

International Journal of Mathematics And its Applications

Collatz Conjecture for Modulo an Integer

Research Article

T.Kannan^{1*} and C.Ganesa Moorthy²

1 Department of Mathematics, Sree Sevugan Annamalai college, Devakottai, TamilNadu, India.

2 Department of Mathematics, Alagappa University, Karaikudi, TamilNadu, India.

Abstract:	A function T_m from a set $\{1,2,3,m\}$ into itself defined by $T_m(x) = \frac{x}{2}$, for even x and by $T_m(x) = \frac{3x+1}{2} \pmod{m}$, for odd x is considered in this article. The asymptotic behaviour of this function is studied in this article for some cases.
MSC:	11B05, 11A07, 11A99, 11Y55.
Keywords:	Congruence, Collatz conjecture.

© JS Publication.

1. Introduction

The Collatz conjecture is a well known conjecture. This is also quoted in the literature as the 3x + 1 problem and Ulams conjecture. The conjecture is that $T^n(x)$ eventually reaches 1, for any given $x \in N$, for the function $T: N \to N$ defined by

$$T(x) = \begin{cases} \frac{x}{2}, & \text{if } x \text{ is even} \\ \\ \frac{3x+1}{2}, & \text{if } x \text{ is odd.} \end{cases}$$

Here x and T(x) are all natural numbers. The following discussion is about the same problem with a restriction of starting with "x modulo m" value and "T(x) modulo m" value in $A_m = \{1, 2, 3, ..., m\}$ for a given m. More precisely, let us define a new function $T_m : A_m \to A_m$ defined by

$$T_m(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ \frac{3x+1}{2} \pmod{m} & \text{if } x \text{ is odd.} \end{cases}$$

when $x, \frac{x}{2}, \frac{3x+1}{2} \pmod{m}$ are in A_m . Suppose m = 1. Then $A_m = \{1\}$ and the only possible value of x is 1 and $T_m(1)$ may be considered as 1. So hereafter it is assumed that $m \ge 2$ for a non-trivial situation. It is expected that $T_m^k(x)$ eventually produce the value 1, for any $x \in A_m$ and for some k. But this is not true. A detailed discussion about this one is presented in this article. If there is some $x \ne 1$, for which $T_m^k(x) = x$, for some $k \ge 1$, then it would lead to a cycle, that may not receive the value 1 in subsequent application of the function T_m . So there is a possibility that $T_m^k(x) \ne 1$ for some xand for any k, when there is such a cycle. So these exceptional cases are analyzed in this article so that the favourable

^{*} E-mail: hardykannan@gmail.com

cases for original conjecture can be identified. Thus different cases are to be discussed to analyze the possibility of having a relation $T_m^k(x) = x$. There are articles which provide theoretical positive results for the original Collatz problem. Some of them are [2, 3, 5, 7, 14, 15]. The article [8] of Everett provides an unexpected result on asymptotic density of the set $\{x : x = 1, 2, 3, 4...; T_m^k(x) < x\}$, for some x. The most interesting result is theorem 1 in [8] which helps to evaluate the asymptotic density of the previous set as 1. There are no other significant articles giving theoretical results. There are a number of articles (for example[1, 4, 9, 11]) which discuss particular cases for the original Collatz problem. There are many survey articles (for example [10]). There are articles which discuss about generalizations and variations of Collatz problem in $Z_2[x]$, collection of the polynomials with variable x and coefficients in Z_2 . This particular article provides a motivation for a restricted Collatz problem, which restricted to the set $\{A_m = 1, 2, 3, 4...m\}$. The section 2 discusses about the case when x is odd and section 3 discusses about the case when x is even.

2. Cases for Odd Integers

1. Let $x \in A_m$ be arbitrary such that x is odd. Then

$$T_m(x) = \frac{3x+1}{2} \pmod{m}; \text{ with } T_m(x) \in A_m$$
$$= \begin{cases} \frac{3x+1-2m}{2}, & \text{if } \frac{3x+1}{2} > m\\ \frac{3x+1}{2}, & \text{if } \frac{3x+1}{2} \le m. \end{cases}$$

Suppose $T_m(x) = x$. Then the following cases will arise.

Case 1: Suppose $\frac{3x+1-2m}{2} = x$, then x = 2m - 1. Here $m \ge 2$, and so $x \notin A_m$. So, this is impossible. So, in this case, $T_m(x) \ne x$, for all $x \ge 2$.

Case 2: Suppose $\frac{3x+1}{2} = x$, then x = -1. This is impossible. So in this case $T_m(x) \neq x$, for all $x \ge 2$.

2. Let $x \in A_m$ be arbitrary such that x is odd and $T_m(x)$ is even. Then

$$T_m(x) = \frac{3x+1}{2} \pmod{m}; \text{ with } T_m(x) \in A_m .$$

$$= \begin{cases} \frac{3x+1-2m}{2}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{2}, & \text{if } \frac{3x+1}{2} \le m. \end{cases}$$

$$T_m^2(x) = \begin{cases} \frac{3x+1-2m}{4}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{4}, & \text{if } \frac{3x+1}{2} \le m. \end{cases}$$

Suppose $T_m^2(x) = x$, then the following cases will arise.

Case 1: Suppose $\frac{3x+1-2m}{4} = x$, then x = 1 - 2m. Here $m \ge 2$, and so $x \notin A_m$. So this is impossible. So in this case $T_m^2(x) \ne x$, for all $x \ge 2$.

Case 2: Suppose $\frac{3x+1}{4} = x$, then x = 1. Thus $T_m^2(x) = x$ happens in this case only when x = 1.

3. Let $x \in A_m$ be arbitrary such that x and $T_m(x)$ are odd. Then

$$T_m(x) = \frac{3x+1}{2} \pmod{m}; \text{ with } T_m(x) \in A_m$$
$$= \begin{cases} \frac{3x+1-2m}{2}, & \text{if } \frac{3x+1}{2} > m\\ \frac{3x+1}{2}, & \text{if } \frac{3x+1}{2} \le m. \end{cases}$$

$$T_m^2(x) = \begin{cases} \frac{9x+5-10m}{4}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x-6m+5}{4} > m \\ \frac{9x-6m+5}{4}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x-6m+5}{4} \le m \\ \frac{9x-4m+5}{4}, & \text{if } \frac{3x+1}{2} \le m \text{ and } \frac{9x+5}{4} > m \\ \frac{9x+5}{4}, & \text{if } \frac{3x+1}{2} \le m \text{ and } \frac{9x+5}{4} \le m. \end{cases}$$

Suppose $T_m^2(x) = x$, then the following cases will arise.

- **Case 1:** Suppose $\frac{9x+5-10m}{4} = x$, then x = 2m-1. Here $m \ge 2$, and so $x \notin A_m$. So this is impossible. So in this case $T_m^2(x) \ne x$, for all $x \ge 2$.
- **Case 2:** Suppose $\frac{9x-6m+5}{4} = x$, then 5x+5 = 6m. Hence $5 \mid m$ and m = 5y for some y. Then 5x+5 = 6(5y) and x = 6y-1 that is $x = 6(\frac{m}{5}) 1$. Also here $x \in A_m$, so $1 \le x$ and $x \le m$ gives $m \ge 2$ and $m \le 5$. Thus $2 \le m \le 5$ and m = 5y, for some y. So the possible value of m is 5, and if m = 5, the corresponding value of x is 5. Moreover $\frac{3x+1}{2} > m$ and $\frac{9x-6m+5}{4} \le m$ are also satisfied for these values m = 5 and x = 5. Thus in this case if m = 5 and x = 5, then $T_m^2(x) = x$. That is $T_5^2(5) = 5$.
- **Case 3:** Suppose $\frac{9x+5-4m}{4} = x$, then 5x+5 = 4m. So, $5 \mid m$ and m = 5y, for some y. Now 5x+5 = 4(5y) and x = 4y-1, that is $x = 4(\frac{m}{5}) 1$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $1 \le \frac{4m}{5} 1$ and $\frac{4m}{5} 1 \le m$, so that $3 \le m$ and $m \ge -5$. Thus $-5 \le m$ and $m \ge 3$ and m = 5y for some y. So the possible values of m are 5, 10, 15, ... and the corresponding values of x are 3, 7, 11, Also here $3x + 1 \le 2m \Leftrightarrow 3(\frac{4m}{5} 1) + 1 \le 2m \Leftrightarrow m \le 5$ and $9x + 5 > 4m \Leftrightarrow 9(\frac{4m}{5} 1) + 5 > 4m \Leftrightarrow m \ge 2$. Also here m = 5y, for some y. So the possible values of x and m satisfying $T_m^2(x) = x$ are x = 3 and m = 5. Clearly $T_5(3) = 5$, $T_5^2(3) = 3$.

Case 4: Suppose $\frac{9x+5}{4} = x$, then x = -1. So this is impossible. So in this case $T_m^2(x) \neq x$, for every $x \ge 2$.

4. Let $x \in A_m$ be arbitrary such that x is odd and $T_m(x)$ is even and $T_m^2(x)$ is even. Then

$$T_m(x) = \frac{3x+1}{2} \pmod{m}; \text{ with } T_m(x) \in A_m.$$

$$= \begin{cases} \frac{3x+1-2m}{2}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{2}, & \text{if } \frac{3x+1}{2} \le m. \end{cases}$$

$$T_m^2(x) = \begin{cases} \frac{3x+1-2m}{4}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{4}, & \text{if } \frac{3x+1}{2} \le m. \end{cases}$$

$$T_m^3(x) = \begin{cases} \frac{3x+1-2m}{8}, & \text{if } \frac{3x+1}{2} \le m. \end{cases}$$

Suppose $T_m^3(x) = x$, then the following cases will arise.

Case 1: Suppose $\frac{3x+1-2m}{8} = x$, then $x = \frac{1-2m}{5}$. Here $m \ge 2$, and so x is negative and then $x \notin A_m$. So this is impossible. So in this case $T_m^3(x) \ne x$, for all $x \ge 2$.

Case 2: Suppose $\frac{3x+1}{8} = x$, then $x = \frac{1}{5} < 1$ and $x \notin A_m$, which is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$. If $T_m^3(x) < x$, then the following cases are considered.

Case 1: $\frac{3x+1-2m}{8} < x \Leftrightarrow x > \frac{1-2m}{5}$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$. **Case 2:** $\frac{3x+1}{8} < x \Leftrightarrow x > \frac{1}{5}$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$. **Result 2.1.** If x is odd and $T_m^k(x)$ is even for all k, then $T_m^p(x) \ne x$, for all $x \ge 2$ and $p \ge 2$, $m \ge 2$.

5. Let $x \in A_m$ be arbitrary such that x is odd, $T_m(x)$ is even and $T_m^2(x)$ is odd. Then

$$\begin{split} T_m(x) &= \frac{3x+1}{2} \pmod{m}; \text{ with } T_m(x) \in A_m. \\ &= \begin{cases} \frac{3x+1-2m}{2}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{2}, & \text{if } \frac{3x+1}{2} \le m. \end{cases} \\ T_m^2(x) &= \begin{cases} \frac{3x+1-2m}{4}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{4}, & \text{if } \frac{3x+1}{2} \le m. \end{cases} \\ \frac{3x+1}{4}, & \text{if } \frac{3x+1}{2} \le m. \end{cases} \\ T_m^3(x) &= \begin{cases} \frac{9x+7-14m}{8}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+7-6m}{8} > m \\ \frac{9x+7-6m}{8}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+7-6m}{8} \le m \\ \frac{9x+7-8m}{8}, & \text{if } \frac{3x+1}{2} \le m \text{ and } \frac{9x+7}{8} > m \\ \frac{9x+7}{8}, & \text{if } \frac{3x+1}{2} \le m \text{ and } \frac{9x+7}{8} \le m. \end{split}$$

Suppose $T_m^3(x) = x$, then the following cases will arise.

- **Case 1:** Suppose $\frac{9x+7-14m}{8} = x$, then x = 14m 7 > m for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.
- **Case 2:** Suppose $\frac{9x+7-6m}{8} = x$, then x = 6m 7 > m for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.
- **Case 3:** Suppose $\frac{9x+7-8m}{8} = x$, then x = 8m 7 > m for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.
- **Case 4:** Suppose $\frac{9x+7}{8} = x$, then x = -7 < 0. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.

If $T_m^3(x) < x$, then the following cases are considered.

Case 1: $\frac{9x+7-14m}{8} < x \Leftrightarrow x < 7(2m-1)$, which is possible for all $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Case 2: $\frac{9x+7-6m}{8} < x \Leftrightarrow x < 6m-7$, which is possible for all $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Case 3: $\frac{9x+7-8m}{8} < x \Leftrightarrow x < 8m-7$, which is possible for all $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Case 4: $\frac{9x+7}{8} < x \Leftrightarrow x < -7$ which is impossible. Also for this case, if $T_m^3(x)$ is even then $T_m^4(x) = \frac{9x+7}{16}$, and $T_m^4(x) < x \Leftrightarrow \frac{9x+7}{16} < x \Leftrightarrow x \ge 1$ which is possible. So in this case $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$, when $T_m^3(x)$ is even.

Result 2.2. If x is odd, $T_m(x)$ is even and $T_m^2(x)$ is odd and $T_m^k(x)$ is even, for all $k \ge 3$, then $T_m^p(x) \ne x$ for all $p \ge 4$, $x \ge 2$ and $m \ge 2$.

6. Let $x \in A_m$ be arbitrary such that x and $T_m(x)$ are odd and $T_m^2(x)$ is even. Then

$$T_m(x) = \frac{3x+1}{2} \pmod{m}; \text{ with } T_m(x) \in A_m.$$

$$= \begin{cases} \frac{3x+1-2m}{2}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{2}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{2}, & \text{if } \frac{3x+1}{2} \le m. \end{cases}$$

$$T_m^2(x) = \begin{cases} \frac{9x+5-10m}{4}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+5-6m}{4} \le m \\ \frac{9x+5-6m}{4}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+5-6m}{4} \le m \\ \frac{9x+5-4m}{4}, & \text{if } \frac{3x+1}{2} \le m \text{ and } \frac{9x+5}{4} \le m. \end{cases}$$

$$T_m^3(x) = \begin{cases} \frac{9x+5-10m}{8}, & \text{if } \frac{3x+1}{2} \le m \text{ and } \frac{9x+5-6m}{4} \le m. \end{cases}$$

$$T_m^3(x) = \begin{cases} \frac{9x+5-10m}{8}, & \text{if } \frac{3x+1}{2} \le m \text{ and } \frac{9x+5-6m}{4} \le m. \end{cases}$$

Suppose $T_m^3(x) = x$, then the following cases will arise.

- **Case 1:** Suppose $\frac{9x+5-10m}{8} = x$, then x = 10m 5 > m, for $m \ge 2$. Hence $x \notin A_m$, so this is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.
- **Case 2:** Suppose $\frac{9x+5-6m}{8} = x$, then x = 6m 5 > m, for $m \ge 2$. Hence $x \notin A_m$, so this is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.
- **Case 3:** Suppose $\frac{9x+5-4m}{8} = x$, then x = 4m 5 > m, for $m \ge 2$. Hence $x \notin A_m$, So this is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.
- **Case 4:** Suppose $\frac{9x+5}{8} = x$, then x = -5 < 0. Hence $x \notin A_m$, so this is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.
- If $T_m^3(x) < x$, then the following cases are considered.
- **Case 1:** $\frac{9x+5-10m}{8} < x \Leftrightarrow x < 5(2m-1)$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- **Case 2:** $\frac{9x+5-6m}{8} < x \Leftrightarrow x < 6m-5$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Case 3: $\frac{9x+5-4m}{8} < x \Leftrightarrow x < 4m-5$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Case 4: $\frac{9x+5}{8} < x \Leftrightarrow x < -5$, which is impossible. Also for this case, if $T_m^3(x)$ is even then $T_m^4(x) = \frac{9x+5}{16}$ and $T_m^4(x) < x \Leftrightarrow \frac{9x+5}{16} < x \Leftrightarrow x \ge \frac{5}{7}$, which is possible. So in this case $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$, when $T_m^3(x)$ is even.

Result 2.3. If x is odd, $T_m(x)$ is odd and $T_m^k(x)$ is even, for all $k \ge 2$, then $T_m^p(x) \ne x$, for all $p \ge 4$.

7. Let $x \in A_m$ be arbitrary such that x is odd, $T_m(x)$ is odd and $T_m^2(x)$ is odd, then

$$\begin{split} T_m(x) &= \frac{3x+1}{2} (\mathrm{mod}\; m); \, \mathrm{with}\; T_m(x) \in A_m. \\ &= \begin{cases} \frac{3x+1-2m}{2}, & \mathrm{if}\; \frac{3x+1}{2} > m \\ \frac{3x+1}{2}, & \mathrm{if}\; \frac{3x+1}{2} \leq m. \end{cases} \\ \frac{3x+1}{2}, & \mathrm{if}\; \frac{3x+1}{2} \leq m \, \mathrm{and}\; \frac{9x+5-6m}{4} > m \\ \frac{9x+5-6m}{4}, & \mathrm{if}\; \frac{3x+1}{2} > m \, \mathrm{and}\; \frac{9x+5-6m}{4} \leq m \\ \frac{9x+5-4m}{4}, & \mathrm{if}\; \frac{3x+1}{2} \leq m \, \mathrm{and}\; \frac{9x+5}{4} > m \\ \frac{9x+5-4m}{4}, & \mathrm{if}\; \frac{3x+1}{2} \leq m \, \mathrm{and}\; \frac{9x+5}{4} > m \\ \frac{9x+5}{4}, & \mathrm{if}\; \frac{3x+1}{2} \leq m \, \mathrm{and}\; \frac{9x+5}{4} \leq m. \end{cases} \\ \begin{cases} \frac{27x+19-38m}{8}, & \mathrm{if}\; \frac{3x+1}{2} > m\; \frac{9x+5-6m}{4} > m \, \mathrm{and}\; \frac{27x+19-30m}{8} > m \\ \frac{27x+19-30m}{8}, & \mathrm{if}\; \frac{3x+1}{2} > m\; \frac{9x+5-6m}{4} \geq m \, \mathrm{and}\; \frac{27x+19-30m}{8} \leq m \\ \frac{27x+19-26m}{8}, & \mathrm{if}\; \frac{3x+1}{2} > m\; \frac{9x+5-6m}{4} \leq m \, \mathrm{and}\; \frac{27x+19-30m}{8} > m \\ \frac{27x+19-26m}{8}, & \mathrm{if}\; \frac{3x+1}{2} > m\; \frac{9x+5-6m}{4} \leq m \, \mathrm{and}\; \frac{27x+19-30m}{8} \leq m \\ \frac{27x+19-26m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \geq m\; \frac{9x+5-6m}{4} \leq m \, \mathrm{and}\; \frac{27x+19-30m}{8} \leq m \\ \frac{27x+19-26m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \leq m\; \frac{9x+5}{4} > m \, \mathrm{and}\; \frac{27x+19-30m}{8} > m \\ \frac{27x+19-12m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \leq m\; \frac{9x+5}{4} > m \, \mathrm{and}\; \frac{27x+19-12m}{8} > m \\ \frac{27x+19-20m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \leq m\; \frac{9x+5}{4} \leq m \, \mathrm{and}\; \frac{27x+19-12m}{8} \leq m \\ \frac{27x+19-8m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \leq m\; \frac{9x+5}{4} \leq m \, \mathrm{and}\; \frac{27x+19-12m}{8} > m \\ \frac{27x+19-8m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \leq m\; \frac{9x+5}{4} \leq m \, \mathrm{and}\; \frac{27x+19-12m}{8} > m \\ \frac{27x+19-8m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \leq m\; \frac{9x+5}{4} \leq m \, \mathrm{and}\; \frac{27x+19-12m}{8} > m \\ \frac{27x+19-8m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \leq m\; \frac{9x+5}{4} \leq m \, \mathrm{and}\; \frac{27x+19}{8} > m \\ \frac{27x+19-8m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \leq m\; \frac{9x+5}{4} \leq m \, \mathrm{and}\; \frac{27x+19}{8} > m \\ \frac{27x+19-8m}{8}, & \mathrm{if}\; \frac{3x+1}{2} \leq m\; \frac{9x+5}{4} \leq m \, \mathrm{and}\; \frac{27x+19}{8} \leq m. \end{cases} \end{split}$$

Suppose $T_m^3(x) = x$, then the following cases will arise.

- **Case 1:** Suppose $\frac{27x+19-38m}{8} = x$, then x = 2m-1 > m, for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.
- **Case 2:** Suppose $\frac{27x+19-30m}{8} = x$, then 19x = 30m 19 and x is integer. So 19|m and m = 19y for some y. Now 19x = 30(19y) 19 then

 $x = \frac{30m}{19} - 1$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 2$ and $m \le 1$. So there exist no m satisfying these conditions. So in this case $T_m^3(x) \ne x$, for all $x \ge 2$.

Case 3: Suppose $\frac{27x+19-26m}{8} = x$, then 19x = 26m - 19 and x is integer. So 19|m and m = 19y for some y. Now 19x = 26(19y) - 19 then

 $x = \frac{26m}{19} - 1$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 2$ and $m \le 2$. Hence the possible value of m is 2. But this m is not of the form m = 19y for some y. So there exist no m satisfying these conditions. So in this case $T_m^3(x) \ne x$, for all $x \ge 2$.

Case 4: Suppose $\frac{27x+19-18m}{8} = x$, then 19x = 18m - 19 and x is an integer. So 19|m and m = 19y for some y. Now 19x = 18(19y) - 19 then $x = 18\frac{m}{19} - 1$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 3$ and $m \ge -1$. But here m is of the form m = 19y for some y. Hence the possible values of m are $19,38,57,\ldots$ and the corresponding values of x are $17,35,53,\ldots$

Also here $(\mathbf{i})3x + 1 > 2m \Leftrightarrow 3(\frac{18m}{19} - 1) + 1 > 2m \Leftrightarrow m \ge 3$, which is possible. Hence $\frac{3x+1}{2} > m$.

- (ii) $9x + 5 \le 10m \Leftrightarrow 9(\frac{18m}{19} 1) + 5 \le 10m \Leftrightarrow m \ge 1$, which is possible. Hence $\frac{9x+5}{10} \le m$.
- (iii) $27x + 19 > 26m \Leftrightarrow 27(\frac{18m}{19} 1) + 1 > 26m \Leftrightarrow m \ge -61$, which is possible. Hence $\frac{27x + 19}{26} \le m$.

Result 2.4. If m = 19y, for some y, and x is odd of the form $x = \frac{18m}{19} - 1$ then $T_m^3(x) = x$, when T(x) and $T^2(x)$ are odd.

- **Case 5:** Suppose $\frac{27x+19-12m}{8} = x$, then 19x = 12m 19 and x is integer. So $19 \mid m$ and m = 19y for some y. Now 19x = 12(19y) 19 then $x = \frac{12m}{19} 1$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 4$ and $m \ge \frac{-19}{7}$. But here m is of the form m = 19y for some y. Hence the possible values of m are 19,38,57,...and the corresponding values of x are 11,23,35,... Also here
 - (i) $3x + 1 \le 2m \Leftrightarrow 3(\frac{12m}{19} 1) + 1 \le 2m \Leftrightarrow m \ge -19$, which is possible. Hence $\frac{3x+1}{2} \le m$.
 - (ii) $9x + 5 > 4m \Leftrightarrow 9(\frac{12m}{19} 1) + 5 > 4m \Leftrightarrow m \ge 3$, which is possible. Hence $\frac{9x+5}{10} > m$.
 - (iii) $27x + 19 \le 20m \Leftrightarrow 27(\frac{12m}{19} 1) + 1 \le 20m \Leftrightarrow m \ge (-3)$, which is possible. Hence $\frac{27x + 19}{20} \le m$.

Result 2.5. If m = 19y for some y and x is odd of the form $x = \frac{12m}{19} - 1$, then $T_m^3(x) = x$, when T(x) and $T^2(x)$ are odd.

- **Case 6:** Suppose $\frac{27x+19-20m}{8} = x$, then 19x = 20m 19 and x is integer. So 19|m and m = 19y for some y. Now 19x = 20(19y) 19 then $x = \frac{20m}{19} 1$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 2$ and $m \le 19$. But here m is of the form m = 19y for some y. Hence the possible value of m is 19 and the corresponding value of x is 19. But here if x = 19 and m = 19 then 3x + 1 = 57 and 2m = 38. Hence $3x + 1 \le 2m$. So this condition was not satisfied. So in this case $T_m^3(x) \ne x$ for all $x \ge 2$.
- **Case 7:** Suppose $\frac{27x+19-8m}{8} = x$, then 19x = 8m 19 and x is integer. So 19|m and m = 19y for some y. Now 19x = 8(19y) 19 then $x = \frac{8m}{19} 1$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 5$ and $m \ge \frac{-19}{11}$. But here m is of the form m = 19y for some y. Hence the possible values of m are $19,38,57,\ldots$ and the corresponding values of x are $7,15,23,31.\ldots$ Also here
 - $(\mathbf{i})3x + 1 \leq 2m \Leftrightarrow 3(\frac{8m}{19} 1) + 1 \leq 2m \Leftrightarrow m \geq -3$, which is possible. Hence $\frac{3x+1}{2} \leq m$.
 - (ii) $9x + 5 \le 4m \Leftrightarrow 9(\frac{8m}{19} 1) + 5 \le 4m \Leftrightarrow m \ge -19$, which is possible. Hence $\frac{9x+5}{4} \le m$.
 - (iii) $27x + 19 > 8m \Leftrightarrow 27(\frac{8m}{19} 1) + 1 > 8m \Leftrightarrow m \ge -3$, which is possible. Hence $\frac{27x + 19}{8} > m$.

Result 2.6. If m = 19y for some y and x is odd of the form $x = \frac{8m}{19} - 1$, then $T_m^3(x) = x$ for all $x \ge 2$.

- **Case 8:** Suppose $\frac{27x+19}{8} = x$, then x = -1. So this is not possible. So in this case $T_m^3(x) \neq x$ for all x, when T(x) and $T^2(x)$ are odd.
- If $T_m^3(x) < x$, then the following cases are considered.
- **Case 1:** $\frac{27x+19-38m}{8} < x \Leftrightarrow x < (2m-1)$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- Case 2: $\frac{27x+19-30m}{8} < x \Leftrightarrow x < \frac{30m}{19} 1$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- **Case 3:** $\frac{27x+19-26m}{8} < x \Leftrightarrow x < \frac{26m}{19} 1$, which is not possible for $x \ge 2$ and $x \in A_m$. For this case $T_m^4(x) = \frac{27x+19-26m}{16}$ and $\frac{27x+19-26m}{16} < x \Leftrightarrow x < \frac{26m-19}{11}$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- **Case 4:** $\frac{27x+19-18m}{8} < x \Leftrightarrow x < \frac{18m-19}{19}$ which is not possible for $x \ge 2$ and $x \in A_m$. For this case $T_m^4(x) = \frac{27x+19-18m}{16}$ and $\frac{27x+19-18m}{16} < x \Leftrightarrow x < \frac{18m-19}{11}$, which is not possible for $x \ge 2$ and $x \in A_m$. Now $T_m^5(x) = \frac{27x+19-18m}{32}$ and $\frac{27x+19-18m}{32} < x \Leftrightarrow x < \frac{-18m+19}{5}$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^5(x) < x$, for all $x \ge 2$ and $m \ge 2$.

- Case 5: $\frac{27x+19-12m}{8} < x \Leftrightarrow x < \frac{12m-19}{19}$, which is not possible for $x \ge 2$ and $x \in A_m$. For this case $T_m^4(x) = \frac{27x+19-18m}{32}$ and $T_m^5(x) = \frac{27x+19-12m}{32}$ and $\frac{27x+19-12m}{32} < x \Leftrightarrow x < \frac{-12m+19}{5}$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^5(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- Case 6: $\frac{27x+19-20m}{8} < x \Leftrightarrow x < \frac{20m-19}{19}$, which is not possible for $x \ge 2$ and $x \in A_m$. For this case $T_m^4(x) = \frac{27x+19-20m}{32}$ and $T_m^5(x) = \frac{27x+19-20m}{32}$ and $\frac{27x+19-20m}{32} < x$ is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^5(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- Case 7: $\frac{27x+19-8m}{8} < x \Leftrightarrow x < \frac{8m-19}{19}$, which is not possible for $x \ge 2$ and $x \in A_m$. For this case $T_m^4(x) = \frac{27x+19-8m}{16}$ and $T_m^5(x) = \frac{27x+19-8m}{32}$ and $\frac{27x+19-8m}{32} < x$ is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^5(x) < x$, for all $x \ge 2$ and $m \ge 2$. Case 8: $\frac{27x+19}{8} < x \Leftrightarrow x < -1$, which is not possible for $x \ge 2$ and $x \in A_m$. For this case $T_m^4(x) = \frac{27x+19}{16}$ and $T_m^5(x) = \frac{27x+19}{32}$ and $\frac{27x+19}{32} < x$ is possible for $x \ge 2$ and $x \in A_m$. For this case $T_m^4(x) = \frac{27x+19}{16}$ and $T_m^5(x) = \frac{27x+19}{32}$ and $\frac{27x+19}{32} < x$ is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^5(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Result 2.7. If x, $T_m(x)$ and $T_m^2(x)$ are odd and $T_m^k(x)$ is even, for all $k \ge 3$, then $T_m^p(x) \ne x$, for all $p \ge 4$.

8. Let $x \in A_m$ be arbitrary such that x is odd, $T_m(x)$, $T_m^2(x)$ are even and $T_m^3(x)$ is odd. Then

$$T_{m}(x) = \frac{3x+1}{2} \pmod{m}; \text{ with } T_{m}(x) \in A_{m}.$$

$$= \begin{cases} \frac{3x+1-2m}{2}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{2}, & \text{if } \frac{3x+1}{2} \leq m. \end{cases}$$

$$T_{m}^{2}(x) = \begin{cases} \frac{3x+1-2m}{4}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{4}, & \text{if } \frac{3x+1}{2} \leq m. \end{cases}$$

$$T_{m}^{3}(x) = \begin{cases} \frac{3x+1-2m}{4}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{4}, & \text{if } \frac{3x+1}{2} \leq m. \end{cases}$$

$$T_{m}^{3}(x) = \begin{cases} \frac{3x+1-2m}{8}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{8}, & \text{if } \frac{3x+1}{2} \leq m. \end{cases}$$

$$T_{m}^{4}(x) = \begin{cases} \frac{9x+11-22m}{8}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+11-6m}{8} > m \\ \frac{9x+11-6m}{8}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+11-6m}{8} \leq m \\ \frac{9x+11-6m}{16}, & \text{if } \frac{3x+1}{2} \leq m \text{ and } \frac{9x+11}{16} > m \\ \frac{9x+11}{16}, & \text{if } \frac{3x+1}{2} \leq m \text{ and } \frac{9x+11}{16} \leq m. \end{cases}$$

Suppose $T_m^4(x) = x$, then the following cases will arise.

- **Case 1:** Suppose $\frac{9x+11-22m}{16} = x$, then $x = \frac{11-2m}{7} > m$ for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 2:** Suppose $\frac{9x+11-6m}{16} = x$, then $x = \frac{11-6m}{7} > m$ for $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 3:** Suppose $\frac{9x+7-16m}{8} = x$, then $x = \frac{11-6m}{7} > m$ for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 4:** Suppose $\frac{9x+11}{16} = x$, then $x = \frac{11}{7}$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all x.
- If $T_m^4(x) < x$, then the following cases are considered.

Case 1: $\frac{9x+11-22m}{16} < x \Leftrightarrow x < \frac{-22m+11}{7}$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Case 2: $\frac{9x+11-6m}{8} < x \Leftrightarrow x < \frac{-6m+11}{7}$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$. **Case 3:** $\frac{9x+11-6m}{16} < x \Leftrightarrow x < \frac{-6m+11}{7}$, which is possible for $x \ge 2$ and $x \in A_m$. Hence $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$. **Case 4:** $\frac{9x+11}{16} < x \Leftrightarrow x > \frac{11}{7}$, which is possible. So in this case $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Result 2.8. If $x \in A_m$ and x is odd, $T_m(x)$ is even, $T_m^2(x)$ is even and $T_m^3(x)$ is odd then, (i) There exist no $x \in A_m$ such that $T_m^4(x) = x$. (ii) In addition if $T_m^k(x)$ is even, for all $k \ge 4$, there exist no $x \in A_m$ such that $T_m^p(x) \ne x$, for all $p \ge 4$ and $k \ge 3$.

9. Let $x \in A_m$ be arbitrary such that x is odd, $T_m(x)$ is even and $T_m^2(x)$ is odd and $T_m^3(x)$ are odd. Then

$$\begin{split} T_m(x) &= \frac{3x+1}{2} \pmod{m}; \text{ with } T_m(x) \in A_m. \\ &= \begin{cases} \frac{3x+1-2m}{2}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{2}, & \text{if } \frac{3x+1}{2} \leq m. \end{cases} \\ T_m^2(x) &= \begin{cases} \frac{3x+1-2m}{4}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{4}, & \text{if } \frac{3x+1}{2} > m \\ \frac{3x+1}{4}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+7-6m}{8} > m \end{cases} \\ \frac{9x+7-6m}{8}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+7-6m}{8} \leq m \\ \frac{9x+7-8m}{8}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+7}{8} \leq m. \end{cases} \\ \frac{9x+7-8m}{8}, & \text{if } \frac{3x+1}{2} > m \text{ and } \frac{9x+7}{8} > m \\ \frac{9x+7}{8}, & \text{if } \frac{3x+1}{2} \leq m \text{ and } \frac{9x+7}{8} \leq m. \end{cases} \\ \frac{27x+29-42m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+7-6m}{8} > m \text{ and } \frac{27x+29-42m}{16} > m \\ \frac{27x+29-42m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+7-6m}{8} > m \text{ and } \frac{27x+29-42m}{16} > m \\ \frac{27x+29-42m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+7-6m}{8} \leq m \text{ and } \frac{27x+29-42m}{16} > m \\ \frac{27x+29-42m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+7-6m}{8} \leq m \text{ and } \frac{27x+29-42m}{16} > m \\ \frac{27x+29-40m}{16}, & \text{if } \frac{3x+1}{2} \leq m, \frac{9x+7-6m}{8} \leq m \text{ and } \frac{27x+29-18m}{16} > m \\ \frac{27x+29-40m}{16}, & \text{if } \frac{3x+1}{2} \leq m, \frac{9x+7}{8} > m \text{ and } \frac{27x+15-8m}{16} \leq m \\ \frac{27x+29-40m}{16}, & \text{if } \frac{3x+1}{2} \leq m, \frac{9x+7}{8} \leq m \text{ and } \frac{27x+15-8m}{16} \leq m \\ \frac{27x+29-16m}{16}, & \text{if } \frac{3x+1}{2} \leq m, \frac{9x+7}{8} \leq m \text{ and } \frac{27x+15-8m}{16} \leq m \end{cases} \end{split}$$

Suppose $T_m^4(x) = x$, then the following cases will arise.

- Case 1: Suppose $\frac{27x+29-58m}{16} = x$, then $x = \frac{29(2m-1)}{11} > m$ for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 2:** Suppose $\frac{27x+29-42m}{16} = x$, then $x = \frac{42m-29}{11} > m$ for $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 3:** Suppose $\frac{27x+29-34m}{16} = x$ then $x = \frac{34m-29}{11} > m$ for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.

- **Case 4:** Suppose $\frac{27x+29-18m}{16} = x$, then $x = \frac{18m-29}{7} > m$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 5:** Suppose $\frac{27x+29-40m}{16} = x$, then $x = \frac{40m-29}{11} > m$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 6:** Suppose $\frac{27x+29-24m}{16} = x$, then $x = \frac{24m-29}{7} > m$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 7:** Suppose $\frac{27x+29-16m}{16} = x$, then $x = \frac{16m-29}{7} > m$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.

Case 8: Suppose $\frac{27x+29}{16} = x$, then $x = \frac{-29}{9}$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$. Also for this case, if $T_m^4(x)$ is even, then:

$$T_m^5(x) = \begin{cases} \frac{27x+29-58m}{32}, & \text{if } \frac{3x+1}{2} > m, \ \frac{9x+7-6m}{8} > m \text{ and } \frac{27x+29-42m}{16} > m \\ \frac{27x+29-42m}{32}, & \text{if } \frac{3x+1}{2} > m, \ \frac{9x+7-6m}{8} > m \text{ and } \frac{27x+29-42m}{16} \le m \\ \frac{27x+29-34m}{32}, & \text{if } \frac{3x+1}{2} > m, \ \frac{9x+7-6m}{8} \le m \text{ and } \frac{27x+29-18m}{16} > m \\ \frac{27x+29-18m}{32}, & \text{if } \frac{3x+1}{2} > m, \ \frac{9x+7-6m}{8} \le m \text{ and } \frac{27x+29-18m}{16} > m \\ \frac{27x+29-18m}{32}, & \text{if } \frac{3x+1}{2} > m, \ \frac{9x+7-6m}{8} \le m \text{ and } \frac{27x+29-18m}{16} > m \\ \frac{27x+29-40m}{32}, & \text{if } \frac{3x+1}{2} \le m, \ \frac{9x+7}{8} > m \text{ and } \frac{27x+15-8m}{16} > m \\ \frac{27x+29-24m}{32}, & \text{if } \frac{3x+1}{2} \le m, \ \frac{9x+7}{8} > m \text{ and } \frac{27x+15-8m}{16} \le m \\ \frac{27x+29-16m}{32}, & \text{if } \frac{3x+1}{2} \le m, \ \frac{9x+7}{8} \le m \text{ and } \frac{27x+29}{16} > m \\ \frac{27x+29-16m}{32}, & \text{if } \frac{3x+1}{2} \le m, \ \frac{9x+7}{8} \le m \text{ and } \frac{27x+29}{16} > m \\ \frac{27x+29-16m}{32}, & \text{if } \frac{3x+1}{2} \le m, \ \frac{9x+7}{8} \le m \text{ and } \frac{27x+29}{16} > m \\ \frac{27x+29}{32}, & \text{if } \frac{3x+1}{2} \le m, \ \frac{9x+7}{8} \le m \text{ and } \frac{27x+29}{16} \le m. \end{cases}$$

and clearly $T_m^5(x) < x$, for all x.

Result 2.9. If $x \in A_m$ is odd, $T_m(x)$ is even, $T_m^2(x)$ is odd $T_m^3(x)$ is odd and $T_m^k(x)$ is even, for all $k \ge 3$, then $T_m^p(x) \ne x$, for all $p \ge 5$.

10. Let $x \in A_m$ be arbitrary such that x is odd, $T_m(x)$ is odd, $T_m^2(x)$ is even and $T_m^3(x)$ is odd. Then

$$T_m^4(x) = \begin{cases} \frac{27x+23-46m}{16}, & \text{if } \frac{3x+1}{2} > m \ , \frac{9x+5-6m}{4} > m \ \text{and } \frac{27x+23-30m}{16} > m \\ \frac{27x+23-30m}{16}, & \text{if } \frac{3x+1}{2} > m \ , \frac{9x+5-6m}{4} > m \ \text{and } \frac{27x+23-30m}{16} \leq m \\ \frac{27x+23-34m}{16}, & \text{if } \frac{3x+1}{2} > m \ , \frac{9x+5-6m}{4} \leq m \ \text{and } \frac{27x+19-18m}{16} > m \\ \frac{27x+29-18m}{16}, & \text{if } \frac{3x+1}{2} > m \ , \frac{9x+7-6m}{8} \leq m \ \text{and } \frac{27x+29-18m}{16} > m \\ \frac{27x+29-18m}{16}, & \text{if } \frac{3x+1}{2} \leq m \ , \frac{9x+7}{8} > m \ \text{and } \frac{27x+19-18m}{16} > m \\ \frac{27x+29-40m}{16}, & \text{if } \frac{3x+1}{2} \leq m \ , \frac{9x+7}{8} > m \ \text{and } \frac{27x+15-8m}{16} > m \\ \frac{27x+29-24m}{16}, & \text{if } \frac{3x+1}{2} \leq m \ , \frac{9x+7}{8} > m \ \text{and } \frac{27x+15-8m}{16} \leq m \\ \frac{27x+29-16m}{16}, & \text{if } \frac{3x+1}{2} \leq m \ , \frac{9x+7}{8} \leq m \ \text{and } \frac{27x+15-8m}{8} > m \\ \frac{27x+29-16m}{16}, & \text{if } \frac{3x+1}{2} \leq m \ , \frac{9x+7}{8} \leq m \ \text{and } \frac{27x+15-8m}{8} > m \\ \frac{27x+29-16m}{16}, & \text{if } \frac{3x+1}{2} \leq m \ , \frac{9x+7}{8} \leq m \ \text{and } \frac{27x+15-8m}{8} > m \\ \frac{27x+29-16m}{16}, & \text{if } \frac{3x+1}{2} \leq m \ , \frac{9x+7}{8} \leq m \ \text{and } \frac{27x+19}{8} > m \\ \frac{27x+29-16m}{16}, & \text{if } \frac{3x+1}{2} \leq m \ , \frac{9x+7}{8} \leq m \ \text{and } \frac{27x+19}{8} > m \\ \frac{27x+29-16m}{16}, & \text{if } \frac{3x+1}{2} \leq m \ , \frac{9x+7}{8} \leq m \ \text{and } \frac{27x+29}{8} \leq m. \end{cases}$$

Suppose $T_m^4(x) = x$, then the following eight cases will arise.

Case 1: Suppose $\frac{27x+23-46m}{16} = x$, then $x = \frac{46m-23}{16} > m$, for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.

- **Case 2:** Suppose $\frac{27x+23-30m}{16} = x$, then $x = \frac{30m-23}{11} > m$, for $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 3:** Suppose $\frac{27x+23-34m}{16} = x$, then $x = \frac{34m-23}{11} > m$, for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 4:** Suppose $\frac{27x+23-18m}{16} = x$, then $x = \frac{18m-23}{11}$, for $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^3 4x \neq x$, for all $x \ge 2$.
- **Case 5:** Suppose $\frac{27x+19-39m}{16} = x$, then $x = \frac{39m-19}{11} > m$, for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 6:** Suppose $\frac{27x+23-12m}{16} = x$, then $x = \frac{12m-23}{11} > m$, for $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 7:** Suppose $\frac{27x+23-34m}{16} = x$, then $x = \frac{34m-23}{11} > m$, for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 8:** Suppose $\frac{27x+23}{16} = x$, then $x = \frac{-23}{11}$, for $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.

Also here if $T_m^4(x)$ is even, then

$$T_m^5(x) = \begin{cases} \frac{27x+23-46m}{32}, & \text{if } \frac{3x+1}{2} > m , \frac{9x+5-6m}{4} > m \text{ and } \frac{27x+23-30m}{16} > m \\ \frac{27x+23-30m}{32}, & \text{if } \frac{3x+1}{2} > m , \frac{9x+5-6m}{4} > m \text{ and } \frac{27x+23-30m}{16} \le m \\ \frac{27x+23-34m}{32}, & \text{if } \frac{3x+1}{2} > m , \frac{9x+5-6m}{4} \le m \text{ and } \frac{27x+19-18m}{16} > m \\ \frac{27x+23-18m}{32}, & \text{if } \frac{3x+1}{2} > m , \frac{9x+7-6m}{8} \le m \text{ and } \frac{27x+29-18m}{16} > m \\ \frac{27x+12-39m}{32}, & \text{if } \frac{3x+1}{2} \le m , \frac{9x+7}{8} > m \text{ and } \frac{27x+15-8m}{16} > m \\ \frac{27x+12-12m}{32}, & \text{if } \frac{3x+1}{2} \le m , \frac{9x+7}{8} > m \text{ and } \frac{27x+15-8m}{16} \le m \\ \frac{27x+23-16m}{32}, & \text{if } \frac{3x+1}{2} \le m , \frac{9x+7}{8} \le m \text{ and } \frac{27x+15-8m}{16} \le m \\ \frac{27x+23-16m}{32}, & \text{if } \frac{3x+1}{2} \le m , \frac{9x+7}{8} \le m \text{ and } \frac{27x+19}{8} > m \\ \frac{27x+23}{32}, & \text{if } \frac{3x+1}{2} \le m , \frac{9x+5}{4} \le m \text{ and } \frac{27x+29}{8} \le m \end{cases}$$

Clearly here $T_m^5(x) < x$, for all $x \in A_m$.

Result 2.10. If $x \in A_m$ and x, $T_m(x)$ are odd, $T_m^2(x)$ is even and $T_m^3(x)$ is odd then, (i) there exist no $x \in A_m$ such that $T_m^4(x) = x$. (ii) In addition if $T_m^k(x)$ is even, for all $k \ge 4$, there exist no $x \in A_m$ such that $T_m^p(x) \ne x$, for all $p \ge 4$ and $k \ge 3$.

11. Let $x \in A_m$ be arbitrary such that $x, T_m(x), T_m^2(x), T_m^3(x)$ are odd, then

$$T_m^4(x) = \begin{cases} \frac{81x+65-130m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+5-6m}{4} > m, \frac{27x+19-30m}{16} > m \text{ and } \frac{81x+65-114m}{16} > m \\ \frac{81x+65-114m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+5-6m}{4} > m, \frac{27x+19-30m}{16} > m \text{ and } \frac{81x+65-114m}{16} \le m \\ \frac{81x+65-106m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+5-6m}{4} > m, \frac{27x+19-30m}{16} \le m \text{ and } \frac{81x+65-90m}{16} > m \\ \frac{81x+65-90m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+5-6m}{4} > m, \frac{27x+19-30m}{16} \le m \text{ and } \frac{81x+65-90m}{16} > m \\ \frac{81x+65-90m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+5-6m}{4} > m, \frac{27x+19-130m}{16} \le m \text{ and } \frac{81x+65-90m}{16} > m \\ \frac{81x+65-70m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+5-6m}{4} \le m, \frac{27x+19-18m}{16} > m \text{ and } \frac{81x+65-65m}{16} > m \\ \frac{81x+65-70m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+5-6m}{4} \le m, \frac{27x+19-19m}{16} > m \text{ and } \frac{81x+65-65m}{16} > m \\ \frac{81x+65-70m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+5-6m}{4} \le m, \frac{27x+19-19m}{16} > m \text{ and } \frac{81x+65-65m}{16} > m \\ \frac{81x+65-52m}{16}, & \text{if } \frac{3x+1}{2} > m, \frac{9x+5-6m}{4} \le m, \frac{27x+19-19m}{16} > m \text{ and } \frac{81x+65-65m}{16} > m \\ \frac{81x+65-52m}{16}, & \text{if } \frac{3x+1}{2} \le m, \frac{9x+5}{4} > m, \frac{27x+19-12m}{16} > m \text{ and } \frac{81x+65-36m}{16} > m \\ \frac{81x+65-5m}{16}, & \text{if } \frac{3x+1}{2} \le m, \frac{9x+5}{4} > m, \frac{27x+19-12m}{8} > m \text{ and } \frac{81x+65-36m}{16} > m \\ \frac{81x+65-60m}{16}, & \text{if } \frac{3x+1}{2} \le m, \frac{9x+5}{4} > m, \frac{27x+19-12m}{8} \le m \text{ and } \frac{81x+65-36m}{16} > m \\ \frac{81x+65-60m}{16}, & \text{if } \frac{3x+1}{2} \le m, \frac{9x+5}{4} > m, \frac{27x+19-12m}{8} \le m \text{ and } \frac{81x+65-36m}{16} > m \\ \frac{81x+65-24m}{16}, & \text{if } \frac{3x+1}{2} \le m, \frac{9x+5}{4} \le m, \frac{27x+19}{8} > m \text{ and } \frac{81x+65-24m}{16} > m \\ \frac{81x+65-24m}{16}, & \text{if } \frac{3x+1}{2} \le m, \frac{9x+5}{4} \le m, \frac{27x+19}{8} \le m \text{ and } \frac{81x+65-24m}{16} \le m \\ \frac{81x+65-16m}{16}, & \text{if } \frac{3x+1}{2} \le m, \frac{9x+5}{4} \le m, \frac{27x+19}{8} \le m \text{ and } \frac{81x+65-24m}{16} \le m \\ \frac{81x+65-16m}{16}, & \text{if } \frac{3x+1}{2} \le m, \frac{9x+5}{4} \le m, \frac{27x+19}{8} \le m \text{ and } \frac{81x+65-24m}{16} \le m \\ \frac{81x+65-16m}{16}, & \text{if } \frac{3x+1}{2} \le m, \frac{9x+5}{4} \le m, \frac{27x+1$$

Suppose $T_m^4(x) = x$, then the following cases will arise.

- **Case 1:** Suppose $\frac{81x+65-130m}{16} = x$, then x = (2m-1) > m for $m \ge 2$. Hence $x \notin A_m$. So this is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 2:** Suppose $\frac{81x+65-114m}{16} = x$, then $x = \frac{114m-65}{65} > m$ for $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 3:** Suppose $\frac{81x+65-106m}{16} = x$, then $x = \frac{106m-65}{65} > m$ for $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 4:** Suppose $\frac{81x+65-90m}{16} = x$, then $x = \frac{90m-65}{65} > m$ for $m \ge 3$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- **Case 5:** Suppose $\frac{81x+65-104m}{16} = x$, then $x = \frac{104m-65}{65} > m$ for $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.
- Case 6: Suppose $\frac{81x+65-78m}{16} = x$, then $x = \frac{78m-65}{65}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 2$ and $m \le 5$. Hence the possible value of m are 2,3,4,5...and the corresponding value of x are not integer except m = 5 and x = 5. So in this case $T_m^4(x) = x$, for x = 5 and m = 5. So in this case for x = 5 and m = 5, $T_m^4(x) = x$.
- **Case 7:** Suppose $\frac{81x+65-70m}{16} = x$, then $x = \frac{14m-13}{13}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 2$ and $m \le 13$. Hence the possible value of m are 2,3,4,5....and the corresponding value of x are not integer except m = 13 and x = 13. But $\frac{27x-18m+19}{8} \le x$, for x = 13, m = 13. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.

- **Case 8:** Suppose $\frac{81x+65-54m}{16} = x$, then $x = \frac{54m-65}{65}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 3$ and $m \ge -5$. Hence the possible value of m are 3,4,5...and the corresponding value of x are of the form $x = \frac{54m-65}{65}$. Also here
 - (i) $3x + 1 > 2m \Leftrightarrow 3(\frac{54m}{65} 1) + 1 > 2m$ which is possible. Hence $\frac{3x+1}{2} > m$.
 - (ii) $9x + 5 \le 10m \Leftrightarrow 9(\frac{54m}{65} 1) + 5 \le 10m \Leftrightarrow m \ge \frac{-570}{64}$, which is possible. Hence $\frac{9x+5}{10} \le 10m$.
 - (iii) $27x + 19 \le 26m \Leftrightarrow 27(\frac{54m}{65} 1) + 19 \le 26m \Leftrightarrow m \ge \frac{(-1736)}{232}$, which is possible. Hence $\frac{27x + 19}{26} \le 26m$.

Result 2.11. If $x \in A_m$ is odd, $T_m(x)$ is even, $T_m^2(x)$ is odd and $T_m^3(x)$ is odd and if $x = \frac{54m-65}{65}$ and m = 65p, then $T_m^4(x) \neq x$, for all $p \ge 1$.

- **Case 9:** Suppose $\frac{81x+65-52m}{16} = x$, then $x = \frac{52m-65}{65}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 3$ and $m \ge -5$. Hence the possible values of m are 3,4,5...and the corresponding values of x are of the form $x = \frac{52m-65}{65}$. Also here
 - (i) $3x + 1 \le 2m \Leftrightarrow 3(\frac{54m}{65} 1) + 1 > 2m$ which is possible. Hence $\frac{3x+1}{2} > m$.

(ii) $9x + 5 \le 10m \Leftrightarrow 9(\frac{52m}{65} - 1) + 1 \le 2m \Leftrightarrow m \le \frac{130}{26} \Leftrightarrow m \le 5$. Hence the range of m is $3 \le m \le 5$. But in this range the value of x is not an integer. Hence in this case $T_m^4(x) \ne x$ for all x.

Case 10: Suppose $\frac{81x+65-36m}{16} = x$, th en $x = \frac{36m-65}{65}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 4$ and $m \ge \frac{-65}{29}$. Also here

- (i) $3x + 1 \le 2m \Leftrightarrow 3(\frac{36m}{65} 1) + 1 \le 2m \Leftrightarrow m \ge \frac{-130}{12}$ which is possible. Hence $\frac{3x+1}{2} \le m$.
- (ii) $9x + 5 > 4m \Leftrightarrow 9(\frac{36m}{65} 1) + 1 > 4m \Leftrightarrow m \ge 8$, which is possible. Hence $\frac{9x+5}{4} > m$.
- (iii) $27x + 19 \le 20m \Leftrightarrow 27(\frac{36m}{65} 1) + 19 \le 20m \Leftrightarrow m \le 1$, which is not possible. Hence in this case $T_m^4(x) \ne x$ for all x.

Case 11: Suppose $\frac{81x+65-96m}{16} = x$, then $x = \frac{96m-65}{65} > m$, which is not possible. Hence in this case $T_m^4(x) \neq x$ for all x.

Case 12: Suppose $\frac{81x+65-60m}{16} = x$, then $x = \frac{12m-13}{13}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 3$ and $m \ge -13$. Also here

- (i) $3x + 1 \le 2m \Leftrightarrow 3(\frac{12m}{13} 1) + 1 \le 2m \Leftrightarrow m \le 1$ which is not possible. Hence in this case $T_m^4(x) \ne x$ for all x.
- **Case 13:** Suppose $\frac{81x+65-40m}{16} = x$, then $x = \frac{8m-13}{13}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 4$ and $m \ge \frac{-13}{5}$. Also here
 - (i) $3x + 1 \le 2m \Leftrightarrow m \ge -13$ which is possible. Hence $\frac{3x+1}{2} \le m$.
 - (ii) $9x + 5 \le 4m \Leftrightarrow 9(\frac{8m}{13} 1) + 5 \le 4m \Leftrightarrow m \le 2$, which is not possible. Hence in this case $T_m^4(x) \ne x$ for all x.

Case 14: Suppose $\frac{81x+65-24m}{16} = x$, then $x = \frac{24m-65}{65}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $m \ge 6$ and $m \ge \frac{-65}{39}$. Also here

- (i) $3x + 1 \le 2m \Leftrightarrow 3(\frac{24m}{65} 1) + 1 \le 2m \Leftrightarrow m \ge \frac{-130}{58}$ which is possible. Hence $\frac{3x+1}{2} \le m$.
- (ii) $9x + 5 \le 4m \Leftrightarrow 9(\frac{24m}{65} 1) + 5 \le 4m \Leftrightarrow m \ge \frac{-260}{44}$, which is possible. Hence $\frac{9x+5}{4} \le m$.
- (iii) $27x + 19 \le 8m \Leftrightarrow 81(\frac{24m}{65} 1) + 65 \le 40m \Leftrightarrow m \ge \frac{-1040}{656}$, which is possible. Hence $\frac{27x + 19}{8} \le m$.
- (iv) $81x + 65 \le 40m \Leftrightarrow 81(\frac{24m}{65} 1) + 65 \le 40m \Leftrightarrow m \ge \frac{-1040}{656}$, which is possible. Hence the possible values of m are $6,7,8,\ldots$ and the corresponding possible values of x are x = 24p 1, $p = 1, 2, 3, \ldots$

Result 2.12. If $x \in A_m$ is odd, $T_m(x)$ is even, $T_m^2(x)$ is odd and $T_m^3(x)$ is odd and if $x = \frac{24m-65}{65}$ and m = 65p then $T_m^4(x) \neq x$, for all $x \ge 2$ and $p \ge 1$.

Case 15: Suppose $\frac{81x+65-16m}{16} = x$, then $x = \frac{16m-65}{65}$. Here $x \in A_m$, so $1 \le x$ and $x \le m \Rightarrow m \ge 9$ and $m \ge -2$. Also here

- (i) $3x + 1 \le 2m \Leftrightarrow 3(\frac{16m}{65} 1) + 1 \le 2m \Leftrightarrow m \ge 2$, which is possible. Hence $\frac{3x+1}{2} \le m$.
- (ii) $9x + 5 \le 4m \Leftrightarrow 9(\frac{16m}{65} 1) + 1 \le 4m \Leftrightarrow m \ge \frac{-325}{116}$, which is possible. Hence $\frac{9x+5}{4} \le m$.
- (iii) $27x + 19 \le 8m \Leftrightarrow 81(\frac{16m}{65} 1) + 19 \le 8m \Leftrightarrow m \ge \frac{-520}{88}$, which is possible. Hence $\frac{27x+19}{8} \le m$.
- $(\mathbf{iv}) \ 81x + 65 > 16m \Leftrightarrow 81(\tfrac{16m}{65} 1) + 16 > 16m \Leftrightarrow m > 4.$

Result 2.13. If $x \in A_m$ is odd, $T_m(x)$ is even, $T_m^2(x), T_m^3(x)$ are odd and if $x = \frac{16m-65}{65}$ and m = 65p then $T_m^4(x) \neq x$ for all $x \ge 2$ and $p \ge 1$.

Case 16: Suppose $\frac{81x+65}{16} = x$, then x = -1 and x not in A_m . Hence in this case $T_m^4(x) \neq x$ for all x.

Result 2.14. If $x \in A_m$ is odd, $T_m(x)$ is even, $T_m^2(x)$ is odd and $T_m^3(x)$ is odd and if $T_m^5(x)$, $T_m^6(x)$ are even then $T_m^7(x) < x$ for all x and hence if $T_m^k(x)$ are even for all $k \ge 5$, then $T_m^p(x) \ne x$, for all $x \ge 2$ and for all $p \ge 7$.

Theorem 2.15. If x is odd and $x \in A_m$, then the following table provides some failure cases of the expected statement $T_m^k(x) = 1$ for some k, corresponding to "modulo m problem".

Serial number	x	$T_m(x)$	$T_m^2(x)$	$T_m^3(x)$	RESULT
1	odd	-	-	_	$T_m(x) \neq x$, for all x
2	odd	even	-	-	(a) $T_m^2(x) \neq x$, for all x
					(b) $T_m^2(x) = x$ only if $x=1$
3	odd	odd	-	-	(a) $T_m^2(x) \neq x$, for all x
					(b) $T_5^2(x) = 5$
					(c) $T_5^2(3) = 3$
4	odd	even	even	-	$T_m(x) \neq x$, for all x and $T_m^3(x) < x$ for all x if $T_m^k(x)$ is even, for all $k \ge 3$,
					then $T_m^p(x) \neq x$, for all $x, p \ge 4$.
5	odd	even	odd	-	$T_m(x) \neq x$, for all x and $T_m^3(x) < x$, for all x if $T_m^k(x)$ is even, for all $k \ge 3$,
					then $T_m^p(x) \neq x$, for all $x, p \ge 4$.
6	odd	odd	even	-	$T_m(x) \neq x$, for all x and $T_m^3(x) < x$ for all x if $T_m^k(x)$ is even, for all $k \ge 3$,
					then $T_m^p(x) \neq x$, for all $x, p \ge 4$.
7	odd	odd	odd	_	(a) if $m = 19y$, for some y and $x = \frac{18m}{19} - 1$, then $T_m^3(x) = x$
					(b) if $m = 19y$, for some y and $x = \frac{12m}{19} - 1$, then $T_m^3(x) = x$
					(c) if $m = 19y$, for some y and $x = \frac{8m}{19} - 1$, then $T_m^3(x) = x$
					(d) if $T_m^p(x)$ is even, for all $p \ge 3$,
8	odd	even	even	odd	(a) $T_m^4(x) \neq x$, for all x .
					(b) $T_m^4(x) < x$
					(c) if $T_m^p(x)$ is even, for all $p \ge 5$, then $T_m^k(x) \ne x$, for all x , if $k \ge 5$.
9	odd	even	odd	odd	(a) $T_m^4(x) \neq x$, for all x .
					(b) $T_m^5(x) < x$, only if $T_m^4(x)$ is even.
					(c) if $T_m^p(x)$ is even, for all $p \ge 5$, then $T_m^k(x) \ne x$, for all x , if $k \ge 5$.
10	odd	odd	even	odd	(a) $T_m^4(x) \neq x$, for all x .
					(b) $T_m^5(x) < x$, only if $T_m^4(x)$ is even.
					(c) if $T_m^p(x)$ is even, for all $p \ge 5$, then $T_m^k(x) \ne x$, for all x , if $k \ge 5$.
11	odd	odd	odd	odd	(a) if $x = 5$ and $m = 5$ then $T_m^4(x) = x$
					(b) if $m = 65y$, for $y = 1, 2, 3$ and $x = \frac{54m}{65} - 1$, then $T_m^4(x) = x$
					(c) if $m = 65y$, for $y = 1, 2, 3$ and $x = \frac{24m}{65} - 1$, then $T_m^4(x) = x$
					(d) if $m = 65y$, for $y = 1, 2, 3$ and $x = \frac{16m}{65} - 1$, then $T_m^4(x) = x$

3. Cases for Even Integers

1. Let $x \in A_m$ be arbitrary such that x is even. Then $T_m(x) = \frac{x}{2} < m$. So in this case $T_m(x) \neq x$, for all $x \ge 2$.

2. Let $x \in A_m$ be arbitrary and x is even and $T_m(x)$ is even. Then $T_m(x) = \frac{x}{2} < m$, $T_m^2(x) = \frac{x}{2} < m$. So in this case

$T_m^2(x) \neq x$, for all $x \ge 2$.

3. Let $x \in A_m$ be arbitrary and x is even and $T_m(x)$ is odd. Then

$$T_m(x) = \frac{x}{2} < m$$

$$T_m^2(x) = \begin{cases} \frac{3x+2-4m}{4}, & \text{if } \frac{3x+2}{4} > m \\ \frac{3x+2}{4}, & \text{if } \frac{3x+2}{4} \le m. \end{cases}$$

Suppose $T_m^2(x) = x$, then the following cases arise.

Case 1: Suppose $\frac{3x+2-4m}{4} = 4x$, then 3x + 2 - 4m = 4x, 2 - 4m = x,

x = 2(1 - 2m) < 0, for $m \ge 2$. Hence $x \notin A_m$, which is a contradiction. So in this case $T_m^2(x) \ne x$, for all $x \ge 2$. Case 2: Suppose $\frac{3x+2}{4} = x$, then x = 2, which is a trivial case.

4. Let $x \in A_m$ be arbitrary and x is even, $T_m(x)$ is even, and $T_m^2(x)$ is even.

$$T_m(x) = \frac{x}{2} < m.$$

$$T_m^2(x) = \frac{x}{4} < m.$$

$$T_m^3(x) = \frac{x}{8} < m.$$

So in this case $T_m^3(x) \neq x$, for all $x \ge 2$. Here $T_m^3(x) < x$, for all $m \ge 2$. So if $T_m^k(x)$ is even, for all $k \ge 3$ then $T_m^p(x) \neq x$, for all $x \ge 2$ and $p \ge 4$.

5. Let $x \in A_m$ be arbitrary and x is even, $T_m(x)$ is even, and $T_m^2(x)$ is odd. Then

$$T_m(x) = \frac{x}{2} < m$$

$$T_m^2(x) = \frac{x}{4} < m$$

$$T_m^3(x) = \begin{cases} \frac{3x - 8m + 4}{8}, & \text{if } \frac{3x + 4}{8} > m \\ \frac{3x + 4}{8}, & \text{if } \frac{3x + 4}{8} < m \end{cases}$$

Suppose $T_m^3(x) = x$, then the following cases arise.

Case 1: Suppose $\frac{3x+4-8m}{8} = x$, then $x = \frac{4(1-2m)}{5} < 0$, for $m \ge 2$. Here $x \notin A_m$, which is a contradiction. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.

Case 2: Suppose $\frac{3x+4}{8} = x$, then 5x = 4, $x = \frac{4}{5} \notin A_m$, so that in this case $T_m^3(x) \neq x$, for all $x \ge 2$.

Suppose $T_m^3(x) < x$, then the following cases are considered.

- **Case 1:** $\frac{3x+4-8m}{8} < x \Leftrightarrow 3x+4-8m < 8x \Leftrightarrow -8m+4 < 5x \Leftrightarrow x > \frac{-8m+4}{5}$ which is possible for x > 2 and $m \ge 2$. Here $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- Case 2: $\frac{3x+4}{8} < x \Leftrightarrow 3x+4 < 8x \Leftrightarrow 4 < 5x \Leftrightarrow x > \frac{4}{5}$ which is possible for $x \ge 2$ and $m \ge 2$. Here $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Result 3.1. Let $x \in A_m$ such that x is even, $T_m(x)$ is even and $T_m^2(x)$ is odd. Then $T_m^3(x) < x$, for all x and $m \ge 2$. Also if $T_m^k(x)$ is even, for all $k \ge 3$, then $T_m^p(x) \ne x$, for all $x \ge 2$, for all $p \ge 3$.

6. Let $x \in A_m$ be arbitrary such that x is even, $T_m(x)$ is odd, and $T_m^2(x)$ is odd, then.

$$T_m(x) = \frac{x}{2} < m$$

$$T_m^2(x) = \begin{cases} \frac{3x+2-4m}{4}, & \text{if } \frac{3x+2}{4} > m \\ \frac{3x+2}{4}, & \text{if } \frac{3x+2}{4} \le m \end{cases}$$

$$T_m^3(x) \ = \ \begin{cases} \frac{9x+10-20m}{8}, & \text{if } \frac{3x+2}{4} > m \text{ and } \frac{9x+10-12m}{8} > m \\ \frac{9x+10-12m}{8}, & \text{if } \frac{3x+2}{4} > m \text{ and } \frac{9x+10-12m}{8} \le m \\ \frac{9x+10-8m}{8}, & \text{if } \frac{3x+2}{4} \le m \text{ and } \frac{9x+10}{8} > m \\ \frac{9x+10}{8}, & \text{if } \frac{3x+2}{4} \le m \text{ and } \frac{9x+10}{8} \le m \end{cases}$$

Suppose $T_m^3(x) = x$, then the following cases arise.

- **Case 1:** Suppose $T_m^3(x) = x$, then x = 20m 10 and x = 10(2m 1) > m, for $m \ge 2$. Hence $x \notin A_m$ which is a contradiction. Hence in this case $T_m^3(x) \neq x$, for all $x \ge 2$.
- **Case 2:** Suppose $\frac{9x+10-12m}{8} = x$, then x = 2(6m-5) > m, for $m \ge 2$. Hence $x \notin A_m$ which is a contradiction. So in this case $T_m^3(x) \ne x$, for all $x \ge 2$.

Case 3: Suppose $\frac{9x+10-8m}{8} = x$, then 9x + 10 - 8m = 8x and

x = 8m - 10 > m, for $m \ge 2$. Hence $x \notin A_m$, which is a contradiction. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$. **Case 4:** Suppose $\frac{9x+10}{8} = x$, then $x = -10 \notin A_m$, which is a contradiction. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.

Suppose $T_m^3(x)$ is even, then

$$T_m^4(x) = \begin{cases} \frac{9x+10-12m}{16}, & \text{if } \frac{9x+10-12m}{8} > m\\ \frac{9x+10-12m}{16}, & \text{if } \frac{9x+10-12m}{8} \le m\\ \frac{9x+10-8m}{16}, & \text{if } \frac{9x+10}{16} > m\\ \frac{9x+10}{16}, & \text{if } \frac{9x+10}{16} \le m \end{cases}$$

Suppose $T_m^4(x) < x$, then the following cases are considered.

- **Case 1:** $9x 12m + 10 < 16x \Leftrightarrow x > \frac{-20m+10}{7}$, which is possible for all $x \ge 2$ and $m \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- **Case 2:** $9x 12m + 10 < 16x \Leftrightarrow x > \frac{-12m+10}{7}$, which is possible for all $x \ge 2$ and $m \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- **Case 3:** $9x 8m + 10 < 16x \Leftrightarrow x > \frac{-8m+10}{7}$, which is possible for all $x \ge 2$ and $m \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$.
- **Case 4:** $9x 8m + 10 < 16x \Leftrightarrow x > \frac{-8m+10}{7}$, which is possible for all $x \ge 2$ and $m \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Case 5: $9x + 10 < 8x \Leftrightarrow x < -10$, which is possible for all x and $m \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Result 3.2. Let $x \in A_m$. If x is even and $T_m(x)$ is odd, $T_m^2(x)$ is odd and $T_m^k(x)$ is even $k \ge 3$ then $T_m^p(x) \ne x$, for all $x \ge 2$ and $m \ge 2$ and $p \ge 4$.

7. Let $x \in A_m$ such that x is even, $T_m(x)$ is odd, $T_m^2(x)$ is even. Then

$$T_m(x) = \frac{x}{2}$$

$$T_m^2(x) = \begin{cases} \frac{3x+2-4m}{4}, & \text{if } \frac{3x+2}{4} > m \\ \frac{3x+2}{4}, & \text{if } \frac{3x+2}{4} \le m \end{cases}$$

$$T_m^3(x) = \begin{cases} \frac{3x+2-4m}{8}, & \text{if } \frac{3x+2}{4} > m \\ \frac{3x+2}{8}, & \text{if } \frac{3x+2}{4} \le m \end{cases}$$

Suppose $T_m^3(x) = x$, then the following cases may arise.

Case 1: Suppose $\frac{3x+2-4m}{8} = x$ then $x = \frac{2-4m}{5} < 0$, for all $m \ge 2$. Hence $x \notin A_m$, which is impossible. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.

Case 2: Suppose $\frac{3x+2}{8} = x$. Then $x = \frac{2}{5} \notin A_m$, which is a contradiction. So in this case $T_m^3(x) \neq x$, for all $x \ge 2$.

Suppose $T_m^3(x) < x$, then the following case are considered.

Case 1: $3x + 2 - 4m < 8x \Leftrightarrow \frac{-4m+2}{5}$, which is possible for all $x \in A_m$ and $m \ge 2$. So in this case $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$.

Case 2: $3x + 2 < 8x \Leftrightarrow \frac{2}{5}$, which is possible for all $x \in A_m$ and $m \ge 2$. So in this case $T_m^3(x) < x$, for all $x \ge 2$ and $m \ge 2$. **Result 3.3.** Let $x \in A_m$. If x is even, $T_m(x)$ is odd, $T_m^2(x)$ is even and $T_m^k(x)$ is even, $k \ge 3$ then $T_m^p(x) \ne x$, for all $x \ge 2$ and $m \ge 2$ and $m \ge 2$ and $p \ge 4$.

8. Let $x \in A_m$ be arbitrary such that x is even, $T_m(x)$ is even, $T_m^2(x)$ is even, and $T_m^3(x)$ is odd. Then,

$$T_m^4(x) = \begin{cases} \frac{3x - 16m + 8}{16}, & \text{if } \frac{3x + 8}{m} > m \\ \\ \frac{3x + 8}{16}, & \text{if } \frac{3x + 8}{16} \le m \end{cases}$$

Suppose $T_m^4(x) = x$, then the following cases may arise.

Case 1: Suppose 3x - 16m + 8 = 16x, then $x = \frac{-16m + 8}{13}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $1 \le \frac{-16m + 8}{13}$ and $\frac{-16m + 8}{13} \le m$ so that $m \le \frac{-5}{16}$ and $m \ge \frac{8}{29}$. This is not possible. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.

Case 2: Suppose $\frac{3x+8}{16} = x$ then $x = \frac{8}{13}$ which is not an integer. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$

Suppose $T_m^4(x) < x$ then the following cases are considered.

Case 1: $3x - 16 + 8 < 16x \Leftrightarrow x \ge \frac{-16m+8}{13}$, which is possible for all $x \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Case 2: $3x + 8 < 16x \Leftrightarrow x > \frac{8}{13}$, which is possible. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Result 3.4. Let $x \in A_m$. If x is even, $T_m(x)$ is even, $T_m^2(x)$ is even and $T_m^k(x)$ is even, $k \ge 3$ then $T_m^p(x) \ne x =$, for all $x \ge 2$ and $m \ge 2$ and $p \ge 4$.

9. Let $x \in A_m$ be arbitrary and x is even, $T_m(x)$ even, $T_m^2(x)$ is odd and $T_m^3(x)$ is odd. Then

$$T_m^4(x) = \begin{cases} \frac{9x+20-40m}{16}, & \text{if } \frac{9x+20-24m}{16} > m \text{ and } \frac{3x+4}{8} > m \\ \frac{9x+20-24m}{16}, & \text{if } \frac{9x+20-24m}{16} \le m \text{ and } \frac{3x+4}{8} > m \\ \frac{9x+20-24m}{16}, & \text{if } \frac{9x+20}{16} > m \text{ and } \frac{3x+4}{8} \le m \\ \frac{9x+20}{16}, & \text{if } \frac{9x+20}{16} \le m \text{ and } \frac{3x+4}{8} \le m \end{cases}$$

Suppose $T_m^4(x) = x$, then the following cases may arise.

- **Case 1:** Suppose 9x 40m + 20 = 16x, then $x = \frac{-40m+20}{7}$, which is not possible for $m \ge 2$, since $x \le m$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.
- **Case 2:** Suppose 9x 24m + 20 = 16x, then $x = \frac{-24m+20}{7}$, which is not possible for $m \ge 2$, since $x \le m$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.
- **Case 3:** Suppose 9x 16m + 20 = 16x, then $x = \frac{-16m+20}{7}$, which is not possible for $m \ge 2$, since $x \le m$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.

Case 4: Suppose 9x + 20 = 16x, then $x = \frac{20}{7} \notin A_m$, for any $m \ge 2$. So in this case also $T_m^4(x) \neq x$, for all $x \ge 2$.

Suppose $T_m^4(x) < x$, then the following cases are considered.

Case 1: $9x - 40m + 20 < 16x \Leftrightarrow x > \frac{-40m + 20}{7}$, which is possible for $m \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Case 2: $\Leftrightarrow 9x - 24m + 20 < 16x \Leftrightarrow x > \frac{-24m + 20}{7}$, which is possible for $m \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Case 3: $9x - 16m + 20 < 16x \Leftrightarrow x > \frac{-16m + 20}{7}$, which is possible for $m \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Case 4: $\frac{9x+20}{16} < x \Leftrightarrow x > \frac{20}{7}$, which is possible for $m \ge 2$. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Result 3.5. (i) If $x \in A_m$ is even, $T_m(x)$ is even, $T_m^2(x)$ is odd, $T_m^3(x)$ is odd, then $T_m^4(x) \neq x$, for all $x \geq 2$. (ii) In addition if $T_m^k(x)$ is even, $k \geq 4$, then $T_m^p(x) \neq x$, for all $p \geq 5$.

10. Let $x \in A_m$ be arbitrary such that x is even, $T_m(x)$ is odd, $T_m^2(x)$ is odd, $T_m^3(x)$ is odd. Then

$$T_m^4(x) = \begin{cases} \frac{27x+38-76m}{16}, \text{ if } \frac{27x+38-60m}{16} > m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} > m, \frac{3x+2}{4} > m, \frac{27x+38-60m}{16}, \text{ if } \frac{27x+38-60m}{16} \le m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} > m, \frac{27x+38-52m}{16}, \text{ if } \frac{27x+38-36m}{16} > m, \frac{9x-12m+10}{8} \le m, \frac{3x+2}{4} > m, \frac{27x+38-36m}{16}, \text{ if } \frac{27x+38-36m}{16} \le m, \frac{9x-12m+10}{8} \le m, \frac{3x+2}{4} > m, \frac{27x+38-40m}{16}, \text{ if } \frac{27x+38-24m}{16} > m, \frac{9x+10}{8} > m, \frac{3x+2}{4} \le m, \frac{27x+38-24m}{16}, \text{ if } \frac{27x+38-24m}{16} \le m, \frac{9x+10}{8} > m, \frac{3x+2}{4} \le m, \frac{27x+38-16m}{16}, \text{ if } \frac{27x+38}{16} > m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38-16m}{16}, \text{ if } \frac{27x+38}{16} > m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38-16m}{16}, \text{ if } \frac{27x+38}{16} > m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38-16m}{16}, \text{ if } \frac{27x+38}{16} > m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38-16m}{16}, \text{ if } \frac{27x+38}{16} > m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16}, \text{ if } \frac{27x+38}{16} > m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16}, \text{ if } \frac{27x+38}{16} \ge m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16}, \text{ if } \frac{27x+38}{16} \ge m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16}, \text{ if } \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{3x+2}{4} \le m, \frac{27x+38}{16} \le m, \frac{9x+10}{8} \le m, \frac{9x+10}{4} \le m, \frac{9x+10}{$$

Suppose $T_m^4(x) = x$ then following cases may arise.

Case 1: Suppose 27x - 76m + 38 = 16x, then $x = \frac{76m - 38}{11}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$, which imply $1 \le \frac{76m - 38}{11}$ and $\frac{76m - 38}{11} \le m$ which imply $m \ge \frac{49}{76}$ and $m \le \frac{38}{65} \le 1$, which is not possible, since $m \ge 2$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.

- **Case 2:** Suppose 27x 60m + 38 = 16x, then $x = \frac{60m 38}{11}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$, which imply $1 \le \frac{60m 38}{11}$ and $\frac{60m 38}{11} \le m$ which imply $m \ge \frac{49}{60}$ and $m \le \frac{38}{49}$, which is not possible, since $m \ge 2$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.
- **Case 3:** Suppose 27x 52m + 38 = 16x, then $x = \frac{52m 38}{11}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$ which imply $1 \le \frac{52m 38}{11}$ and $\frac{52m 38}{11} \le m$ which imply $m \ge \frac{49}{52}$ and $m \le \frac{38}{41} \le 1$, which is not possible, since $m \ge 2$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.
- Case 4: Suppose 27x 36m + 38 = 16x, then $x = \frac{36m 38}{11}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$, which imply $1 \le \frac{36m 38}{11}$ and $\frac{36m 38}{11} \le m$ which imply $m \ge \frac{49}{36}$ and $m \le \frac{38}{25} \le 2$, which is not possible, since $m \ge 2$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.
- **Case 5:** Suppose $\frac{27x-40m+38}{16} = x$, then $x = \frac{40m-38}{11}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$, which imply $1 \le \frac{40m-38}{11}$ and $\frac{40m-38}{11} \le m$ which imply $m \ge \frac{49}{40}$ and $m \le \frac{38}{29} \le 2$, which is not possible, since $m \ge 2$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.
- **Case 6:** Suppose 27x 24m + 38 = 16x, then $x = \frac{24m 38}{11}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$, which imply $1 \le \frac{24m 38}{11}$ and $\frac{24m 38}{11} \le m$ which imply $m \ge \frac{49}{24} > 2$ and $m \le \frac{38}{13} \le 3$ and $2 < m \le 3$, which is not possible, since $m \ge 2$ and m is an integer. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.
- Case 7: Suppose 27x 16m + 38 = 16x, then $x = \frac{16m 38}{11}$. Here $x \in A_m$, so that $1 \le x$ and $x \le m$, which imply $1 \le \frac{16m 38}{11}$ and $\frac{16m 38}{11} \le m$ which imply $m \ge \frac{49}{16} \ge 4$ and $m \le \frac{38}{5} \le 8$ for $4 \le m \le 7$ the value of x is not an integer. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.

Case 8: Suppose $\frac{27x+38}{16} = x$, then $x = \frac{38}{11}$ which is not possible. So in this case $T_m^4(x) \neq x$, for all $x \ge 2$.

Result 3.6. If $x \in A_m$ is even, and $T_m(x)$ is odd, $T_m^2(x)$ is odd, $T_m^3(x)$ is odd, then $T_m^4(x) \neq x$, for all $x \geq 2$.

Let $x \in A_m$ is even such that $T_m(x)$ is odd, $T_m^2(x)$ is odd, $T_m^3(x)$ is odd, and if $T_m^4(x)$ is even then

$$T_{m}^{5}(x) = \begin{cases} \frac{27x-76m+38}{32}, \text{ if } \frac{27x-60m+38}{16} > m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} > m \\ \frac{27x-60m+38}{32}, \text{ if } \frac{27x-60m+38}{16} \le m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} > m \\ \frac{27x-52m+38}{32}, \text{ if } \frac{27x-36m+38}{16} > m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} > m \\ \frac{27x-36m+38}{32}, \text{ if } \frac{27x-36m+38}{16} \le m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} > m \\ \frac{27x-40m+38}{32}, \text{ if } \frac{27x-24m+38}{16} \ge m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} \le m \\ \frac{27x-24m+38}{32}, \text{ if } \frac{27x-24m+38}{16} \ge m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} \le m \\ \frac{27x-16m+38}{32}, \text{ if } \frac{27x+24m+38}{16} \ge m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} \le m \\ \frac{27x-16m+38}{32}, \text{ if } \frac{27x+38}{16} > m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} \le m \\ \frac{27x+38}{32}, \text{ if } \frac{27x+38}{16} \le m, \frac{9x-12m+10}{8} > m, \frac{3x+2}{4} \le m \end{cases}$$

Suppose $T_m^5(x) < x$ then following cases may arise.

Case 1: $\frac{27x-76m+38}{32} < x \Leftrightarrow x > \frac{-76m+38}{5}$, which is possible for $m \ge 2$. So in this case $T_m^5(x) < x$, for all $x \ge 2$. **Case 2:** $\frac{27x-60m+38}{32} < x \Leftrightarrow x > \frac{-60m+38}{5}$, which is possible for $m \ge 2$. So in this case $T_m^5(x) < x$, for all $x \ge 2$. **Case 3:** $\frac{27x-52m+38}{32} < x \Leftrightarrow x > \frac{-52m+38}{5}$, which is possible $m \ge 2$. So in this case $T_m^5(x) < x$, for all $x \ge 2$. **Case 4:** $\frac{27x-36m+38}{32} < x \Leftrightarrow x > \frac{-36m+38}{5}$, which is possible $m \ge 2$. So in this case $T_m^5(x) < x$, for all $x \ge 2$. **Case 5:** $\frac{27x-40m+38}{32} < x \Leftrightarrow x > \frac{-40m+38}{5}$, which is possible $m \ge 2$. So in this case $T_m^5(x) < x$, for all $x \ge 2$. **Case 6:** $\frac{27x-24m+38}{32} < x \Leftrightarrow x > \frac{-24m+38}{5}$, which is possible $m \ge 2$. So in this case $T_m^5(x) < x$, for all $x \ge 2$. **Case 7:** $\frac{27x-16m+38}{32} < x \Leftrightarrow x > \frac{-16m+38}{5}$, which is possible $m \ge 2$. So in this case $T_m^5(x) < x$, for all $x \ge 2$. **Case 8:** $27x + 38 < 32x \Leftrightarrow x > \frac{38}{5}$, which is possible $m \ge 2$. So in this case $T_m^5(x) < x$, for all $x \ge 2$.

Result 3.7. (i) If $x \in A_m$ is even, $T_m(x)$ is odd, $T_m^2(x)$ is odd, $T_m^3(x)$ is odd, then $T_m^4(x) \neq x$ for all $x \geq 2$. (ii) In addition if $T_m^k(x)$ are even, $k \geq 4$, then $T_m^p(x) \neq x$, for all $p \geq 5$.

11. Let $x \in A_m$ be arbitrary such that x is even, $T_m(x)$ is odd, $T_m^2(x)$ is even and $T_m^3(x)$ is odd, then

$$T_m^4(x) = \begin{cases} \frac{9x - 28m + 14}{16}, & \text{if } \frac{9x - 12m + 14}{16} > m \text{ and } \frac{3x + 2}{4} > m \\ \frac{9x - 12m + 14}{16}, & \text{if } \frac{9x - 12m + 14}{16} \le m \text{ and } \frac{3x + 2}{4} > m \\ \frac{9x - 16m + 14}{16}, & \text{if } \frac{9x + 14}{16} > m \text{ and } \frac{3x + 2}{4} \le m \\ \frac{9x + 14}{16}, & \text{if } \frac{9x + 14}{16} \le m \text{ and } \frac{3x + 2}{4} \le m \end{cases}$$

Suppose $T_m^4(x) = x$, then the following case may arise.

- **Case 1:** Suppose 9x 28m + 14 = 16x, then $x = \frac{-28m+14}{7}$, which is not possible, for all $m \ge 2$ and $x \le m$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.
- **Case 2:** Suppose 9x 12m + 14 = 16x, then $x = \frac{-12m+14}{7}$, which is not possible, for all $m \ge 2$ and $x \le m$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.
- **Case 3:** Suppose 9x 16m + 14 = 16x, then $x = \frac{-16m+14}{7}$, which is not possible, for all $m \ge 2$ and $x \le m$. So in this case $T_m^4(x) \ne x$, for all $x \ge 2$.

Case 4: Suppose $\frac{9x+14}{16} = x$, then x = 2, which is trivial. So in this case $T_m^4(x) \neq x$ for all $x \ge 2$.

Suppose $T_m^4(x) < x$, then the following cases are considered.

Case 1: $\Leftrightarrow 9x - 28m + 14 < 16x \Leftrightarrow x > \frac{-28m + 14}{7}$, which is possible. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Case 2: $9x - 12m + 14 < 16x \Leftrightarrow x > \frac{-12m+14}{7}$, which is possible. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Case 3: $9x - 16m + 14 < 16x \Leftrightarrow x > \frac{-16m + 14}{7}$, which is possible. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Case 4: $9x + 14 < 16x \Leftrightarrow x > \frac{14}{7} = 2$, which is possible. So in this case $T_m^4(x) < x$, for all $x \ge 2$.

Result 3.8. (i) If $x \in A_m$ is even $T_m(x)$ is odd, $T_m^2(x)$ is even, $T_m^3(x)$ is odd, then $T_m^4(x) < x$ for all $x \ge 2$. (ii) In addition if $T_m^k(x)$ is Even for all $k \ge 5$, then $T_m^p(x) \ne x$ for all $x \ge 2$ and $p \ge 5$.

Theorem 3.9. If x is even and $x \in A_m$, then the following table provides some failure cases of the expected statement $T_m^k(x) = 1$, for some k corresponding to "modulo m problem".

Serial Number	x	$T_m(x)$	$T_m^2(x)$	$T_m^3(x)$	RESULT
1	even	-	-	-	$T_m(x) \neq x$ for all x
2	even	even	-	-	(a) $T_m^2(x) \neq x$ for all x
3	even	odd	-	-	$(a)T_m^2(x) \neq x$ for all x
4	even	even	even	-	$T_m^3(x) \neq x$ for all x and $T_m^3(x) < x$ for all x if $T_m^k(x)$ is even, for all $k \ge 3$,
					then $T_m^p(x) \neq x$ for all $x, p \ge 4$.
5	even	even	odd	-	$T_m^3(x) \neq x$ for all x and $T_m^3(x) < x$ for all x if $T_m^k(x)$ is even, for all $k \ge 3$,
					then $T_m^p(x) \neq x$ for all $x, p \ge 4$.

Serial Number	x	$T_m(x)$	$T_m^2(x)$	$T_m^3(x)$	RESULT
6	even	odd	odd	-	$T_m^3(x) \neq x$ for all x and $T_m^3(x) < x$ for all x if $T_m^k(x)$ is even, for all $k \ge 3$,
					then $T_m^p(x) \neq x$ for all $x, p \ge 4$.
7	even	odd	even	-	$T_m^3(x) \neq x$ for all x and $T_m^3(x) < x$ for all x if $T_m^k(x)$ is even, for all $k \ge 3$,
					then $T_m^p(x) \neq x$ for all $x, p \ge 4$.
8	even	even	even	odd	(a) $T_m^4(x) \neq x$, for all x .
					(b) $T_m^4(x) < x$
					(c) if $T_m^p(x)$ is even, for all $p \ge 5$, then $T_m^k(x) \ne x$ for all x , if $k \ge 5$.
9	even	even	odd	odd	(a) $T_m^4(x) \neq x$, for all x .
					(b) $T_m^4(x) < x$,
					(c) if $T_m^p(x)$ is even, for all $p \ge 5$, then $T_m^k(x) \ne x$ for all x , if $k \ge 5$.
10	even	odd	odd	odd	(a) $T_m^4(x) \neq x$, for all x .
					(b) $T_m^4(x) < x$.
					(c) if $T_m^p(x)$ is even, for all $p \ge 5$, then $T_m^k(x) \ne x$ for all x , if $k \ge 5$.
11	even	odd	even	odd	(a) $T_m^4(x) \neq x$, for all x .
					(b) $T_m^4(x) < x$.
					(c) if $T_m^p(x)$ is even, for all $p \ge 5$, then $T_m^k(x) \ne x$ for all x , if $k \ge 5$.

4. Conclusion

Theorem 2.15 and Theorem 3.9 provide some failure cases of the problem: $T_m^k(x) = 1$ for some k. This work has been carried out by having discussion on the possibilities: $T_m(x) = x$, $T_m^2(x) = x$, $T_m^3(x) = x$, $T_m^4(x) = x$. Further discussion may also be carried out for $T_m^k(x) = x$ with k=5,6,7... They may provide a class of non-good numbers for the original collatz problem.

References

- [1] S.Anderson, Struggling with 3x+1 problem, The Math Asso., 71(1987), 271-274.
- [2] D.Applegate and J.C.Lagarias, Density bounds for the 3x+1 problem. I Tree-search method, Math. Comp., 64(1995), 411-426.
- [3] D.Applegate and J.C.Lagarias, Density bounds for the 3x+1 problem.II. Krasikov inequalities, Math. Comp., 64(1995), 427-438.
- [4] D.Applegate and J.C.Lagarias, Lower bounds for the total stopping Time of 3x+1 Iterates, Math. Comp., 172(2003), 1035-1049.
- [5] D.J.Bernstein, A non-iterative 2-adic statement of the 3a+1 conjecture, Proc. Amer. Math. Soc., 121(1994), 405-408.
- [6] M.Bruschi, A Generalization of the Collatz problem and conjecture, http://arXiv.org/pdf/0810.5169v1.pdf (2008).
- [7] J.M.Dolan, A.F.Gilman and S.Manickam, A generalization of Everett's result on the Collatz 3x+1 problem, Adv. Applied Math., 8(1987), 405-409.
- [8] C.J.Everett, Iteration of the number theoretic function f(2n)=n, f(2n+1)=3n+2, Adv.in Math., 25(1997), 42-45.
- [9] L.E.Garner, On heights in the Collatz 3n+1 problem, Discrete Mathematics., 55(1985), 57-64.
- [10] J.C.Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly., 92(1985), 3-23.
- [11] D.P.Mehendale, Some Observations on the 3x+1 Problem, http:arxiv.org/pdf/math/0504355.
- [12] Micheal Misiurewich and Ana Rodrigues, Real 3x+1, Proc. Amer. Math. Soc., 133(2005), 1109-1118.
- [13] B.Snapp and M.Tracy, The Collatz Problem and Analogues, Journal of Integer Sequences., 11(2008).
- [14] R.Terras, On the existence of a density, Acta Arith., 35(1979), 101-102.
- [15] G.Venturini, On the 3x+1 Problem, Adv. Appl. Math., 10(1989), 344-347.