International Journal of Mathematics And its Applications

Collatz Conjecture for Modulo an Integer

T.Kannan ${ }^{1 *}$ and C.Ganesa Moorthy ${ }^{2}$
1 Department of Mathematics, Sree Sevugan Annamalai college, Devakottai, TamilNadu, India.
2 Department of Mathematics, Alagappa University, Karaikudi, TamilNadu, India.

```
Abstract: A function Tm}\mp@subsup{T}{m}{}\mathrm{ from a set {1,2,3,_mm into itself defined by Tm}\mp@subsup{T}{m}{}(x)=\frac{x}{2}\mathrm{ , for even x and by Tm}(x)=\frac{3x+1}{2}(\operatorname{mod}m)\mathrm{ , for odd \(x\) is considered in this article. The asymptotic behaviour of this function is studied in this article for some cases.
MSC: \(\quad 11 \mathrm{~B} 05,11 \mathrm{~A} 07,11 \mathrm{~A} 99,11 \mathrm{Y} 55\).
```

Keywords: Congruence, Collatz conjecture.
(C) JS Publication.

1. Introduction

The Collatz conjecture is a well known conjecture. This is also quoted in the literature as the $3 x+1$ problem and Ulams conjecture. The conjecture is that $T^{n}(x)$ eventually reaches 1 , for any given $x \in N$, for the function $T: N \rightarrow N$ defined by

$$
T(x)= \begin{cases}\frac{x}{2}, & \text { if } x \text { is even } \\ \frac{3 x+1}{2}, & \text { if } x \text { is odd }\end{cases}
$$

Here x and $T(x)$ are all natural numbers. The following discussion is about the same problem with a restriction of starting with " x modulo m " value and " $T(x)$ modulo m " value in $A_{m}=\{1,2,3, \ldots, m\}$ for a given m. More precisely, let us define a new function $T_{m}: A_{m} \rightarrow A_{m}$ defined by

$$
T_{m}(x)= \begin{cases}\frac{x}{2} & \text { if } x \text { is even } \\ \frac{3 x+1}{2}(\bmod m) & \text { if } x \text { is odd }\end{cases}
$$

when $x, \frac{x}{2}, \frac{3 x+1}{2}(\bmod m)$ are in A_{m}. Suppose $m=1$. Then $A_{m}=\{1\}$ and the only possible value of x is 1 and $T_{m}(1)$ may be considered as 1 . So hereafter it is assumed that $m \geq 2$ for a non-trivial situation. It is expected that $T_{m}^{k}(x)$ eventually produce the value 1 , for any $x \in A_{m}$ and for some k. But this is not true. A detailed discussion about this one is presented in this article. If there is some $x \neq 1$, for which $T_{m}^{k}(x)=x$, for some $k \geq 1$, then it would lead to a cycle, that may not receive the value 1 in subsequent application of the function T_{m}. So there is a possibility that $T_{m}^{k}(x) \neq 1$ for some x and for any k, when there is such a cycle. So these exceptional cases are analyzed in this article so that the favourable

[^0]cases for original conjecture can be identified. Thus different cases are to be discussed to analyze the possibility of having a relation $T_{m}^{k}(x)=x$. There are articles which provide theoretical positive results for the original Collatz problem. Some of them are $[2,3,5,7,14,15]$. The article [8] of Everett provides an unexpected result on asymptotic density of the set $\left\{x: x=1,2,3,4 \ldots ; T_{m}^{k}(x)<x\right\}$, for some x. The most interesting result is theorem 1 in [8] which helps to evaluate the asymptotic density of the previous set as 1 . There are no other significant articles giving theoretical results. There are a number of articles (for example[1, 4, 9, 11]) which discuss particular cases for the original Collatz problem. There are many survey articles (for example [10]). There are articles which discuss about generalizations and variations of Collatz problem. (for example $[5,6,10,12,13]$). One among them is the article [13], which discusses a generalization of Collatz problem in $Z_{2}[x]$, collection of the polynomials with variable x and coefficients in Z_{2}. This particular article provides a motivation for a restricted Collatz problem, which restricted to the set $\left\{A_{m}=1,2,3,4 \ldots m\right\}$. The section 2 discusses about the case when x is odd and section 3 discusses about the case when x is even.

2. Cases for Odd Integers

1. Let $x \in A_{m}$ be arbitrary such that x is odd. Then

$$
\begin{aligned}
T_{m}(x) & =\frac{3 x+1}{2}(\bmod m) ; \text { with } T_{m}(x) \in A_{m} \\
& = \begin{cases}\frac{3 x+1-2 m}{2}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{2}, & \text { if } \frac{3 x+1}{2} \leq m\end{cases}
\end{aligned}
$$

Suppose $T_{m}(x)=x$. Then the following cases will arise.

Case 1: Suppose $\frac{3 x+1-2 m}{2}=x$, then $x=2 m-1$. Here $m \geq 2$, and so $x \notin A_{m}$. So, this is impossible. So, in this case, $T_{m}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{3 x+1}{2}=x$, then $x=-1$. This is impossible. So in this case $T_{m}(x) \neq x$, for all $x \geq 2$.
2. Let $x \in A_{m}$ be arbitrary such that x is odd and $T_{m}(x)$ is even. Then

$$
\begin{aligned}
T_{m}(x) & =\frac{3 x+1}{2}(\bmod m) ; \text { with } T_{m}(x) \in A_{m} \\
& = \begin{cases}\frac{3 x+1-2 m}{2}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{2}, & \text { if } \frac{3 x+1}{2} \leq m\end{cases} \\
T_{m}^{2}(x) & = \begin{cases}\frac{3 x+1-2 m}{4}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{4}, & \text { if } \frac{3 x+1}{2} \leq m\end{cases}
\end{aligned}
$$

Suppose $T_{m}^{2}(x)=x$, then the following cases will arise.

Case 1: Suppose $\frac{3 x+1-2 m}{4}=x$, then $x=1-2 m$. Here $m \geq 2$, and so $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{2}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{3 x+1}{4}=x$, then $x=1$. Thus $T_{m}^{2}(x)=x$ happens in this case only when $x=1$.
3. Let $x \in A_{m}$ be arbitrary such that x and $T_{m}(x)$ are odd. Then

$$
\begin{gathered}
T_{m}(x)=\frac{3 x+1}{2}(\bmod m) ; \text { with } T_{m}(x) \in A_{m} . \\
= \begin{cases}\frac{3 x+1-2 m}{2}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{2}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{2}(x)= \begin{cases}\frac{9 x+5-10 m}{4}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x-6 m+5}{4}>m \\
\frac{9 x-6 m+5}{4}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x-6 m+5}{4} \leq m \\
\frac{9 x-4 m+5}{4}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+5}{4}>m \\
\frac{9 x+5}{4}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+5}{4} \leq m .\end{cases}
\end{gathered}
$$

Suppose $T_{m}^{2}(x)=x$, then the following cases will arise.
Case 1: Suppose $\frac{9 x+5-10 m}{4}=x$, then $x=2 m-1$. Here $m \geq 2$, and so $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{2}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{9 x-6 m+5}{4}=x$, then $5 x+5=6 m$. Hence $5 \mid m$ and $m=5 y$ for some y. Then $5 x+5=6(5 y)$ and $x=6 y-1$ that is $x=6\left(\frac{m}{5}\right)-1$. Also here $x \in A_{m}$, so $1 \leq x$ and $x \leq m$ gives $m \geq 2$ and $m \leq 5$. Thus $2 \leq m \leq 5$ and $m=5 y$, for some y. So the possible value of m is 5 , and if $m=5$, the corresponding value of x is 5 . Moreover $\frac{3 x+1}{2}>m$ and $\frac{9 x-6 m+5}{4} \leq m$ are also satisfied for these values $m=5$ and $x=5$. Thus in this case if $m=5$ and $x=5$, then $T_{m}^{2}(x)=x$. That is $T_{5}^{2}(5)=5$.

Case 3: Suppose $\frac{9 x+5-4 m}{4}=x$, then $5 x+5=4 m$. So, $5 \mid m$ and $m=5 y$, for some y. Now $5 x+5=4(5 y)$ and $x=4 y-1$, that is $x=4\left(\frac{m}{5}\right)-1$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $1 \leq \frac{4 m}{5}-1$ and $\frac{4 m}{5}-1 \leq m$, so that $3 \leq m$ and $m \geq-5$. Thus $-5 \leq m$ and $m \geq 3$ and $m=5 y$ for some y. So the possible values of m are $5,10,15$, \ldots and the corresponding values of x are $3,7,11, \ldots$. Also here $3 x+1 \leq 2 m \Leftrightarrow 3\left(\frac{4 m}{5}-1\right)+1 \leq 2 m \Leftrightarrow m \leq 5$ and $9 x+5>4 m \Leftrightarrow 9\left(\frac{4 m}{5}-1\right)+5>4 m \Leftrightarrow m \geq 2$. Also here $m=5 y$, for some y. So the possible values of x and m satisfying $T_{m}^{2}(x)=x$ are $x=3$ and $m=5$. Clearly $T_{5}(3)=5, T_{5}^{2}(3)=3$.

Case 4: Suppose $\frac{9 x+5}{4}=x$, then $x=-1$. So this is impossible. So in this case $T_{m}^{2}(x) \neq x$, for every $x \geq 2$.
4. Let $x \in A_{m}$ be arbitrary such that x is odd and $T_{m}(x)$ is even and $T_{m}^{2}(x)$ is even. Then

$$
\begin{aligned}
T_{m}(x) & =\frac{3 x+1}{2}(\bmod m) ; \text { with } T_{m}(x) \in A_{m} . \\
& = \begin{cases}\frac{3 x+1-2 m}{2}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{2}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{2}(x) & = \begin{cases}\frac{3 x+1-2 m}{4}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{4}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{3}(x) & = \begin{cases}\frac{3 x+1-2 m}{8}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{8}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases}
\end{aligned}
$$

Suppose $T_{m}^{3}(x)=x$, then the following cases will arise.

Case 1: Suppose $\frac{3 x+1-2 m}{8}=x$, then $x=\frac{1-2 m}{5}$. Here $m \geq 2$, and so x is negative and then $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{3 x+1}{8}=x$, then $x=\frac{1}{5}<1$ and $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.
If $T_{m}^{3}(x)<x$, then the following cases are considered.
Case 1: $\frac{3 x+1-2 m}{8}<x \Leftrightarrow x>\frac{1-2 m}{5}$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Case 2: $\frac{3 x+1}{8}<x \Leftrightarrow x>\frac{1}{5}$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Result 2.1. If x is odd and $T_{m}^{k}(x)$ is even for all k, then $T_{m}^{p}(x) \neq x$, for all $x \geq 2$ and $p \geq 2, m \geq 2$.
5. Let $x \in A_{m}$ be arbitrary such that x is odd, $T_{m}(x)$ is even and $T_{m}^{2}(x)$ is odd. Then

$$
\begin{aligned}
T_{m}(x) & =\frac{3 x+1}{2}(\bmod m) ; \text { with } T_{m}(x) \in A_{m} . \\
& = \begin{cases}\frac{3 x+1-2 m}{2}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{2}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{2}(x) & = \begin{cases}\frac{3 x+1-2 m}{4}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{4}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{3}(x) & = \begin{cases}\frac{9 x+7-14 m}{8}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+7-6 m}{8}>m \\
\frac{9 x+7-6 m}{8}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+7-6 m}{8} \leq m \\
\frac{9 x+7-8 m}{8}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+7}{8}>m \\
\frac{9 x+7}{8}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+7}{8} \leq m .\end{cases}
\end{aligned}
$$

Suppose $T_{m}^{3}(x)=x$, then the following cases will arise.
Case 1: Suppose $\frac{9 x+7-14 m}{8}=x$, then $x=14 m-7>m$ for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{9 x+7-6 m}{8}=x$, then $x=6 m-7>m$ for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $\frac{9 x+7-8 m}{8}=x$, then $x=8 m-7>m$ for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $\frac{9 x+7}{8}=x$, then $x=-7<0$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

If $T_{m}^{3}(x)<x$, then the following cases are considered.
Case 1: $\frac{9 x+7-14 m}{8}<x \Leftrightarrow x<7(2 m-1)$, which is possible for all $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Case 2: $\frac{9 x+7-6 m}{8}<x \Leftrightarrow x<6 m-7$, which is possible for all $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Case 3: $\frac{9 x+7-8 m}{8}<x \Leftrightarrow x<8 m-7$, which is possible for all $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 4: $\frac{9 x+7}{8}<x \Leftrightarrow x<-7$ which is impossible. Also for this case, if $T_{m}^{3}(x)$ is even then $T_{m}^{4}(x)=\frac{9 x+7}{16}$, and $T_{m}^{4}(x)<$ $x \Leftrightarrow \frac{9 x+7}{16}<x \Leftrightarrow x \geq 1$ which is possible. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$, when $T_{m}^{3}(x)$ is even.

Result 2.2. If x is odd, $T_{m}(x)$ is even and $T_{m}^{2}(x)$ is odd and $T_{m}^{k}(x)$ is even, for all $k \geq 3$, then $T_{m}^{p}(x) \neq x$ for all $p \geq 4$, $x \geq 2$ and $m \geq 2$.
6. Let $x \in A_{m}$ be arbitrary such that x and $T_{m}(x)$ are odd and $T_{m}^{2}(x)$ is even. Then

$$
\begin{aligned}
& T_{m}(x)=\frac{3 x+1}{2}(\bmod m) ; \text { with } T_{m}(x) \in A_{m} . \\
&= \begin{cases}\frac{3 x+1-2 m}{2}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{2}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
& T_{m}^{2}(x)= \begin{cases}\frac{9 x+5-10 m}{4}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+5-6 m}{4}>m \\
\frac{9 x+5-6 m}{4}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+5-6 m}{4} \leq m \\
\frac{9 x+5-4 m}{4}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+5}{4}>m \\
\frac{9 x+5}{4}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+5}{4} \leq m .\end{cases} \\
& T_{m}^{3}(x)= \begin{cases}\frac{9 x+5-10 m}{8}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+5-6 m}{4}>m \\
\frac{9 x+5-6 m}{8}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+5-6 m}{8} \leq m \\
\frac{9 x+5-4 m}{8}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+5}{4}>m \\
\frac{9 x+5}{8}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+5}{4} \leq m .\end{cases}
\end{aligned}
$$

Suppose $T_{m}^{3}(x)=x$, then the following cases will arise.
Case 1: Suppose $\frac{9 x+5-10 m}{8}=x$, then $x=10 m-5>m$, for $m \geq 2$. Hence $x \notin A_{m}$, so this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{9 x+5-6 m}{8}=x$, then $x=6 m-5>m$, for $m \geq 2$. Hence $x \notin A_{m}$, so this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $\frac{9 x+5-4 m}{8}=x$, then $x=4 m-5>m$, for $m \geq 2$. Hence $x \notin A_{m}$, So this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $\frac{9 x+5}{8}=x$, then $x=-5<0$. Hence $x \notin A_{m}$, so this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

If $T_{m}^{3}(x)<x$, then the following cases are considered.

Case 1: $\frac{9 x+5-10 m}{8}<x \Leftrightarrow x<5(2 m-1)$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 2: $\frac{9 x+5-6 m}{8}<x \Leftrightarrow x<6 m-5$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Case 3: $\frac{9 x+5-4 m}{8}<x \Leftrightarrow x<4 m-5$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Case 4: $\frac{9 x+5}{8}<x \Leftrightarrow x<-5$, which is impossible. Also for this case, if $T_{m}^{3}(x)$ is even then $T_{m}^{4}(x)=\frac{9 x+5}{16}$ and $T_{m}^{4}(x)<$ $x \Leftrightarrow \frac{9 x+5}{16}<x \Leftrightarrow x \geq \frac{5}{7}$, which is possible. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$, when $T_{m}^{3}(x)$ is even.

Result 2.3. If x is odd, $T_{m}(x)$ is odd and $T_{m}^{k}(x)$ is even, for all $k \geq 2$, then $T_{m}^{p}(x) \neq x$, for all $p \geq 4$.
7. Let $x \in A_{m}$ be arbitrary such that x is odd, $T_{m}(x)$ is odd and $T_{m}^{2}(x)$ is odd, then

$$
\begin{aligned}
& T_{m}(x)=\frac{3 x+1}{2}(\bmod m) ; \text { with } T_{m}(x) \in A_{m} . \\
&= \begin{cases}\frac{3 x+1-2 m}{2}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{2}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
& T_{m}^{2}(x)= \begin{cases}\frac{9 x+5-10 m}{4}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+5-6 m}{4}>m \\
\frac{9 x+5-6 m}{4}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+5-6 m}{4} \leq m \\
\frac{9 x+5-4 m}{4}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+5}{4}>m \\
\frac{9 x+5}{4}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+5}{4} \leq m .\end{cases} \\
& T_{m}^{3}(x)=\left\{\begin{array}{ll}
\frac{27 x+19-38 m}{8}, & \text { if } \frac{3 x+1}{2}>m \frac{9 x+5-6 m}{4}>m \text { and } \frac{27 x+19-30 m}{8}>m \\
\frac{27 x+19-30 m}{8}, & \text { if } \frac{3 x+1}{2}>m \frac{9 x+5-6 m}{4}>m \text { and } \frac{27 x+19-30 m}{8} \leq m \\
\frac{27 x+19-26 m}{8}, & \text { if } \frac{3 x+1}{2}>m \frac{9 x+5-6 m}{4} \leq m \text { and } \frac{27 x+19-30 m}{8}>m \\
\frac{27 x+19-12 m}{8}, & \text { if } \frac{3 x+1}{2}>m \frac{9 x+5-6 m}{4} \leq m \text { and } \frac{27 x+19-30 m}{8} \leq m \\
\frac{27 x+19-20 m}{8}, & \text { if } \frac{3 x+1}{2} \leq m \frac{9 x+5}{4}>m \text { and } \frac{27 x+19-12 m}{8}>m \\
4
\end{array}{ }^{\frac{27 x+5}{4}>m \text { and } \frac{27 x+19-12 m}{8} \leq m} \begin{array}{ll}
\frac{279-8 m}{8}, & \text { if } \frac{3 x+1}{2} \leq m \frac{9 x+5}{4} \leq m \text { and } \frac{27 x+19}{8}>m \\
\frac{27 x+19}{8}, & \text { if } \frac{3 x+1}{2} \leq m \frac{9 x+5}{4} \leq m \text { and } \frac{27 x+19}{8} \leq m .
\end{array}\right.
\end{aligned}
$$

Suppose $T_{m}^{3}(x)=x$, then the following cases will arise.
Case 1: Suppose $\frac{27 x+19-38 m}{8}=x$, then $x=2 m-1>m$, for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{27 x+19-30 m}{8}=x$, then $19 x=30 m-19$ and x is integer. So $19 \mid m$ and $m=19 y$ for some y. Now $19 x=30(19 y)-19$ then
$x=\frac{30 m}{19}-1$.Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 2$ and $m \leq 1$. So there exist no m satisfying these conditions. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $\frac{27 x+19-26 m}{8}=x$, then $19 x=26 m-19$ and x is integer.So $19 \mid m$ and $m=19 y$ for some y. Now $19 x=26(19 y)-19$ then
$x=\frac{26 m}{19}-1$.Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 2$ and $m \leq 2$. Hence the possible value of m is 2. But this m is not of the form $m=19 y$ for some y. So there exist no m satisfying these conditions. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.
Case 4: Suppose $\frac{27 x+19-18 m}{8}=x$, then $19 x=18 m-19$ and x is an integer. So $19 \mid m$ and $m=19 y$ for some y. Now $19 x=18(19 y)-19$ then $x=18 \frac{m}{19}-1$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 3$ and $m \geq-1$. But here m is of the form $m=19 y$ for some y. Hence the possible values of m are $19,38,57, \ldots$ and the corresponding values of x are $17,35,53, \ldots$
Also here (i) $3 x+1>2 m \Leftrightarrow 3\left(\frac{18 m}{19}-1\right)+1>2 m \Leftrightarrow m \geq 3$, which is possible. Hence $\frac{3 x+1}{2}>m$.
(ii) $9 x+5 \leq 10 m \Leftrightarrow 9\left(\frac{18 m}{19}-1\right)+5 \leq 10 m \Leftrightarrow m \geq 1$, which is possible. Hence $\frac{9 x+5}{10} \leq m$.
(iii) $27 x+19>26 m \Leftrightarrow 27\left(\frac{18 m}{19}-1\right)+1>26 m \Leftrightarrow m \geq-61$, which is possible. Hence $\frac{27 x+19}{26} \leq m$.

Result 2.4. If $m=19 y$, for some y, and x is odd of the form $x=\frac{18 m}{19}-1$ then $T_{m}^{3}(x)=x$, when $T(x)$ and $T^{2}(x)$ are odd.
Case 5: Suppose $\frac{27 x+19-12 m}{8}=x$, then $19 x=12 m-19$ and x is integer. So $19 \mid m$ and $m=19 y$ for some y. Now $19 x=12(19 y)-19$ then $x=\frac{12 m}{19}-1$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 4$ and $m \geq \frac{-19}{7}$. But here m is of the form $m=19 y$ for some y. Hence the possible values of m are $19,38,57, \ldots$ and the corresponding values of x are $11,23,35, \ldots$ Also here
(i) $3 x+1 \leq 2 m \Leftrightarrow 3\left(\frac{12 m}{19}-1\right)+1 \leq 2 m \Leftrightarrow m \geq-19$, which is possible. Hence $\frac{3 x+1}{2} \leq m$.
(ii) $9 x+5>4 m \Leftrightarrow 9\left(\frac{12 m}{19}-1\right)+5>4 m \Leftrightarrow m \geq 3$, which is possible. Hence $\frac{9 x+5}{10}>m$.
(iii) $27 x+19 \leq 20 m \Leftrightarrow 27\left(\frac{12 m}{19}-1\right)+1 \leq 20 m \Leftrightarrow m \geq(-3)$, which is possible. Hence $\frac{27 x+19}{20} \leq m$.

Result 2.5. If $m=19 y$ for some y and x is odd of the form $x=\frac{12 m}{19}-1$, then $T_{m}^{3}(x)=x$, when $T(x)$ and $T^{2}(x)$ are odd.
Case 6: Suppose $\frac{27 x+19-20 m}{8}=x$, then $19 x=20 m-19$ and x is integer. So $19 \mid m$ and $m=19 y$ for some y. Now $19 x=20(19 y)-19$ then $x=\frac{20 m}{19}-1$.Here $x \epsilon A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 2$ and $m \leq 19$. But here m is of the form $m=19 y$ for some y. Hence the possible value of m is 19 and the corresponding value of x is 19 . But here if $x=19$ and $m=19$ then $3 x+1=57$ and $2 m=38$. Hence $3 x+1 \not \leq 2 m$. So this condition was not satisfied. So in this case $T_{m}^{3}(x) \neq x$ for all $x \geq 2$.

Case 7: Suppose $\frac{27 x+19-8 m}{8}=x$, then $19 x=8 m-19$ and x is integer. So $19 \mid m$ and $m=19 y$ for some y. Now $19 x=8(19 y)-19$ then $x=\frac{8 m}{19}-1$.Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 5$ and $m \geq \frac{-19}{11}$. But here m is of the form $m=19 y$ for some y. Hence the possible values of m are $19,38,57, \ldots$ and the corresponding values of x are $7,15,23,31 \ldots$ Also here
(i) $3 x+1 \leq 2 m \Leftrightarrow 3\left(\frac{8 m}{19}-1\right)+1 \leq 2 m \Leftrightarrow m \geq-3$, which is possible. Hence $\frac{3 x+1}{2} \leq m$.
(ii) $9 x+5 \leq 4 m \Leftrightarrow 9\left(\frac{8 m}{19}-1\right)+5 \leq 4 m \Leftrightarrow m \geq-19$, which is possible. Hence $\frac{9 x+5}{4} \leq m$.
(iii) $27 x+19>8 m \Leftrightarrow 27\left(\frac{8 m}{19}-1\right)+1>8 m \Leftrightarrow m \geq-3$, which is possible. Hence $\frac{27 x+19}{8}>m$.

Result 2.6. If $m=19 y$ for some y and x is odd of the form $x=\frac{8 m}{19}-1$, then $T_{m}^{3}(x)=x$ for all $x \geq 2$.
Case 8: Suppose $\frac{27 x+19}{8}=x$, then $x=-1$. So this is not possible. So in this case $T_{m}^{3}(x) \neq x$ for all x, when $T(x)$ and $T^{2}(x)$ are odd.

If $T_{m}^{3}(x)<x$, then the following cases are considered.
Case 1: $\frac{27 x+19-38 m}{8}<x \Leftrightarrow x<(2 m-1)$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 2: $\frac{27 x+19-30 m}{8}<x \Leftrightarrow x<\frac{30 m}{19}-1$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 3: $\frac{27 x+19-26 m}{8}<x \Leftrightarrow x<\frac{26 m}{19}-1$, which is not possible for $x \geq 2$ and $x \in A_{m}$. For this case $T_{m}^{4}(x)=\frac{27 x+19-26 m}{16}$ and $\frac{27 x+19-26 m}{16}<x \Leftrightarrow x<\frac{26 m-19}{11}$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 4: $\frac{27 x+19-18 m}{8}<x \Leftrightarrow x<\frac{18 m-19}{19}$ which is not possible for $x \geq 2$ and $x \in A_{m}$. For this case $T_{m}^{4}(x)=\frac{27 x+19-18 m}{16}$ and $\frac{27 x+19-18 m}{16}<x \Leftrightarrow x<\frac{18 m-19}{11}$, which is not possible for $x \geq 2$ and $x \in A_{m}$. Now $T_{m}^{5}(x)=\frac{27 x+19-18 m}{32}$ and $\frac{27 x+19-18 m}{32}<x \Leftrightarrow x<\frac{-18 m+19}{5}$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{5}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 5: $\frac{27 x+19-12 m}{8}<x \Leftrightarrow x<\frac{12 m-19}{19}$, which is not possible for $x \geq 2$ and $x \in A_{m}$. For this case $T_{m}^{4}(x)=\frac{27 x+19-18 m}{32}$ and $T_{m}^{5}(x)=\frac{27 x+19-12 m}{32}$ and $\frac{27 x+19-12 m}{32}<x \Leftrightarrow x<\frac{-12 m+19}{5}$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{5}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 6: $\frac{27 x+19-20 m}{8}<x \Leftrightarrow x<\frac{20 m-19}{19}$, which is not possible for $x \geq 2$ and $x \in A_{m}$. For this case $T_{m}^{4}(x)=\frac{27 x+19-20 m}{32}$ and $T_{m}^{5}(x)=\frac{27 x+19-20 m}{32}$ and $\frac{27 x+19-20 m}{32}<x$ is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{5}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 7: $\frac{27 x+19-8 m}{8}<x \Leftrightarrow x<\frac{8 m-19}{19}$, which is not possible for $x \geq 2$ and $x \in A_{m}$. For this case $T_{m}^{4}(x)=\frac{27 x+19-8 m}{16}$ and $T_{m}^{5}(x)=\frac{27 x+19-8 m}{32}$ and $\frac{27 x+19-8 m}{32}<x$ is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{5}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 8: $\frac{27 x+19}{8}<x \Leftrightarrow x<-1$, which is not possible for $x \geq 2$ and $x \in A_{m}$. For this case $T_{m}^{4}(x)=\frac{27 x+19}{16}$ and $T_{m}^{5}(x)=\frac{27 x+19}{32}$ and $\frac{27 x+19}{32}<x$ is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{5}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Result 2.7. If $x, T_{m}(x)$ and $T_{m}^{2}(x)$ are odd and $T_{m}^{k}(x)$ is even, for all $k \geq 3$, then $T_{m}^{p}(x) \neq x$, for all $p \geq 4$.
8. Let $x \in A_{m}$ be arbitrary such that x is odd, $T_{m}(x), T_{m}^{2}(x)$ are even and $T_{m}^{3}(x)$ is odd. Then

$$
\begin{aligned}
T_{m}(x) & =\frac{3 x+1}{2}(\bmod m) ; \text { with } T_{m}(x) \in A_{m} . \\
& = \begin{cases}\frac{3 x+1-2 m}{2}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{2}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{2}(x) & = \begin{cases}\frac{3 x+1-2 m}{4}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{4}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{3}(x) & = \begin{cases}\frac{3 x+1-2 m}{8}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{8}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{4}(x) & = \begin{cases}\frac{9 x+11-22 m}{8}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+11-6 m}{8}>m \\
\frac{9 x+11-6 m}{8}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+11-6 m}{8} \leq m \\
\frac{9 x+11-6 m}{16}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+11}{16}>m \\
\frac{9 x+11}{16}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+11}{16} \leq m .\end{cases}
\end{aligned}
$$

Suppose $T_{m}^{4}(x)=x$, then the following cases will arise.
Case 1: Suppose $\frac{9 x+11-22 m}{16}=x$, then $x=\frac{11-2 m}{7}>m$ for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{9 x+11-6 m}{16}=x$, then $x=\frac{11-6 m}{7}>m$ for $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $\frac{9 x+7-16 m}{8}=x$, then $x=\frac{11-6 m}{7}>m$ for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $\frac{9 x+11}{16}=x$, then $x=\frac{11}{7}$. Hence $x \notin A_{m}$, which is
impossible. So in this case $T_{m}^{4}(x) \neq x$, for all x.
If $T_{m}^{4}(x)<x$, then the following cases are considered.

Case 1: $\frac{9 x+11-22 m}{16}<x \Leftrightarrow x<\frac{-22 m+11}{7}$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 2: $\frac{9 x+11-6 m}{8}<x \Leftrightarrow x<\frac{-6 m+11}{7}$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Case 3: $\frac{9 x+11-6 m}{16}<x \Leftrightarrow x<\frac{-6 m+11}{7}$, which is possible for $x \geq 2$ and $x \in A_{m}$. Hence $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Case 4: $\frac{9 x+11}{16}<x \Leftrightarrow x>\frac{11}{7}$, which is possible. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Result 2.8. If $x \in A_{m}$ and x is odd, $T_{m}(x)$ is even, $T_{m}^{2}(x)$ is even and $T_{m}^{3}(x)$ is odd then, (i) There exist no $x \in A_{m}$ such that $T_{m}^{4}(x)=x$. (ii) In addition if $T_{m}^{k}(x)$ is even, for all $k \geq 4$, there exist no $x \in A_{m}$ such that $T_{m}^{p}(x) \neq x$, for all $p \geq 4$ and $k \geq 3$.
9. Let $x \in A_{m}$ be arbitrary such that x is odd, $T_{m}(x)$ is even and $T_{m}^{2}(x)$ is odd and $T_{m}^{3}(x)$ are odd. Then

$$
\left.\begin{array}{rl}
T_{m}(x) & =\frac{3 x+1}{2}(\bmod m) ; \text { with } T_{m}(x) \in A_{m} . \\
& = \begin{cases}\frac{3 x+1-2 m}{2}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{2}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{2}(x) & = \begin{cases}\frac{3 x+1-2 m}{4}, & \text { if } \frac{3 x+1}{2}>m \\
\frac{3 x+1}{4}, & \text { if } \frac{3 x+1}{2} \leq m .\end{cases} \\
T_{m}^{3}(x) & = \begin{cases}\frac{9 x+7-14 m}{8}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+7-6 m}{8}>m \\
\frac{9 x+7-6 m}{8}, & \text { if } \frac{3 x+1}{2}>m \text { and } \frac{9 x+7-6 m}{8} \leq m \\
\frac{9 x+7-8 m}{8}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+7}{8}>m \\
\frac{9 x+7}{8}, & \text { if } \frac{3 x+1}{2} \leq m \text { and } \frac{9 x+7}{8} \leq m .\end{cases} \\
T_{m}^{4}(x) & = \begin{cases}\frac{27 x+29-58 m}{16}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{8}>m \text { and } \frac{27 x+29-42 m}{16}>m \\
\frac{27 x+29-42 m}{16}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{8}>m \text { and } \frac{27 x+29-42 m}{16} \leq m \\
\frac{27 x+29-34 m}{16}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{8} \leq m \text { and } \frac{27 x+29-18 m}{16}>m \\
\frac{27 x+29-40 m}{16}, & \text { if } \frac{\text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{2} \leq m \text { and } \frac{27 x+29-18 m}{16}>m}{8} \leq m \\
\frac{27 x+29-24 m}{16}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8}>m \text { and } \frac{27 x+15-8 m}{16} \leq m \\
\frac{27 x+29-16 m}{16}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8} \leq m \text { and } \frac{27 x+29}{16}>m \\
\frac{27 x+29}{16}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8} \leq m \text { and } \frac{27 x+29}{16} \leq m .\end{cases} \\
\hline 16
\end{array}\right\}
$$

Suppose $T_{m}^{4}(x)=x$, then the following cases will arise.
Case 1: Suppose $\frac{27 x+29-58 m}{16}=x$, then $x=\frac{29(2 m-1)}{11}>m$ for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{27 x+29-42 m}{16}=x$, then $x=\frac{42 m-29}{11}>m$ for $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $\frac{27 x+29-34 m}{16}=x$ then $x=\frac{34 m-29}{11}>m$ for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $\frac{27 x+29-18 m}{16}=x$, then $x=\frac{18 m-29}{7}>m$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 5: Suppose $\frac{27 x+29-40 m}{16}=x$, then $x=\frac{40 m-29}{11}>m$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 6: Suppose $\frac{27 x+29-24 m}{16}=x$, then $x=\frac{24 m-29}{7}>m$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 7: Suppose $\frac{27 x+29-16 m}{16}=x$, then $x=\frac{16 m-29}{7}>m$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 8: Suppose $\frac{27 x+29}{16}=x$, then $x=\frac{-29}{9}$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$. Also for this case, if $T_{m}^{4}(x)$ is even, then:

$$
T_{m}^{5}(x)= \begin{cases}\frac{27 x+29-58 m}{32}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{8}>m \text { and } \frac{27 x+29-42 m}{16}>m \\ \frac{27 x+29-42 m}{32}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{8}>m \text { and } \frac{27 x+29-42 m}{16} \leq m \\ \frac{27 x+29-34 m}{32}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{8} \leq m \text { and } \frac{27 x+29-18 m}{16}>m \\ \frac{27 x+29-18 m}{32}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{8} \leq m \text { and } \frac{27 x+29-18 m}{16}>m \\ \frac{27 x+29-40 m}{32}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8}>m \text { and } \frac{27 x+15-8 m}{16}>m \\ \frac{27 x+29-24 m}{32}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8}>m \text { and } \frac{27 x+15-8 m}{16} \leq m \\ \frac{27 x+29-16 m}{32}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8} \leq m \text { and } \frac{27 x+29}{16}>m \\ \frac{27 x+29}{32}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8} \leq m \text { and } \frac{27 x+29}{16} \leq m .\end{cases}
$$

and clearly $T_{m}^{5}(x)<x$, for all x.
Result 2.9. If $x \in A_{m}$ is odd, $T_{m}(x)$ is even, $T_{m}^{2}(x)$ is odd,$T_{m}^{3}(x)$ is odd and $T_{m}^{k}(x)$ is even, for all $k \geq 3$, then $T_{m}^{p}(x) \neq x$, for all $p \geq 5$.
10. Let $x \in A_{m}$ be arbitrary such that x is odd, $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is even and $T_{m}^{3}(x)$ is odd. Then

$$
T_{m}^{4}(x)= \begin{cases}\frac{27 x+23-46 m}{16}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+5-6 m}{4}>m \text { and } \frac{27 x+23-30 m}{16}>m \\ \frac{27 x+23-30 m}{16}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+5-6 m}{4}>m \text { and } \frac{27 x+23-30 m}{16} \leq m \\ \frac{27 x+23-34 m}{16}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+5-6 m}{4} \leq m \text { and } \frac{27 x+19-18 m}{16}>m \\ \frac{27 x+29-18 m}{16}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{8} \leq m \text { and } \frac{27 x+29-18 m}{16}>m \\ \frac{27 x+29-40 m}{16}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8}>m \text { and } \frac{27 x+15-8 m}{16}>m \\ \frac{\frac{27 x+29-24 m}{16},}{} \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8}>m \text { and } \frac{27 x+15-8 m}{16} \leq m \\ \frac{\frac{27 x+29-16 m}{16},}{}, \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8} \leq m \text { and } \frac{\frac{27 x+19}{8}>m}{}>m \text { and } \frac{27 x+29}{8} \leq m .\end{cases}
$$

Suppose $T_{m}^{4}(x)=x$, then the following eight cases will arise.
Case 1: Suppose $\frac{27 x+23-46 m}{16}=x$, then $x=\frac{46 m-23}{16}>m$, for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{27 x+23-30 m}{16}=x$, then $x=\frac{30 m-23}{11}>m$, for $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $\frac{27 x+23-34 m}{16}=x$, then $x=\frac{34 m-23}{11}>m$, for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $\frac{27 x+23-18 m}{16}=x$, then $x=\frac{18 m-23}{11}$, for $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $\left.T_{m}^{3} 4 x\right) \neq x$, for all $x \geq 2$.

Case 5: Suppose $\frac{27 x+19-39 m}{16}=x$, then $x=\frac{39 m-19}{11}>m$, for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 6: Suppose $\frac{27 x+23-12 m}{16}=x$, then $x=\frac{12 m-23}{11}>m$, for $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 7: Suppose $\frac{27 x+23-34 m}{16}=x$, then $x=\frac{34 m-23}{11}>m$, for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 8: Suppose $\frac{27 x+23}{16}=x$, then $x=\frac{-23}{11}$, for $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Also here if $T_{m}^{4}(x)$ is even, then

$$
T_{m}^{5}(x)= \begin{cases}\frac{27 x+23-46 m}{32}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+5-6 m}{4}>m \text { and } \frac{27 x+23-30 m}{16}>m \\ \frac{27 x+23-30 m}{32}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+5-6 m}{4}>m \text { and } \frac{27 x+23-30 m}{16} \leq m \\ \frac{27 x+23-34 m}{32}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+5-6 m}{4} \leq m \text { and } \frac{27 x+19-18 m}{16}>m \\ \frac{27 x+23-18 m}{32}, & \text { if } \frac{3 x+1}{2}>m, \frac{9 x+7-6 m}{8} \leq m \text { and } \frac{27 x+29-18 m}{16}>m \\ \frac{27 x+12-39 m}{32}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8}>m \text { and } \frac{27 x+15-8 m}{16}>m \\ \frac{27 x+12-12 m}{32}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8}>m \text { and } \frac{27 x+15-8 m}{16} \leq m \\ \frac{27 x+23-16 m}{32}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+7}{8} \leq m \text { and } \frac{27 x+19}{8}>m \\ \frac{27 x+23}{32}, & \text { if } \frac{3 x+1}{2} \leq m, \frac{9 x+5}{4} \leq m \text { and } \frac{27 x+29}{8} \leq m\end{cases}
$$

Clearly here $T_{m}^{5}(x)<x$, for all $x \in A_{m}$.

Result 2.10. If $x \in A_{m}$ and $x, T_{m}(x)$ are odd, $T_{m}^{2}(x)$ is even and $T_{m}^{3}(x)$ is odd then, (i) there exist no $x \in A_{m}$ such that $T_{m}^{4}(x)=x$. (ii) In addition if $T_{m}^{k}(x)$ is even, for all $k \geq 4$, there exist no $x \in A_{m}$ such that $T_{m}^{p}(x) \neq x$, for all $p \geq 4$ and $k \geq 3$.
11. Let $x \in A_{m}$ be arbitrary such that $x, T_{m}(x), T_{m}^{2}(x), T_{m}^{3}(x)$ are odd, then

Suppose $T_{m}^{4}(x)=x$, then the following cases will arise.
Case 1: Suppose $\frac{81 x+65-130 m}{16}=x$, then $x=(2 m-1)>m$ for $m \geq 2$. Hence $x \notin A_{m}$. So this is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{81 x+65-114 m}{16}=x$, then $x=\frac{114 m-65}{65}>m$ for $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $\frac{81 x+65-106 m}{16}=x$, then $x=\frac{106 m-65}{65}>m$ for $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $\frac{81 x+65-90 m}{16}=x$, then $x=\frac{90 m-65}{65}>m$ for $m \geq 3$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 5: Suppose $\frac{81 x+65-104 m}{16}=x$, then $x=\frac{104 m-65}{65}>m$ for $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 6: Suppose $\frac{81 x+65-78 m}{16}=x$, then $x=\frac{78 m-65}{65}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 2$ and $m \leq 5$. Hence the possible value of m are $2,3,4,5 \ldots$ and the corresponding value of x are not integer except $m=5$ and $x=5$. So in this case $T_{m}^{4}(x)=x$, for $x=5$ and $m=5$. So in this case for $x=5$ and $m=5, T_{m}^{4}(x)=x$.

Case 7: Suppose $\frac{81 x+65-70 m}{16}=x$, then $x=\frac{14 m-13}{13}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 2$ and $m \leq 13$. Hence the possible value of m are $2,3,4,5 \ldots$ and the corresponding value of x are not integer except $m=13$ and $x=13$. But $\frac{27 x-18 m+19}{8} \not \leq x$, for $x=13, m=13$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 8: Suppose $\frac{81 x+65-54 m}{16}=x$, then $x=\frac{54 m-65}{65}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 3$ and $m \geq-5$. Hence the possible value of m are $3,4,5 \ldots$ and the corresponding value of x are of the form $x=\frac{54 m-65}{65}$. Also here
(i) $3 x+1>2 m \Leftrightarrow 3\left(\frac{54 m}{65}-1\right)+1>2 m$ which is possible. Hence $\frac{3 x+1}{2}>m$.
(ii) $9 x+5 \leq 10 m \Leftrightarrow 9\left(\frac{54 m}{65}-1\right)+5 \leq 10 m \Leftrightarrow m \geq \frac{-570}{64}$, which is possible. Hence $\frac{9 x+5}{10} \leq 10 m$.
(iii) $27 x+19 \leq 26 m \Leftrightarrow 27\left(\frac{54 m}{65}-1\right)+19 \leq 26 m \Leftrightarrow m \geq \frac{(-1736)}{232}$, which is possible. Hence $\frac{27 x+19}{26} \leq 26 m$.

Result 2.11. If $x \in A_{m}$ is odd, $T_{m}(x)$ is even, $T_{m}^{2}(x)$ is odd and $T_{m}^{3}(x)$ is odd and if $x=\frac{54 m-65}{65}$ and $m=65 p$, then $T_{m}^{4}(x) \neq x$, for all $p \geq 1$.

Case 9: Suppose $\frac{81 x+65-52 m}{16}=x$, then $x=\frac{52 m-65}{65}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 3$ and $m \geq-5$. Hence the possible values of m are $3,4,5 \ldots$ and the corresponding values of x are of the form $x=\frac{52 m-65}{65}$. Also here
(i) $3 x+1 \leq 2 m \Leftrightarrow 3\left(\frac{54 m}{65}-1\right)+1>2 m$ which is possible. Hence $\frac{3 x+1}{2}>m$.
(ii) $9 x+5 \leq 10 m \Leftrightarrow 9\left(\frac{52 m}{65}-1\right)+1 \leq 2 m \Leftrightarrow m \leq \frac{130}{26} \Leftrightarrow m \leq 5$. Hence the range of m is $3 \leq m \leq 5$. But in this range the value of x is not an integer. Hence in this case $T_{m}^{4}(x) \neq x$ for all x.

Case 10: Suppose $\frac{81 x+65-36 m}{16}=x$, th en $x=\frac{36 m-65}{65}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 4$ and $m \geq \frac{-65}{29}$. Also here
(i) $3 x+1 \leq 2 m \Leftrightarrow 3\left(\frac{36 m}{65}-1\right)+1 \leq 2 m \Leftrightarrow m \geq \frac{-130}{12}$ which is possible. Hence $\frac{3 x+1}{2} \leq m$.
(ii) $9 x+5>4 m \Leftrightarrow 9\left(\frac{36 m}{65}-1\right)+1>4 m \Leftrightarrow m \geq 8$, which is possible. Hence $\frac{9 x+5}{4}>m$.
(iii) $27 x+19 \leq 20 m \Leftrightarrow 27\left(\frac{36 m}{65}-1\right)+19 \leq 20 m \Leftrightarrow m \leq 1$, which is not possible. Hence in this case $T_{m}^{4}(x) \neq x$ for all x.

Case 11: Suppose $\frac{81 x+65-96 m}{16}=x$, then $x=\frac{96 m-65}{65}>m$, which is not possible. Hence in this case $T_{m}^{4}(x) \neq x$ for all x.
Case 12: Suppose $\frac{81 x+65-60 m}{16}=x$, then $x=\frac{12 m-13}{13}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 3$ and $m \geq-13$. Also here
(i) $3 x+1 \leq 2 m \Leftrightarrow 3\left(\frac{12 m}{13}-1\right)+1 \leq 2 m \Leftrightarrow m \leq 1$ which is not possible. Hence in this case $T_{m}^{4}(x) \neq x$ for all x.

Case 13: Suppose $\frac{81 x+65-40 m}{16}=x$, then $x=\frac{8 m-13}{13}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 4$ and $m \geq \frac{-13}{5}$. Also here
(i) $3 x+1 \leq 2 m \Leftrightarrow m \geq-13$ which is possible. Hence $\frac{3 x+1}{2} \leq m$.
(ii) $9 x+5 \leq 4 m \Leftrightarrow 9\left(\frac{8 m}{13}-1\right)+5 \leq 4 m \Leftrightarrow m \leq 2$, which is not possible. Hence in this case $T_{m}^{4}(x) \neq x$ for all x.

Case 14: Suppose $\frac{81 x+65-24 m}{16}=x$, then $x=\frac{24 m-65}{65}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $m \geq 6$ and $m \geq \frac{-65}{39}$. Also here
(i) $3 x+1 \leq 2 m \Leftrightarrow 3\left(\frac{24 m}{65}-1\right)+1 \leq 2 m \Leftrightarrow m \geq \frac{-130}{58}$ which is possible. Hence $\frac{3 x+1}{2} \leq m$.
(ii) $9 x+5 \leq 4 m \Leftrightarrow 9\left(\frac{24 m}{65}-1\right)+5 \leq 4 m \Leftrightarrow m \geq \frac{-260}{44}$, which is possible. Hence $\frac{9 x+5}{4} \leq m$.
(iii) $27 x+19 \leq 8 m \Leftrightarrow 81\left(\frac{24 m}{65}-1\right)+65 \leq 40 m \Leftrightarrow m \geq \frac{-1040}{656}$, which is possible. Hence $\frac{27 x+19}{8} \leq m$.
(iv) $81 x+65 \leq 40 m \Leftrightarrow 81\left(\frac{24 m}{65}-1\right)+65 \leq 40 m \Leftrightarrow m \geq \frac{-1040}{656}$, which is possible. Hence the possible values of m are $6,7,8, \ldots$ and the corresponding possible values of x are $x=24 p-1, p=1,2,3, \ldots$.

Result 2.12. If $x \in A_{m}$ is odd, $T_{m}(x)$ is even, $T_{m}^{2}(x)$ is odd and $T_{m}^{3}(x)$ is odd and if $x=\frac{24 m-65}{65}$ and $m=65 p$ then $T_{m}^{4}(x) \neq x$, for all $x \geq 2$ and $p \geq 1$.

Case 15: Suppose $\frac{81 x+65-16 m}{16}=x$, then $x=\frac{16 m-65}{65}$.Here $x \in A_{m}$, so $1 \leq x$ and $x \leq m \Rightarrow m \geq 9$ and $m \geq-2$. Also here (i) $3 x+1 \leq 2 m \Leftrightarrow 3\left(\frac{16 m}{65}-1\right)+1 \leq 2 m \Leftrightarrow m \geq 2$, which is possible. Hence $\frac{3 x+1}{2} \leq m$.
(ii) $9 x+5 \leq 4 m \Leftrightarrow 9\left(\frac{16 m}{65}-1\right)+1 \leq 4 m \Leftrightarrow m \geq \frac{-325}{116}$, which is possible. Hence $\frac{9 x+5}{4} \leq m$.
(iii) $27 x+19 \leq 8 m \Leftrightarrow 81\left(\frac{16 m}{65}-1\right)+19 \leq 8 m \Leftrightarrow m \geq \frac{-520}{88}$, which is possible. Hence $\frac{27 x+19}{8} \leq m$.
(iv) $81 x+65>16 m \Leftrightarrow 81\left(\frac{16 m}{65}-1\right)+16>16 m \Leftrightarrow m>4$.

Result 2.13. If $x \in A_{m}$ is odd, $T_{m}(x)$ is even, $T_{m}^{2}(x), T_{m}^{3}(x)$ are odd and if $x=\frac{16 m-65}{65}$ and $m=65 p$ then $T_{m}^{4}(x) \neq x$ for all $x \geq 2$ and $p \geq 1$.

Case 16: Suppose $\frac{81 x+65}{16}=x$, then $x=-1$ and x not in A_{m}. Hence in this case $T_{m}^{4}(x) \neq x$ for all x.
Result 2.14. If $x \in A_{m}$ is odd, $T_{m}(x)$ is even, $T_{m}^{2}(x)$ is odd and $T_{m}^{3}(x)$ is odd and if $T_{m}^{5}(x), T_{m}^{6}(x)$ are even then $T_{m}^{7}(x)<x$ for all x and hence if $T_{m}^{k}(x)$ are even for all $k \geq 5$, then $T_{m}^{p}(x) \neq x$, for all $x \geq 2$ and for all $p \geq 7$.

Theorem 2.15. If x is odd and $x \in A_{m}$, then the following table provides some failure cases of the expected statement $T_{m}^{k}(x)=1$ for some k, corresponding to "modulo m problem".

Serial number	x	$T_{m}(x)$	$T_{m}^{2}(x)$	$T_{m}^{3}(x)$	RESULT
1	odd	-	-	-	$T_{m}(x) \neq x$, for all x
2	odd	even	-	-	(a) $T_{m}^{2}(x) \neq x$, for all x (b) $T_{m}^{2}(x)=x$ only if $x=1$
3	odd	odd	-	-	(a) $T_{m}^{2}(x) \neq x$, for all x (b) $T_{5}^{2}(x)=5$ (c) $T_{5}^{2}(3)=3$
4	odd	even	even	-	$T_{m}(x) \neq x$, for all x and $T_{m}^{3}(x)<x$ for all x if $T_{m}^{k}(x)$ is even, for all $\mathrm{k} \geq 3$, then $T_{m}^{p}(x) \neq x$, for all $x, p \geq 4$.
5	odd	even	odd	-	$T_{m}(x) \neq x$, for all x and $T_{m}^{3}(x)<x$, for all x if $T_{m}^{k}(x)$ is even, for all $\mathrm{k} \geq 3$, then $T_{m}^{p}(x) \neq x$, for all $x, p \geq 4$.
6	odd	odd	even	-	$T_{m}(x) \neq x$, for all x and $T_{m}^{3}(x)<x$ for all x if $T_{m}^{k}(x)$ is even, for all $\mathrm{k} \geq 3$, then $T_{m}^{p}(x) \neq x$, for all $x, p \geq 4$.
7	odd	odd	odd	-	(a) if $m=19 y$, for some y and $x=\frac{18 m}{19}-1$, then $T_{m}^{3}(x)=x$ (b) if $m=19 y$, for some y and $x=\frac{12 m}{19}-1$, then $T_{m}^{3}(x)=x$ (c) if $m=19 y$, for some y and $x=\frac{8 m}{19}-1$, then $T_{m}^{3}(x)=x$ (d) if $T_{m}^{p}(x)$ is even, for all $p \geq 3$,
8	odd	even	even	odd	(a) $T_{m}^{4}(x) \neq x$, for all x. (b) $T_{m}^{4}(x)<x$ (c) if $T_{m}^{p}(x)$ is even, for all $p \geq 5$, then $T_{m}^{k}(x) \neq x$, for all x, if $k \geq 5$.
9	odd	even	odd	odd	(a) $T_{m}^{4}(x) \neq x$, for all x. (b) $T_{m}^{5}(x)<x$, only if $T_{m}^{4}(x)$ is even. (c) if $T_{m}^{p}(x)$ is even, for all $p \geq 5$, then $T_{m}^{k}(x) \neq x$, for all x, if $k \geq 5$.
10	odd	odd	even	odd	(a) $T_{m}^{4}(x) \neq x$, for all x. (b) $T_{m}^{5}(x)<x$, only if $T_{m}^{4}(x)$ is even. (c) if $T_{m}^{p}(x)$ is even, for all $p \geq 5$, then $T_{m}^{k}(x) \neq x$, for all x, if $k \geq 5$.
11	odd	odd	odd	odd	(a) if $x=5$ and $m=5$ then $T_{m}^{4}(x)=x$ (b) if $m=65 y$, for $y=1,2,3 \ldots$. and $x=\frac{54 m}{65}-1$, then $T_{m}^{4}(x)=x$ (c) if $m=65 y$, for $y=1,2,3 \ldots$. and $x=\frac{24 m}{65}-1$, then $T_{m}^{4}(x)=x$ (d) if $m=65 y$, for $y=1,2,3 \ldots .$. and $x=\frac{16 m}{65}-1$, then $T_{m}^{4}(x)=x$

3. Cases for Even Integers

1. Let $x \in A_{m}$ be arbitrary such that x is even. Then $T_{m}(x)=\frac{x}{2}<m$. So in this case $T_{m}(x) \neq x$, for all $x \geq 2$.
2. Let $x \in A_{m}$ be arbitrary and x is even and $T_{m}(x)$ is even. Then $T_{m}(x)=\frac{x}{2}<m, T_{m}^{2}(x)=\frac{x}{2}<m$. So in this case
$T_{m}^{2}(x) \neq x$, for all $x \geq 2$.
3. Let $x \in A_{m}$ be arbitrary and x is even and $T_{m}(x)$ is odd. Then

$$
\begin{aligned}
& T_{m}(x)=\frac{x}{2}<m \\
& T_{m}^{2}(x)= \begin{cases}\frac{3 x+2-4 m}{4}, & \text { if } \frac{3 x+2}{4}>m \\
\frac{3 x+2}{4}, & \text { if } \frac{3 x+2}{4} \leq m\end{cases}
\end{aligned}
$$

Suppose $T_{m}^{2}(x)=x$, then the following cases arise.
Case 1: Suppose $\frac{3 x+2-4 m}{4}=4 x$, then $3 x+2-4 m=4 x, 2-4 m=x$,
$x=2(1-2 m)<0$, for $m \geq 2$. Hence $x \notin A_{m}$, which is a contradiction. So in this case $T_{m}^{2}(x) \neq x$, for all $x \geq 2$.
Case 2: Suppose $\frac{3 x+2}{4}=x$, then $x=2$, which is a trivial case.
4. Let $x \in A_{m}$ be arbitrary and x is even, $T_{m}(x)$ is even, and $T_{m}^{2}(x)$ is even.

$$
\begin{aligned}
T_{m}(x) & =\frac{x}{2}<m . \\
T_{m}^{2}(x) & =\frac{x}{4}<m . \\
T_{m}^{3}(x) & =\frac{x}{8}<m .
\end{aligned}
$$

So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$. Here $T_{m}^{3}(x)<x$, for all $m \geq 2$. So if $T_{m}^{k}(x)$ is even, for all $k \geq 3$ then $T_{m}^{p}(x) \neq x$, for all $x \geq 2$ and $p \geq 4$.
5. Let $x \in A_{m}$ be arbitrary and x is even, $T_{m}(x)$ is even, and $T_{m}^{2}(x)$ is odd. Then

$$
\begin{aligned}
& T_{m}(x)=\frac{x}{2}<m \\
& T_{m}^{2}(x)=\frac{x}{4}<m \\
& T_{m}^{3}(x)= \begin{cases}\frac{3 x-8 m+4}{8}, & \text { if } \frac{3 x+4}{8}>m \\
\frac{3 x+4}{8}, & \text { if } \frac{3 x+4}{8}<m\end{cases}
\end{aligned}
$$

Suppose $T_{m}^{3}(x)=x$, then the following cases arise.
Case 1: Suppose $\frac{3 x+4-8 m}{8}=x$, then $x=\frac{4(1-2 m)}{5}<0$, for $m \geq 2$. Here $x \notin A_{m}$, which is a contradiction. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{3 x+4}{8}=x$, then $5 x=4, x=\frac{4}{5} \notin A_{m}$, so that in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.
Suppose $T_{m}^{3}(x)<x$, then the following cases are considered.
Case 1: $\frac{3 x+4-8 m}{8}<x \Leftrightarrow 3 x+4-8 m<8 x \Leftrightarrow-8 m+4<5 x \Leftrightarrow x>\frac{-8 m+4}{5}$ which is possible for $x>2$ and $m \geq 2$. Here $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 2: $\frac{3 x+4}{8}<x \Leftrightarrow 3 x+4<8 x \Leftrightarrow 4<5 x \Leftrightarrow x>\frac{4}{5}$ which is possible for $x \geq 2$ and $m \geq 2$. Here $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Result 3.1. Let $x \in A_{m}$ such that x is even, $T_{m}(x)$ is even and $T_{m}^{2}(x)$ is odd. Then $T_{m}^{3}(x)<x$, for all x and $m \geq 2$. Also if $T_{m}^{k}(x)$ is even, for all $k \geq 3$, then $T_{m}^{p}(x) \neq x$, for all $x \geq 2$, for all $p \geq 3$.
6. Let $x \in A_{m}$ be arbitrary such that x is even, $T_{m}(x)$ is odd, and $T_{m}^{2}(x)$ is odd, then.

$$
\begin{gathered}
T_{m}(x)=\frac{x}{2}<m \\
T_{m}^{2}(x)= \begin{cases}\frac{3 x+2-4 m}{4}, & \text { if } \frac{3 x+2}{4}>m \\
\frac{3 x+2}{4}, & \text { if } \frac{3 x+2}{4} \leq m\end{cases} \\
T_{m}^{3}(x)= \begin{cases}\frac{9 x+10-20 m}{8}, & \text { if } \frac{3 x+2}{4}>m \text { and } \frac{9 x+10-12 m}{8}>m \\
\frac{9 x+10-12 m}{8}, & \text { if } \frac{3 x+2}{4}>m \text { and } \frac{9 x+10-12 m}{8} \leq m \\
\frac{9 x+10-8 m}{8}, & \text { if } \frac{3 x+2}{4} \leq m \text { and } \frac{9 x+10}{8}>m \\
\frac{9 x+10}{8}, & \text { if } \frac{3 x+2}{4} \leq m \text { and } \frac{9 x+10}{8} \leq m\end{cases}
\end{gathered}
$$

Suppose $T_{m}^{3}(x)=x$, then the following cases arise.
Case 1: Suppose $T_{m}^{3}(x)=x$, then $x=20 m-10$ and $x=10(2 m-1)>m$, for $m \geq 2$. Hence $x \notin A_{m}$ which is a contradiction. Hence in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{9 x+10-12 m}{8}=x$, then $x=2(6 m-5)>m$, for $m \geq 2$. Hence $x \notin A_{m}$ which is a contradiction. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $\frac{9 x+10-8 m}{8}=x$, then $9 x+10-8 m=8 x$ and $x=8 m-10>m$, for $m \geq 2$. Hence $x \notin A_{m}$, which is a contradiction. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $\frac{9 x+10}{8}=x$, then $x=-10 \notin A_{m}$, which is a contradiction. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.
Suppose $T_{m}^{3}(x)$ is even, then

$$
T_{m}^{4}(x)= \begin{cases}\frac{9 x+10-12 m}{16}, & \text { if } \frac{9 x+10-12 m}{8}>m \\ \frac{9 x+10-12 m}{16}, & \text { if } \frac{9 x+10-12 m}{8} \leq m \\ \frac{9 x+10-8 m}{16}, & \text { if } \frac{9 x+10}{16}>m \\ \frac{9 x+10}{16}, & \text { if } \frac{9 x+10}{16} \leq m\end{cases}
$$

Suppose $T_{m}^{4}(x)<x$, then the following cases are considered.
Case 1: $9 x-12 m+10<16 x \Leftrightarrow x>\frac{-20 m+10}{7}$, which is possible for all $x \geq 2$ and $m \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 2: $9 x-12 m+10<16 x \Leftrightarrow x>\frac{-12 m+10}{7}$, which is possible for all $x \geq 2$ and $m \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 3: $9 x-8 m+10<16 x \Leftrightarrow x>\frac{-8 m+10}{7}$, which is possible for all $x \geq 2$ and $m \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 4: $9 x-8 m+10<16 x \Leftrightarrow x>\frac{-8 m+10}{7}$, which is possible for all $x \geq 2$ and $m \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 5: $9 x+10<8 x \Leftrightarrow x<-10$, which is possible for all x and $m \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Result 3.2. Let $x \in A_{m}$. If x is even and $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is odd and $T_{m}^{k}(x)$ is even $k \geq 3$ then $T_{m}^{p}(x) \neq x$, for all $x \geq 2$ and $m \geq 2$ and $p \geq 4$.
7. Let $x \in A_{m}$ such that x is even, $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is even. Then

$$
\begin{aligned}
& T_{m}(x)=\frac{x}{2} \\
& T_{m}^{2}(x)= \begin{cases}\frac{3 x+2-4 m}{4}, & \text { if } \frac{3 x+2}{4}>m \\
\frac{3 x+2}{4}, & \text { if } \frac{3 x+2}{4} \leq m\end{cases} \\
& T_{m}^{3}(x)= \begin{cases}\frac{3 x+2-4 m}{8}, & \text { if } \frac{3 x+2}{4}>m \\
\frac{3 x+2}{8}, & \text { if } \frac{3 x+2}{4} \leq m\end{cases}
\end{aligned}
$$

Suppose $T_{m}^{3}(x)=x$, then the following cases may arise.
Case 1: Suppose $\frac{3 x+2-4 m}{8}=x$ then $x=\frac{2-4 m}{5}<0$, for all $m \geq 2$. Hence $x \notin A_{m}$, which is impossible. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{3 x+2}{8}=x$. Then $x=\frac{2}{5} \notin A_{m}$, which is a contradiction. So in this case $T_{m}^{3}(x) \neq x$, for all $x \geq 2$.
Suppose $T_{m}^{3}(x)<x$, then the following case are considered.
Case 1: $3 x+2-4 m<8 x \Leftrightarrow \frac{-4 m+2}{5}$, which is possible for all $x \in A_{m}$ and $m \geq 2$. So in this case $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.

Case 2: $3 x+2<8 x \Leftrightarrow \frac{2}{5}$, which is possible for all $x \in A_{m}$ and $m \geq 2$. So in this case $T_{m}^{3}(x)<x$, for all $x \geq 2$ and $m \geq 2$.
Result 3.3. Let $x \in A_{m}$. If x is even, $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is even and $T_{m}^{k}(x)$ is even, $k \geq 3$ then $T_{m}^{p}(x) \neq x$, for all $x \geq 2$ and $m \geq 2$ and $p \geq 4$.
8. Let $x \in A_{m}$ be arbitrary such that x is even, $T_{m}(x)$ is even, $T_{m}^{2}(x)$ is even, and $T_{m}^{3}(x)$ is odd. Then,

$$
T_{m}^{4}(x)= \begin{cases}\frac{3 x-16 m+8}{16}, & \text { if } \frac{3 x+8}{m}>m \\ \frac{3 x+8}{16}, & \text { if } \frac{3 x+8}{16} \leq m\end{cases}
$$

Suppose $T_{m}^{4}(x)=x$, then the following cases may arise.
Case 1: Suppose $3 x-16 m+8=16 x$, then $x=\frac{-16 m+8}{13}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $1 \leq \frac{-16 m+8}{13}$ and $\frac{-16 m+8}{13} \leq m$ so that $m \leq \frac{-5}{16}$ and $m \geq \frac{8}{29}$. This is not possible. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $\frac{3 x+8}{16}=x$ then $x=\frac{8}{13}$ which is not an integer. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$
Suppose $T_{m}^{4}(x)<x$ then the following cases are considered.
Case 1: $3 x-16+8<16 x \Leftrightarrow x \geq \frac{-16 m+8}{13}$, which is possible for all $x \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Case 2: $3 x+8<16 x \Leftrightarrow x>\frac{8}{13}$, which is possible. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Result 3.4. Let $x \in A_{m}$. If x is even, $T_{m}(x)$ is even, $T_{m}^{2}(x)$ is even and $T_{m}^{k}(x)$ is even, $k \geq 3$ then $T_{m}^{p}(x) \neq x=$, for all $x \geq 2$ and $m \geq 2$ and $p \geq 4$.
9. Let $x \in A_{m}$ be arbitrary and x is even, $T_{m}(x)$ even, $T_{m}^{2}(x)$ is odd and $T_{m}^{3}(x)$ is odd. Then

$$
T_{m}^{4}(x)= \begin{cases}\frac{9 x+20-40 m}{16}, & \text { if } \frac{9 x+20-24 m}{16}>m \text { and } \frac{3 x+4}{8}>m \\ \frac{9 x+20-24 m}{16}, & \text { if } \frac{9 x+20-24 m}{16} \leq m \text { and } \frac{3 x+4}{8}>m \\ \frac{9 x+20-24 m}{16}, & \text { if } \frac{9 x+20}{16}>m \text { and } \frac{3 x+4}{8} \leq m \\ \frac{9 x+20}{16}, & \text { if } \frac{9 x+20}{16} \leq m \text { and } \frac{3 x+4}{8} \leq m\end{cases}
$$

Suppose $T_{m}^{4}(x)=x$, then the following cases may arise.
Case 1: Suppose $9 x-40 m+20=16 x$, then $x=\frac{-40 m+20}{7}$, which is not possible for $m \geq 2$, since $x \leq m$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $9 x-24 m+20=16 x$, then $x=\frac{-24 m+20}{7}$, which is not possible for $m \geq 2$, since $x \leq m$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $9 x-16 m+20=16 x$, then $x=\frac{-16 m+20}{7}$, which is not possible for $m \geq 2$, since $x \leq m$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $9 x+20=16 x$, then $x=\frac{20}{7} \notin A_{m}$, for any $m \geq 2$. So in this case also $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.
Suppose $T_{m}^{4}(x)<x$, then the following cases are considered.
Case 1: $9 x-40 m+20<16 x \Leftrightarrow x>\frac{-40 m+20}{7}$, which is possible for $m \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Case 2: $\Leftrightarrow 9 x-24 m+20<16 x \Leftrightarrow x>\frac{-24 m+20}{7}$, which is possible for $m \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Case 3: $9 x-16 m+20<16 x \Leftrightarrow x>\frac{-16 m+20}{7}$, which is possible for $m \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Case 4: $\frac{9 x+20}{16}<x \Leftrightarrow x>\frac{20}{7}$, which is possible for $m \geq 2$. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Result 3.5. (i) If $x \in A_{m}$ is even, $T_{m}(x)$ is even, $T_{m}^{2}(x)$ is odd, $T_{m}^{3}(x)$ is odd, then $T_{m}^{4}(x) \neq x$, for all $x \geq 2$. (ii) In addition if $T_{m}^{k}(x)$ is even, $k \geq 4$, then $T_{m}^{p}(x) \neq x$, for all $p \geq 5$.
10. Let $x \in A_{m}$ be arbitrary such that x is even, $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is odd, $T_{m}^{3}(x)$ is odd. Then

Suppose $T_{m}^{4}(x)=x$ then following cases may arise.
Case 1: Suppose $27 x-76 m+38=16 x$, then $x=\frac{76 m-38}{11}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$, which imply $1 \leq \frac{76 m-38}{11}$ and $\frac{76 m-38}{11} \leq m$ which imply $m \geq \frac{49}{76}$ and $m \leq \frac{38}{65} \leq 1$, which is not possible, since $m \geq 2$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $27 x-60 m+38=16 x$, then $x=\frac{60 m-38}{11}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$, which imply $1 \leq \frac{60 m-38}{11}$ and $\frac{60 m-38}{11} \leq m$ which imply $m \geq \frac{49}{60}$ and $m \leq \frac{38}{49}$, which is not possible, since $m \geq 2$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $27 x-52 m+38=16 x$, then $x=\frac{52 m-38}{11}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$ which imply $1 \leq \frac{52 m-38}{11}$ and $\frac{52 m-38}{11} \leq m$ which imply $m \geq \frac{49}{52}$ and $m \leq \frac{38}{41} \leq 1$, which is not possible, since $m \geq 2$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $27 x-36 m+38=16 x$, then $x=\frac{36 m-38}{11}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$, which imply $1 \leq \frac{36 m-38}{11}$ and $\frac{36 m-38}{11} \leq m$ which imply $m \geq \frac{49}{36}$ and $m \leq \frac{38}{25} \leq 2$, which is not possible, since $m \geq 2$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 5: Suppose $\frac{27 x-40 m+38}{16}=x$, then $x=\frac{40 m-38}{11}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$, which imply $1 \leq \frac{40 m-38}{11}$ and $\frac{40 m-38}{11} \leq m$ which imply $m \geq \frac{49}{40}$ and $m \leq \frac{38}{29} \leq 2$, which is not possible, since $m \geq 2$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 6: Suppose $27 x-24 m+38=16 x$, then $x=\frac{24 m-38}{11}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$, which imply $1 \leq \frac{24 m-38}{11}$ and $\frac{24 m-38}{11} \leq m$ which imply $m \geq \frac{49}{24}>2$ and $m \leq \frac{38}{13} \leq 3$ and $2<m \leq 3$, which is not possible, since $m \geq 2$ and m is an integer. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 7: Suppose $27 x-16 m+38=16 x$, then $x=\frac{16 m-38}{11}$. Here $x \in A_{m}$, so that $1 \leq x$ and $x \leq m$, which imply $1 \leq \frac{16 m-38}{11}$ and $\frac{16 m-38}{11} \leq m$ which imply $m \geq \frac{49}{16} \geq 4$ and $m \leq \frac{38}{5} \leq 8$ for $4 \leq m \leq 7$ the value of x is not an integer. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 8: Suppose $\frac{27 x+38}{16}=x$, then $x=\frac{38}{11}$ which is not possible, So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.
Result 3.6. If $x \in A_{m}$ is even, and $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is odd, $T_{m}^{3}(x)$ is odd, then $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.
Let $x \in A_{m}$ is even such that $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is odd, $T_{m}^{3}(x)$ is odd, and if $T_{m}^{4}(x)$ is even then

$$
T_{m}^{5}(x)= \begin{cases}\frac{\frac{27 x-76 m+38}{32},}{}, & \text { i } \frac{27 x-60 m+38}{16}>m, \frac{9 x-12 m+10}{8}>m, \frac{3 x+2}{4}>m \\ \frac{27 x-60 m+38}{32}, & \text { if } \frac{27 x-60 m+38}{16} \leq m, \frac{9 x-12 m+10}{8}>m, \frac{3 x+2}{4}>m \\ \frac{27 x-52 m+38}{32}, & \text { if } \frac{27 x-36 m+38}{16}>m, \frac{9 x-12 m+10}{8}>m, \frac{3 x+2}{4}>m \\ \frac{27 x-36 m+38}{32}, & \text { if } \frac{27 x-3 m+38}{16} \leq m, \frac{9 x-12 m+10}{8}>m, \frac{3 x+2}{4}>m \\ \frac{27 x-40 m+38}{32}, & \text { if } \frac{27 x-24 m+38}{16}>m, \frac{9 x-12 m+10}{8}>m, \frac{3 x+2}{4} \leq m \\ \frac{27 x-24 m+38}{32}, & \text { if } \frac{27 x-24 m+38}{16} \leq m, \frac{9 x-12 m+10}{8}>m, \frac{3 x+2}{4} \leq m \\ \frac{27 x-16 m+38}{32}, & \text { if } \frac{27 x+38}{16}>m, \frac{9 x-12 m+10}{8}>m, \frac{3 x+2}{4} \leq m \\ \frac{27 x+38}{32}, & \text { if } \frac{27 x+38}{16} \leq m, \frac{9 x-12 m+10}{8}>m, \frac{3 x+2}{4} \leq m\end{cases}
$$

Suppose $T_{m}^{5}(x)<x$ then following cases may arise.
Case 1: $\frac{27 x-76 m+38}{32}<x \Leftrightarrow x>\frac{-76 m+38}{5}$, which is possible for $m \geq 2$. So in this case $T_{m}^{5}(x)<x$, for all $x \geq 2$.
Case 2: $\frac{27 x-60 m+38}{32}<x \Leftrightarrow x>\frac{-60 m+38}{5}$, which is possible for $m \geq 2$. So in this case $T_{m}^{5}(x)<x$, for all $x \geq 2$.
Case 3: $\frac{27 x-52 m+38}{32}<x \Leftrightarrow x>\frac{-52 m+38}{5}$, which is possible $m \geq 2$. So in this case $T_{m}^{5}(x)<x$, for all $x \geq 2$.
Case 4: $\frac{27 x-36 m+38}{32}<x \Leftrightarrow x>\frac{-36 m+38}{5}$, which is possible $m \geq 2$. So in this case $T_{m}^{5}(x)<x$, for all $x \geq 2$.
Case 5: $\frac{27 x-40 m+38}{32}<x \Leftrightarrow x>\frac{-40 m+38}{5}$, which is possible $m \geq 2$. So in this case $T_{m}^{5}(x)<x$, for all $x \geq 2$.

Case 6: $\frac{27 x-24 m+38}{32}<x \Leftrightarrow x>\frac{-24 m+38}{5}$, which is possible $m \geq 2$. So in this case $T_{m}^{5}(x)<x$, for all $x \geq 2$.
Case 7: $\frac{27 x-16 m+38}{32}<x \Leftrightarrow x>\frac{-16 m+38}{5}$, which is possible $m \geq 2$. So in this case $T_{m}^{5}(x)<x$, for all $x \geq 2$.
Case 8: $27 x+38<32 x \Leftrightarrow x>\frac{38}{5}$, which is possible $m \geq 2$. So in this case $T_{m}^{5}(x)<x$, for all $x \geq 2$.
Result 3.7. (i) If $x \in A_{m}$ is even, $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is odd, $T_{m}^{3}(x)$ is odd, then $T_{m}^{4}(x) \neq x$ for all $x \geq 2$. (ii) In addition if $T_{m}^{k}(x)$ are even, $k \geq 4$, then $T_{m}^{p}(x) \neq x$, for all $p \geq 5$.
11. Let $x \in A_{m}$ be arbitrary such that x is even, $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is even and $T_{m}^{3}(x)$ is odd, then

$$
T_{m}^{4}(x)= \begin{cases}\frac{9 x-28 m+14}{16}, & \text { if } \frac{9 x-12 m+14}{16}>m \text { and } \frac{3 x+2}{4}>m \\ \frac{9 x-12 m+14}{16}, & \text { if } \frac{9 x-12 m+14}{16} \leq m \text { and } \frac{3 x+2}{4}>m \\ \frac{9 x-16 m+14}{16}, & \text { if } \frac{9 x+14}{16}>m \text { and } \frac{3 x+2}{4} \leq m \\ \frac{9 x+14}{16}, & \text { if } \frac{9 x+14}{16} \leq m \text { and } \frac{3 x+2}{4} \leq m\end{cases}
$$

Suppose $T_{m}^{4}(x)=x$, then the following case may arise.
Case 1: Suppose $9 x-28 m+14=16 x$, then $x=\frac{-28 m+14}{7}$, which is not possible, for all $m \geq 2$ and $x \leq m$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 2: Suppose $9 x-12 m+14=16 x$, then $x=\frac{-12 m+14}{7}$, which is not possible, for all $m \geq 2$ and $x \leq m$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 3: Suppose $9 x-16 m+14=16 x$, then $x=\frac{-16 m+14}{7}$, which is not possible, for all $m \geq 2$ and $x \leq m$. So in this case $T_{m}^{4}(x) \neq x$, for all $x \geq 2$.

Case 4: Suppose $\frac{9 x+14}{16}=x$, then $x=2$, which is trivial.So in this case $T_{m}^{4}(x) \neq x$ for all $x \geq 2$.
Suppose $T_{m}^{4}(x)<x$, then the following cases are considered.
Case 1: $\Leftrightarrow 9 x-28 m+14<16 x \Leftrightarrow x>\frac{-28 m+14}{7}$, which is possible. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Case 2: $9 x-12 m+14<16 x \Leftrightarrow x>\frac{-12 m+14}{7}$, which is possible. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Case 3: $9 x-16 m+14<16 x \Leftrightarrow x>\frac{-16 m+14}{7}$, which is possible. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Case 4: $9 x+14<16 x \Leftrightarrow x>\frac{14}{7}=2$, which is possible. So in this case $T_{m}^{4}(x)<x$, for all $x \geq 2$.
Result 3.8. (i) If $x \in A_{m}$ is even $T_{m}(x)$ is odd, $T_{m}^{2}(x)$ is even, $T_{m}^{3}(x)$ is odd, then $T_{m}^{4}(x)<x$ for all $x \geq 2$. (ii) In addition if $T_{m}^{k}(x)$ is Even for all $k \geq 5$, then $T_{m}^{p}(x) \neq x$ for all $x \geq 2$ and $p \geq 5$.

Theorem 3.9. If x is even and $x \in A_{m}$, then the following table provides some failure cases of the expected statement $T_{m}^{k}(x)=1$, for some k corresponding to "modulo m problem".

Serial Number	x	$T_{m}(x)$	$T_{m}^{2}(x)$	$T_{m}^{3}(x)$	RESULT
1	even	-	-	-	$T_{m}(x) \neq x$ for all x
2	even	even	-	-	(a) $T_{m}^{2}(x) \neq x$ for all x
3	even	odd	-	-	(a) $T_{m}^{2}(x) \neq x$ for all x
4	even	even	even	-	$T_{m}^{3}(x) \neq x$ for all x and $T_{m}^{3}(x)<x$ for all x if $T_{m}^{k}(x)$ is even, for all $k \geq 3$, then $T_{m}^{p}(x) \neq x$ for all $x, \mathrm{p} \geq 4$.
5	even	even	odd	-	$T_{m}^{3}(x) \neq x$ for all x and $T_{m}^{3}(x)<x$ for all x if $T_{m}^{k}(x)$ is even, for all $k \geq 3$, then $T_{m}^{p}(x) \neq x$ for all $x, \mathrm{p} \geq 4$.

Serial Number	x	$T_{m}(x)$	$T_{m}^{2}(x)$	$T_{m}^{3}(x)$	RESULT
6	even	odd	odd	-	$T_{m}^{3}(x) \neq x$ for all x and $T_{m}^{3}(x)<x$ for all x if $T_{m}^{k}(x)$ is even, for all $k \geq 3$, then $T_{m}^{p}(x) \neq x$ for all $x, \mathrm{p} \geq 4$.
7	even	odd	even	-	$T_{m}^{3}(x) \neq x$ for all x and $T_{m}^{3}(x)<x$ for all x if $T_{m}^{k}(x)$ is even, for all $k \geq 3$, then $T_{m}^{p}(x) \neq x$ for all $x, \mathrm{p} \geq 4$.
8	even	even	even	odd	(a) $T_{m}^{4}(x) \neq x$, for all x. (b) $T_{m}^{4}(x)<x$ (c) if $T_{m}^{p}(x)$ is even, for all $p \geq 5$, then $T_{m}^{k}(x) \neq x$ for all x, if $k \geq 5$.
9	even	even	odd	odd	(a) $T_{m}^{4}(x) \neq x$, for all x. (b) $T_{m}^{4}(x)<x$, (c) if $T_{m}^{p}(x)$ is even, for all $p \geq 5$, then $T_{m}^{k}(x) \neq x$ for all x, if $k \geq 5$.
10	even	odd	odd	odd	(a) $T_{m}^{4}(x) \neq x$, for all x. (b) $T_{m}^{4}(x)<x$. (c) if $T_{m}^{p}(x)$ is even, for all $p \geq 5$, then $T_{m}^{k}(x) \neq x$ for all x, if $k \geq 5$.
11	even	odd	even	odd	(a) $T_{m}^{4}(x) \neq x$, for all x. (b) $T_{m}^{4}(x)<x$. (c) if $T_{m}^{p}(x)$ is even, for all $p \geq 5$, then $T_{m}^{k}(x) \neq x$ for all x,if $k \geq 5$.

4. Conclusion

Theorem 2.15 and Theorem 3.9 provide some failure cases of the problem: $T_{m}^{k}(x)=1$ for some k. This work has been carried out by having discussion on the possibilities: $T_{m}(x)=x, T_{m}^{2}(x)=x, T_{m}^{3}(x)=x, T_{m}^{4}(x)=x$. Further discussion may also be carried out for $T_{m}^{k}(x)=x$ with $k=5,6,7 \ldots$. They may provide a class of non-good numbers for the original collatz problem.

References

[1] S.Anderson, Struggling with $3 x+1$ problem, The Math Asso., 71(1987), 271-274.
[2] D.Applegate and J.C.Lagarias, Density bounds for the 3x+1 problem.I Tree-search method, Math. Comp., 64(1995), 411-426.
[3] D.Applegate and J.C.Lagarias, Density bounds for the $3 x+1$ problem.II. Krasikov inequalities, Math. Comp., 64(1995), 427-438.
[4] D.Applegate and J.C.Lagarias, Lower bounds for the total stopping Time of $3 x+1$ Iterates, Math. Comp., 172(2003), 1035-1049.
[5] D.J.Bernstein, A non-iterative 2-adic statement of the 3a+1 conjecture, Proc. Amer. Math. Soc., 121(1994), 405-408.
[6] M.Bruschi, A Generalization of the Collatz problem and conjecture, http://arXiv.org/pdf/0810.5169v1.pdf (2008).
[7] J.M.Dolan, A.F.Gilman and S.Manickam, A generalization of Everett's result on the Collatz 3x+1 problem, Adv. Applied Math., 8(1987), 405-409.
[8] C.J.Everett, Iteration of the number theoretic function $f(2 n)=n, f(2 n+1)=3 n+2$, Adv.in Math., 25(1997), 42-45.
[9] L.E.Garner, On heights in the Collatz $3 n+1$ problem, Discrete Mathematics., 55(1985), 57-64.
[10] J.C.Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly., 92(1985), 3-23.
[11] D.P.Mehendale, Some Observations on the $3 x+1$ Problem, http:arxiv.org/pdf/math/0504355.
[12] Micheal Misiurewich and Ana Rodrigues, Real $3 x+1$, Proc. Amer. Math. Soc., 133(2005), 1109-1118.
[13] B.Snapp and M.Tracy, The Collatz Problem and Analogues, Journal of Integer Sequences., 11(2008).
[14] R.Terras, On the existence of a density, Acta Arith., 35(1979), 101-102.
[15] G.Venturini, On the $3 x+1$ Problem, Adv. Appl. Math., 10(1989), 344-347.

[^0]: * E-mail: hardykannan@gmail.com

