applications, they can take the forms of resource-consumer,

plant-herbivore, parasite-host, tumor cells (virus)-immune system, susceptible-infectious interactions, etc. They deal with

the general loss-win interactions and hence may have applications outside of ecosystems. When seemingly competitive

interactions are carefully examined, they are often in fact some forms of predator-prey interaction in disguise [23]. In recent

decades, the fractional calculus and Fractional differential equations have attracted much attention and increasing interest

due to their potential applications in science and engineering [13, 21]. In this paper, we consider the fractional order model

for a model consisting of predator and prey. We give a detailed analysis for the asymptotic and global stability of the model.

Adams- Bashforth- Moulton algorithm have been used to solve and simulate the system of fractional differential equations.

2. Model Formulation

The model for generalist predator and prey can be written as a set of coupled nonlinear ordinary differential equations as

follows [11]:

dx

dt
= x(1− x)− x2y

1 + ax2
, (1)

dy

dt
=

bx2y

1 + ax2
+

cy

1 + dy
− ey.
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Where a, b, c, d and e are constant. Fractional order models are more accurate than integer-order models as fractional order

models allow more degrees of freedom. Fractional differential equations also serve as an excellent tool for the description of

hereditary properties of various materials and processes. The presence of memory term in such models not only takes into

account the history of the process involved but also carries its impact to present and future development of the process.

Fractional differential equations are also regarded as an alternative model to nonlinear differential equations. In consequence,

the subject of fractional differential equations is gaining much importance and attention. For some recent work on fractional

differential equations, see [13, 21]. Now we introduce fractional order in to the ODE model by Erbach et al. [11]. The new

system is described by the following set of fractional order differential equations:

Dα
t x = x(1− x)− x2y

1 + ax2
, (2)

Dα
t y =

bx2y

1 + ax2
+

cy

1 + dy
− ey.

where Dα
t is the Caputo fractional derivative. All the parameters of system (2) are assumed to be non-negative. Furthermore,

it can be shown that all state variables of the model are non-negative for all time t ≥ 0.

Lemma 2.1. The solutions of the system (2) is exist in R2
+ and uniformly bounded .

Proof. Let (x(t), y(t)) be any solution of the system (2) with positive initial conditions. Since

Dα
t x ≤ x(1− x), (3)

by Lemma 9 [14] we have

x(t) ≤ x(0)Eα (tα) ,

where Eα is the Mittag-Leffler function. Let

W = x+
1

b
y,

then

Dα
t W = Dα

t x+
1

b
Dα
t y

= x(1− x) +
y

b

(
c

1 + dy
− e
)

≤ x(1− x) +
ry

b

(
1

1 + dy
− 1

)
,

= x(1− x)− rdy2

b (1 + dy)

≤ x(1− x)

≤ x(0)Eα (tα)

where r = max {c, e}. By Lemma 9 [14] again, we have

0 ≤W (x, y) ≤ x(0)Eα (tα) tαEα,α+1 (tα) = W1, (4)

where Eα is the Mittag-Leffler function. Therefore, all solutions of the model (2) with initial conditions in Ω s.t

Ω = {(X,Y, Z) ∈W : 0 ≤W ≤W1} ,

remain in Ω for all t > 0. Thus, region Ω is positively invariant with respect to model (2).

In the following, we will study the dynamics of system (2).
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3. Equilibrium Point and Stability

In the following, we discuss the stability of the commensurate fractional ordered dynamical system:

Dα
t xi = fi (x1, x2) , α ∈ (0, 1) , 1 ≤ i ≤ 2. (5)

Let E = (x∗1, x
∗
2) be an equilibrium point of system (5) and xi = x∗i + ηi, where ηi is a small disturbance from a fixed point.

Then

Dα
t ηi = Dα

t xi (6)

= fi (x∗1 + η1, x
∗
2 + η2)

≈ η1
∂fi (E)

∂x1
+ η2

∂fi (E)

∂x2
.

System can be written as:

Dα
t η = Jη, (7)

where η = (η1, η2)T and J is the Jacobian matrix evaluated at the equilibrium points. Using Matignon’s results [17], it

follows that the linear autonomous system (7) is asymptotically stable if |arg(λ)| > απ
2

is satisfied for all eigenvalues of

matrix J at the equilibrium point E = (x∗1, x
∗
2). If Φ (x) = x2 + a1x+ a2, Let D(Φ) denote the discriminant of a polynomial

Φ, then

D(Φ) = −

∣∣∣∣∣∣∣∣∣∣
1 a1 a2

2 a1 0

0 2 a1

∣∣∣∣∣∣∣∣∣∣
= a21 − 4a2.

Following [1–3], we have the proposition.

Proposition 3.1. One assumes that E exists in R2
+.

(1). If the discriminant of Φ(x) and D(Φ) is positive and Routh-Hurwitz are satisfied, that is, D(Φ) ≥ 0, a1 > 0 and a2 > 0,

then E is locally asymptotically stable.

(2). If D(Φ) < 0 and

∣∣∣∣tan −1

(√
4a2−a21
a1

)∣∣∣∣ > απ
2

, α ∈ [0, 1) then E is locally asymptotically stable.

To evaluate the equilibrium points let

Dα
t x = 0, Dα

t y = 0.

Then

1. The first trivial equilibrium point is E0 = (0, 0). The point E0 always exists.

The Jacobian matrix J0 for system given in (2.2) evaluated at the free equilibrium is as follows:

J0 =

 1 0

0 c− e

 .

Theorem 3.2. The trivial equilibrium point E0 of system (2) is a saddle point.

Proof. The trivial equilibrium point E0 is locally asymptotically stable if all the eigenvalues λ0i, i = 1, 2 of J0 satisfy

Matignon’s conditions. The eigenvalues corresponding to the equilibrium E0 are λ01 = 1 and λ02 = c− e.

Then we have λ01 > 0. It follows that the node equilibrium point of system (2) is a saddle point, non-empty stable manifolds

and an unstable manifold.
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2. The second semi-trivial equilibrium point is E1 = (x1, y1) = (1, 0) when the predator is absent in the prey, in this case

(y = 0), therefore the prey is not an exhibition of predation. The point E1 always exists.

Theorem 3.3. For the system (2), one have the basic reproduction number

R0 =
b

(1 + a) (c− e) .

Proof. We will use the next generation method [8] to find the basic reproduction number, for the system (2), rewrite the

equations by which classes of the herbivore population y first and then the plant population x secondly, we have

Dα
t y =

bx2y

1 + ax2
+

cy

1 + dy
− ey, (8)

Dα
t x = x(1− x)− x2y

1 + ax2
.

We make matrices f, v, such that the system (8) in the form

dαX

dtα
= f(X)− v(X),

where

f(X) =

 f1
f2

 =

 bx2y
1+ax2

− x2y
1+ax2

 , v(X) =

 v1
v2

 =

 ey − cy
1+dy

−x(1− x)

 .
We can get

F (X) =

 2bxy
1+ax2

− 2abx3y

(1+ax2)2
bx2

1+ax2

2xy
1+ax2

− 2ax3y

(1+ax2)2
x2

1+ax2

 , V (X) =

 0 e− c
dy+1

+ cdy

(dy+1)2

2x− 1 0

 ,
at the first free equilibrium point E1 = (1, 0) to get the eigenvalues of F · V −1, one solve the equation

∣∣F · V −1 − λI
∣∣ = 0,

where λ is the eigenvalues and I is the identity matrix. F · V −1 is the next generation matrix for model (8), then λ1 =

b
(1+a)(e−c) , λ2 = 0. It the follows that the spectral radius of matrix F · V −1 is ρ

(
F · V −1

)
= max (λi) , i = 1, 2. According

to Theorem 2 in [8], the basic reproduction number of model (8) is R0 = b
(1+a)(e−c) .

The Jacobian matrix J1 for system given in (2) evaluated at the free equilibrium is as follows:

J1 =

 −1 −1
1+a

0 1−R0

 .

Theorem 3.4. The semi-trivial equilibrium point E1 of system (2) is an asymptotically stable if R0 > 1.

Proof. The eigenvalues of J1 which corresponding to the equilibrium E1 are λ01 = −1 and λ02 = 1 − R0. Then we have

λ01 < 0 and λ02 < 0 if R0 > 1, it follows that E1 is an asymptotically stable if R0 > 1.

3. By (2), the third semi-trivial equilibrium point is E2 =
(
0, c−e

ed

)
which is exist if c > e.

The Jacobian matrix J2 for system given in (2) evaluated at E2 is as follows:

J2 =

 1 0

0 eb
c(1+a)R0

 .
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Theorem 3.5. The semi-trivial equilibrium point E1 of system (2) is a saddle point.

Proof. The eigenvalues of J2 which corresponding to the equilibrium E2 are λ01 = 1 and λ02 = eb
c(1+a)R0

.

Then we have λ01 > 0, it follows that E1 is a saddle point.

4. The least one interior equilibrium point is E3 = (x∗, y∗) , where x∗ is the real root of the equation

f(Z) = ad(ae− b)
(
Z5 − Z4)− [(ae− b)(d− 1)+

a(de+ c)]Z3 − d(2ae− b)Z2 + [e (d− 1) + c]Z − de = 0,

and y∗ =
(1−x∗)(1+ax2∗)

x∗
, E3 must be have non negative component, then we have the condition 0 < x∗ < 1.

We now discuss the asymptotic stability of a positive interior equilibrium point E3 of the system given by (2). The Jacobian

matrix J3 evaluated at a positive equilibrium E3 is given as:

J3 =

 1− 2x∗ − 2x∗y∗

(1+ax2∗)2
−x2∗

1+ax2∗

2x∗y∗

(1+ax2∗)2
bx2∗

1+ax2∗
+ c

(1+dy∗)2
− e

 .

The characteristic equation of J3 is

λ2 − trace(J3)λ+ det(J3) = 0, (9)

where

trace(J3) = 1− 2x∗ −
2x∗y∗

(ax2∗ + 1)2
+

bx2∗
ax2∗ + 1

+
c

(dy∗ + 1)2
− e,

det(J3) = −(−2a2d2ex5∗y
2
∗ + a2d2ex4∗y

2
∗ + 2abd2x5∗y

2
∗ − 4a2dex5∗y∗ −

abd2x4∗y
2
∗ + 2adex4∗y∗ + 4abdx5∗y∗ − 4ad2ex3∗y

2
∗ + 2a2cx5∗ −

2a2ex5∗ − 2abdx4∗y∗ + 2ad2ex2∗y
2
∗ + 2bd2x3∗y

2
∗ − a2cx4∗ +

a2ex4∗ + 2abx5∗ − 8adex3∗y∗ − bd2x2∗y2∗ − 2d2ex∗y
3
∗ − abx4∗ +

4adex2∗y∗ + 4bdx3∗y∗ − 2d2ex∗y
2
∗ + 4acx3∗ − 4aex3∗ −

2bdx2∗y∗ + d2ey2∗ − 4dex∗y
2
∗ − 2acx2∗ + 2aex2∗ + 2bx3∗ −

4dex∗y∗ − bx2∗ + 2cx∗y∗ + 2dey∗ − 2ex∗y∗ + 2cx∗ −

2ex∗ − c+ e)/
[
(ax2∗ + 1)2(dy∗ + 1)2

]
.

For the characteristic equation (9) have the roots

λ1, λ2 =
1

2

[
trace(J3)±

√
2

trace(J3)− 4 det(J3)

]
.

Theorem 3.6. The positive equilibrium E3 of system (2) is locally asymptotically stable if and only if all the following

conditions are satisfied:

(1). det(J3) > 0 and

(2). trace(J3) < 2
√

det(J3) cos(απ
2

).
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Proof. It is clear that E3 is locally asymptotically stable if λ1, λ2 has negative real part implies that det(J3) > 0, then

|arg (λj)| > απ
2

, j = 1, 2, if and only if the conditions (1) and (2) hold.

Theorem 3.7. With respect to system (2), the following statements can be obtained.

(a). If trace(J3) ≤ 0, the equilibrium E3 is locally asymptotically stable, for any α ∈ (0, 1),

(b). If 0 < trace(J3) < 2
√

det(J3), the equilibrium E3 is locally asymptotically stable if and only if α ∈ (0, α∗) , where

α∗ = 2
π

∣∣∣∣cos −1

(
trace(J3)

2
√

det(J3)

)∣∣∣∣ and

(c). If trace(J3) ≥ 2
√

det(J3), the equilibrium E3 is unstable for any α ∈ (0, 1).

Proof. The conclusions (a) and (c) are obvious. For the statement (b), due to 0 < trace(J3) < 2
√

det(J3), the equation

(9) has two complex roots λ1, λ2, and their real part is trace(J3)
2

> 0. Then |arg(λj)| = cos −1

(
trace(J3)

2
√

det(J3)

)
, j = 1, 2. Besides,

according to the condition cos −1

(
trace(J3)

2
√

det(J3)

)
= α∗π

2
, α ∈ (0, α∗) if and only if |arg(λj)| > απ

2
, j = 1, 2, it is concluded that

Theorem 3.6 is true.

According to the statement of Theorem 3.5 and Theorem 3.6, it can be concluded that the positive equilibrium is locally

asymptotically stable if and only if α ∈ (0, α∗) . At α = α∗ the Hopf bifurcation is expected to take place. As increases

above the critical value α∗ the positive equilibrium is unstable and a limit cycle is expected to appear in the proximity of

E3 due to the Hopf bifurcation phenomenon.

4. Numerical Methods and Simulation

Since most of the fractional-order differential equations do not have exact analytic solutions, approximation and numerical

techniques must be used. Several analytical and numerical methods have been proposed to solve the fractional order

differential equations. For numerical solutions of system (2), one can use the generalized Adams-Bashforth-Moulton method.

To give the approximate solution by means of this algorithm, consider the following nonlinear fractional differential equation

[5, 6, 12, 15]

Dα
t y(t) = f (t, y (t)) , 0 ≤ t ≤ T,

y(k) (0) = yk0 , k = 0, 1, 2, . . . ,m− 1, where m = [α],

This equation is equivalent to the Volterra integral equation

y(t) =

m−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ (α)

∫ t

0

(t− s)α−1 f (s, y (s)) ds. (10)

Diethelm et al. used the predictor-correctors scheme [5, 6], based on the Adams-Bashforth-Moulton algorithm to integrate

Equation (10). By applying this scheme to the the fractional order generalist predator–prey dynamics model, and setting

h = T
N

, tn = nh, n = 0, 1, 2, ..., N ∈ Z+, Equation (10) can be discretized as follows [5, 6, 15]:

xn+1 = x0 +
hα

Γ (α+ 2)

[
xpn+1(1− xpn+1)−

(
xpn+1

)2
ypn+1

1 + a
(
xpn+1

)2
]

+
hα

Γ (α+ 2)

n∑
j=1

aj,n+1

[
xj(1− xj)−

x2jyj

1 + ax2j

]
,

yn+1 = y0 +
hα

Γ (α+ 2)

[
b
(
xpn+1

)2
ypn+1

1 + a
(
xpn+1

)2 +
cypn+1

1 + dypn+1

− eypn+1

]

+
hα

Γ (α+ 2)

n∑
j=1

aj,n+1

[
bx2jyj

1 + ax2j
+

cyj
1 + dyj

− eyj
]
,
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where

xpn+1 = x0 +
1

Γ (α)

n∑
j=0

bj,n+1

[
xj(1− xj)−

x2jyj

1 + ax2j

]
,

ypn+1 = y0 +
1

Γ (α)

n∑
j=0

bj,n+1

[
bx2jyj

1 + ax2j
+

cyj
1 + dyj

− eyj
]
,

aj,n+1 =


nα−1 − (n− α) (n+ 1) , j = 0

(n− j − 2)α+1 + (n− j)α+1 − 2 (n− j + 1)α+1 , 1 ≤ j ≤ n

1, j = n+ 1.

bj,n+1 =
hα

α
[(n− j + 1)α − (n− j)α] , 0 ≤ j ≤ n.

5. Conclusion

In the present paper, a fractional order generalist predator-prey dynamics is proposed and dynamical behavior of this

system has been extensively investigated. We establish conditions under which equilibria of the fractional system exist and

we derive conditions for stability of the positive equilibria. The numerical solutions and simulations are also given to verify

the feasibility of the results. The trajectory of the system (3) with the initial condition close to the positive equilibrium E3,

as indicated in Figures 1 and 2, converges to an asymptotically stable limit cycle. The theoretical and numerical results

presented in this paper show that the fractional order generalist predator-prey dynamics model may exhibit rich dynamical

behavior.

The transformation of a classical model into a fractional one makes it very sensitive to the order of differentiation α : a

small change in α may result in a big change in the final result. From the numerical results Figures follows, it is clear that

the approximate solutions depend continuously on the fractional derivative α, and that their dynamics becomes more and

more complex by varying the fractional order n ∈ (0, 1). The approximate solutions x(t) and y(t) are displayed in Figure 1

for a = 100, b := 55, c = 1, d = 0.9 and e = 0.5.

The results show that the the trajectory of system (2) converges to the equilibrium E3for α = 0.75. When α = 0.79

the trajectory of system (2) converges to an asymptotically stable limit cycle. From Theorem 3.7, it is known that when

α < α∗, the trajectories converge to the equilibrium point, as shown in Figure 1; whereas when α is increased to exceed α∗,

the origin loses its stability, and a Hopf-type bifurcation occurs, as shown in Figure 2 and 3. Illustrates the approximate

solutions x(t) and y(t), when a = 80, b := 4.2, c = 0.7, d = 0.6, e = 0.1; and (x0, y0) = (0.14, 15.84).

In this case, trace(J3) = 0.02296643976, det(J3) = 0.0157137163 and the values of the basic reproductive number R0 =

0.08641975308, the equilibrium point E3 = (0.1476008626, 15.84021599) and α∗ = 0.9415998952. The results show that the

the trajectory of system (2) converges to the equilibrium E3for α = 0.9 as shown in Figure.1. When α = 0.95 the trajectory

of system (2) converges to an asymptotically stable limit cycle, as shown in Figure 2.
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Figure 1.

Figure 2.

Figure 3.
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Figure 4.
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