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Abstract: Use of “ring” in the determine of a planar ternary ring seems unjustified at first sight. In this paper we show that in
Desargues affine plane, in certain condition, planar ternary ring (S, t) turns into usually associative ring (S, +, ·). So, in

an affine plane A = (P, L, I) coordinatized from a coordinative system (O, I, OX, OY, OI) and bijection σ : (OI)→ S,
determine a ternary operation t : S3 → S, which we call planar ternary operation. We prove that every coordinatizing

affine plane A = (P, L, I) determine a planar ternary ring (S, t), where S is the set of coordinates of affine plane and t

its planar ternary operation, and vise versa. Also we introduce the binary operation of addition and multiplication in S
and underline relations a+ b = t(a, 1, b), a · b = t(a, b, 0). Since affine plane is fulfilled with the first Desargues axiom

D1, related to the structure (S, +, ·) in that plane, considering some isomorphism imply that (S, +) is abelian group.

In the following, we show that when in an affine plane except first Desargues axiom D1 also hold the second Desargues
axiom D2, then its planar ternary ring (S, t) is the usual associative ring (S, +, ·).

Keywords: Ternary operation, planar ternary operation, planar ternary ring, coordinatized affine plane, first D1 and the second D2

Desargues axiom.
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1. Coordinatization of an Affine Plane

Let A = (P, L, I) be an affine plane [1]. The line ` ∈ L considering like a set of points P ∈ P, incident with that line we

denote with (`). The set of lines passing through the point P denote with (P). So, the set of lines from parallel with the line

m denote with Km. Let we fixed an arbitrary point O ∈ P and any three lines d1, d2, d3 ∈ L, passing through the point

O. Let X 6= O, X ∈ d1, I 6= O, I ∈ d2 and Y 6= O, Y ∈ d3. Line OX is abscissa, OY is ordinate, line OI denote with u we

called unite line and a point I we called unite point. Besides the lines OX, OY, the line OI we called also unite line, since

point I the unite point (Figure 1). Let S be the set of symbols such that

card S = card (OI) (1)

and σ : (OI) → S a bijection between the set of points (OI) from the line OI and the set S. We denote with 0 = σ(O),

1 = σ(I). For every point P ∈ (OI) there exist the symbol p = σ(P ) ∈ S. The point P (p, p) ∈ S × S.

Definition 1.1. The coordinate of an ordered pair (p, p) ∈ S×S we called coordinate of the point P and we denote P (p, p).

Hence,

∀ P ∈ (u), P (p, p)⇔ p = σ(P ) (2)

we have O(0, 0) and I(1, 1).

∗ E-mail: sflamure@gmail.com

81

http://ijmaa.in/


Interpretation of Planar Ternary Ring in Desargues Plane Like Usual Ring

Let we denote `POX a line of L, passing through the point P and parallel with the line OX. For every point P /∈ (u) there

exists lines `POX ∈ KOX and `POY ∈ KOY , that intersect the unit line u (Figure 1). Let `POY ∩OI = A and `POX ∩OI = B.

Figure 1.

Definition 1.2. The coordinate of an ordered pair (a, b) ∈ S × S, where A(a, a) and B(b, b), we called coordinate of the

point P and we denote P (a, b). Hence,

∀P ∈ P ∧ P /∈ (u), P (a, b)⇔ lPOY ∩ u = A(a, a) ∧ lPOX ∩ u = B(b, b) (3)

Hence we can obtain a function P → S × S, which is bijection.

Definition 1.3. (O, I, OX, OY, OI) is called coordinate system of an affine plane A, the point O called origin of the

coordinate, the set of the symbols S called the set of coordinate of an affine plane A, hence an affine plane A is coordinatized.

The way of determine the coordinate of an arbitrary point P ∈ P (Figure 1) we can take in the form

P ∈ OI

p = σ(P )

⇔ P (p, p)

P /∈ OI

`POY ∩OI = A(a, a)

`POX ∩OI = B(b, b)

⇔ P (a, b) (4)

Hence, for a point A′ ∈ OX and A′ 6= O we have A′(a, 0), for B′ ∈ OY and B′ 6= O we have B′(0, b), while seems every

point P of the plane A is the intersection of the lines `POX and `POY , we have

P (a, b)⇔

 `POY ∩OX = A′(a, 0)

`POX ∩OY = B′(0, b)
(5)
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The line `IOY ∈ KOY , passing through the unite point I and parallel with the line of ordinate OY, we called skew line (Figure

2). For every line p /∈ KOY , we denote with M the intersection `Op ∩ `IOY .

Let (m, m) be the coordinate of intersection `MOX ∩ OI. Then, its obvious that the coordinate of the point M is M(1, m)

and of intersection `MOX ∩OY is (0, m). Let (0, b) the coordinate of the intersection of lines p ∩OY .

Figure 2.

Definition 1.4. The symbol m ∈ S is called skew of a line p, while the symbol b ∈ S is called ordinate intersection of the

line p.

The ways of determine the skew m and the ordinate intersection of a line p /∈ KOY we can take in the form:

p /∈ KOY

M = `Op ∩ `IOY

`MOX ∩OI = (m, m)

⇒ m is the skew of the line p; (6)

p /∈ KOY

p ∩OY = (0, b)

⇒ b is the ordinate intersection of the line p. (7)

So, to construct the line with the skew m and ordinate intersection b, we denote pm,b:

(m, m) ∈ OI;

M(1, m) ∈ `IOY ;

OM ;

B′(0, b);

r ‖OM ∧B′ ∈ r


⇒ pm,b = r. (8)

2. Planar ternary ring in Acoordinatizing Affine Plane

For every triple of symbols (a, m, b) ∈ S3, in acoordinatizing affine plane A = (P, L, I) we construct the point A(a, a),

the line p with skew m and ordinate intersection b (Figure 3).
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Figure 3.

Since the line p /∈ KOY , has the skew m, there exists the unique point P = p ∩ `AOY . Let the symbol c ∈ S be ordinate of

the point P. Triples (a, m, b) ∈ S3 we associate the symbol c ∈ S, which is unique like the ordinate of the point P. So, we

obtain the ternary operation t : S3 → S, defined by t(a, m, b) = c, ∀ (a, m, b) ∈ S3.

Definition 2.1. Ternary operationt : S3 → S, defined by (a, m, b) 7→ c, ∀ (a, m, b) ∈ S3, we called planar ternary

operation.

By this definition, for every (a, m, b) ∈ S3 we can write:

A(a, a);

pm,b;

ordinate of pm, b

⋂
`AOY = c

⇔ t(a, m, b) = c (9)

By planar ternary operation t in S, for every line pm,b from coordinatizing affine plane A, we can write the equation

y = t(x, m, b) (10)

Definition 2.2 ([2]). Let S be a set, that have at least two distinct elements 0 (called zero) and 1 (called unit) and t a

ternary operation in S. Planar ternary ring is called ternary structure (S, t), that satisfy the following axioms:

A1. ∀ a, m, b ∈ S, t(0, m, b) = t(a, 0, b) = b.

A2. ∀ a ∈ S, t(a, 1, 0) = t(1, a, 0) = a.

A3. ∀ m, m′, b, b′ ∈ S, where m 6= m′, ∃ !x ∈ S, t(x, m, b) = t(x, m′, b′).

A4. ∀ a, a′, b, b′ ∈ S, a 6= a′, ∃ !(x, y) ∈ S2, t(a, x, y) = b ∧ t(a′, x, y) = b′.

A5. ∀ a, m, c ∈ S, ∃ !x ∈ S, t(a, m, x) = c.

Theorem 2.3. If S is the set of coordinates of coordinatized affine plane A = (P, L, I) and t is planar ternary operation

in S, then (S, t) is planar ternary ring.

Theorem 2.4. If (S, t) is a planar ternary ring, then S is the set of coordinates of a coordinatized affine plane A = (P, L, I)

and t is planar ternary operation in S.
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3. Isomorphism Between Structures ((u), ⊕, *) and (S, +, ·)

(1) Addition in (u): Let A(a, a) and B(b, b) be any two point in (u) (Figure 4). Let we denote: l1 = `BOX ∈ KOX ;

l2 = `B
′

u ∈ Ku, where B′(0, b); l3 = `AOY ∈ KOY , intersect the line l2 in a point P; l4 = `POX ∈ KOX . The least line,

intersect a unite line u in a unique point C (Figure 4). By associating a pair (A, B) ∈ (u) × (u) to the point C ∈ (u)

we obtain a function ⊕ : (u)× (u)→ (u).

Definition 3.1. The function ⊕ : (u)× (u)→ (u) we called addition in (u), while the image C of the pair (A, B) we denote

with A⊕B and called the sum of points A and B.

Figure 4.

(2) Addition in S: Let a and b be any two symbols in S. From (2), by the bijection σ : (u)→ S, there exists only one pair

(A, B) ∈ (u) × (u) such that A(a, a) and B(b, b), where a = σ(A) and b = σ(B). Let (c, c) be the coordinates of the

sum A⊕B = C, i.e. c = σ(A⊕B) ∈ S. If we associate in the pair (a, b) ∈ S × S the unique symbol c = σ(A⊕B) ∈ S

we obtain a function + : S × S → S.

Definition 3.2. The function + : S × S → S we called addition in S, while the image c of the pair (a, b) we denote with

a+ b and called sum of a and b.

By this definition we have: ∀ (A, B) ∈ (u)× (u), σ(A⊕B) = σ(A) + σ(B).

Theorem 3.3. In an affine plane A = (P, L, I) coordinatized by (O, I, OX, OY, OI) and bijection σ : (u) → S, the

bijection σ is isomorphism of groupoid ((u), ⊕) intogroupoid (S, +).

Theorem 3.4. Addition + in the coordinatizing set S is expressed with planar ternary operation t by equation

a+ b = t(a, 1, b), ∀ (a, b) ∈ S × S (11)

Proof. From Definition 3.2 and 2.1 (Figure 4 and Figure 3), the sum a+ b is the ordinate of intersection of line l2 = `B
′

u ∈

Ku, passing through B′(0, b) and parallel with unit line u, with the line of class KOY , passing through the point A′(a, 0),

which means that hold equation a+ b = t(a, 1, b).

In a coordinatizing affine plane A = (P, L, I) the line with skew 1 and ordinate intersection b has the equation y = x+ b.
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(3) Multiplication in (u): Let be A(a, a) and B(b, b) two arbitrary points of (u) (Figure 5). Denote: l = `BOX ∈ KOX ,

intersect the skew line s in point (1, b); line l1, passing through the points (1, b) and O(0, 0), with skew line 1 and

ordinate intersection 0; l2 = `AOY ∈ KOY intersect the line l1 in the point P; l3 = `POX ∈ KOX . Line l3 intersect the

unite line in a unique point C (Figure 5). By associated the pair (A, B) ∈ (u)× (u) point C ∈ (u) we obtain a function

∗ : (u)× (u)→ (u).

Figure 5.

Definition 3.5. The function ∗ : (u)× (u) → (u) we called multiplication in (u), while the image C of the pair (A, B) we

denote with A ∗B and we called product of the points A and B.

(4) Multiplication in S: For any a, b from S, there exists only one pair of points (A, B) ∈ (u)× (u) such that A(a, a) and

B(b, b), where a = σ(A) and b = σ(B). Let (c, c) be the coordinate of the product A ∗ B = C, i.e. c = σ(A ∗ B) ∈ S.

By associated in the pair (a, b) ∈ S × S the unique symbol c = σ(A ∗B) ∈ S we obtain the function · : S × S → S.

Definition 3.6. The function · : S × S → S we called multiplication in S, while the image c of the pair (a, b) we denote

with a · b and we called product of a and b.

From this definition we have: ∀ (A, B) ∈ (u) × (u), σ(A ∗ B) = a · b, where a = σ(A), b = σ(B), which implies

σ(A ∗B) = σ(A) · σ(B).

Theorem 3.7. In an affine plane A = (P, L, I), coordinatized from system (O, I, OX, OY, OI) and bijection σ : (u)→ S,

the bijection σ is isomorphism between groupoids ((u), ∗) and (S, ·).

Theorem 3.8. Multiplication · in coordinate set S is expressed with planar ternary operation t from equation:

a · b = t(a, b, 0), ∀ (a, b) ∈ S × S (12)

From (12), for b=0 we have a ·0 = t(a, 0, 0), while, since (S, t) is planar ternary ring, from axiom A1 we have t(a, 0, 0) = 0.

From(12) and A1, for a=0 we have 0·b = t(0, b, 0) = 0. Also from (12) and axiom A2, for b = 1 we have a·1 = t(a, 1, 0) = a,

while for a = 1 we have 1 · b = t(1, b, 0) = b.
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In ancoordinatized affine plane A, for any a ∈ S we have

a · 0 = 0 · a = 0 (12′)

a · 1 = 1 · a = a (12′′)

From Theorem 3.1, Theorem 3.3 and definition of isomorphism between two structures with binary operation [3], we obtain

this:

Theorem 3.9. There exists isomorphism between structures ((u), ⊕, ∗) and (S, +, ·).

4. Planar Ternary Ring Like Usual Ring

Proposition 4.1 (I Desargues axiom [4]). If AB, A′B′, A′′B′′ are parallel line (Figure 11), then

A A′||B B′,

A′A′′||B′B′′

⇒ AA′′||BB′′

Figure 6.

An affine plane, in which hold the first Desargues axiom (denote with D1) we called Desargues plane. A vector
−→
AB is an

ordered pair (A, B) of any two points of P. Hence, if we use axioms A1, A2, A3, D1, we can conclude that groupoid (V, +)

is abelian group, where V is the set of vectors of Desargues plane and addition determined from triangle rule (Figure 7),

Figure 7.

i.e.
−→
AB +

−−→
CD =


−−→
AD, if B = C

−→
AQ, where Q is such that

−−→
CD =

−−→
BQ

if B 6= C
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VO = {
−→
OZ|Z ∈ (u)} is the set with direction line of vectors the unite line u and with the same origin O (Figure 8), so

∀
−→
OA,

−−→
OB ∈ V0 we have

−→
OA+

−−→
OB =

−−→
BC +

−−→
OB =

−−→
OB +

−−→
BC =

−−→
OC ∈ V0. (13)

Also,
−→
OA+ (−

−−→
OB) ∈ V0. Substructure (V0, +) of the group (V, +) is subgroup. In this way easy we can prove this:

Figure 8.

Proposition 4.2. Substructure (V0, +) of abelian group (V, +), is abelian group.

Theorem 4.3. In Desargues plane D = (P, L, I), coordinatized from system (O, I, OX, OY, u), abelian group (VO, +)

is isomorph with groupoid ((u), ⊕).

Proof. Let us consider VO = {
−→
OZ|Z ∈ (u)}. We associate the point Z ∈ (u) vector

−→
OZ ∈ VO. Hence, is obtained a

bijection ϕ : VO → (u) (Figure 8) such that

ϕ(
−→
OZ) = Z (14)

By Definition 3.1, we have A⊕B = C, where C = `POX ∩ u. Then, by (13) and (14), we have ϕ(
−→
OA+

−−→
OB) = ϕ(

−−→
OC) = C =

A⊕B and ϕ(
−→
OA)⊕ ϕ(

−−→
OB) = A⊕B so, we get

ϕ(
−→
OA+

−−→
OB) = ϕ(

−→
OA)⊕ ϕ(

−−→
OB) (15)

Equation (15) shows that abelian group (VO, +) is isomorph with groupoid ((u), ⊕) therefore, the second one is abelian

group [3].

Theorem 4.4. In Desargues plane D = (P, L, I), coordinatized by system (O, I, OX, OY, u) and bijection σ : (u) → S,

grupoid (S, +) is abelian group.

Proof. From Theorem 4.3 we have (VO, +) ∼= ((u), ⊕), while from Theorem 3.3 we have ((u), ⊕) ∼= (S, +). So, it result

that (VO, +) ∼= (S, +) [9]. From Proposition 4.2, (VO, +) is abelian group, therefore (S, +) is abelian group.

Definition 4.5. Planar ternary operation t : S3 → S, defined by (a, m, b)→ a ·m+ b, for every (a, m, b) ∈ S3, we called

linear ternary operation, while planar ternaryring (S, t) we called linear ternary ring.

Hence, if t : S3 → S is linear ternary operation, then ∀ (a, m, b) ∈ S3,

t(a, m, b) = a ·m+ b (16)
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Theorem 4.6. If an coordinatized affine plane A = (P, L, I) is Desarguian,then its planar ternary ring (S, t) is linear

ternary ring.

Theorem 4.7. If a planar ternary ring (S, t) of a coordinatized affine plane is linear ternary ring, then that affine plane is

Desarguian.

Theorem 4.8. In a linear ternary ring (S, t) multiplication is right distributive by multiplication. So, ∀ a, b, p ∈ S,

(a+ b)p = ap+ bp (17)

In a linear ternary ring (S, t) in general multiplication is not left distributive by addition. It is such that if Desargues plane

is fulfilled with second Desargues axiom which is:

Proposition 4.9 (II Desargues axiom [5]). Let A, B, C, A’, B’, C’, O be the point of an affine plane A. If triples (A, B, C),

(A′, B′, C′) are collinear and the lines AA′, BB′, CC′ passing through the point O (Figure 9), then

AB||A′B′,

BC||B′C′

⇒ AC||A′C′.

Figure 9.

Theorem 4.10. If in an coordinatizing affine plane A = (P, L, I) hold Proposition 4.9, then in its planar ternary ring

(S, t) for every a, b, c ∈ S hold the equation

t(a, b, ac) = at(1, b, c). (18)

Proof. By considering the axioms of an affine plane and equation (12′), we show that hold (18) when at least one of a, b,

c are 0.

Let a, b, c 6= 0. We denote with l the line with equation y = xc and with B the point with coordinates (1, c). Also,

let we denote with C the point of an affine plane with coordinates (1, t(1, b, c)) (Figure 10). In these condition the line

l1 = OC has the skew t(1, b, c), therefore, its equation is y = xt(1, b, c). Let we denote with C′ the point with coordinates

(a, at(1, b, c)). Let A(0, c) and y = t(x, b∗, c) the equation of AC. In fact we have b∗ = b. If b∗ 6= b, from axiom A3 of

planar ternary rings, the equation

t(x, b∗, c) = t(x, b, c) (*)

has the one solution. From t(0, b∗, c) = c = t(0, b, c) implies that x = 0 is a solution of the equation (*). In the other

side, C(1, t(1, b, c)) ∈ AC with equation y = t(x, b∗, c). Since its coordinate prove this equation we take this equation
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t(1, b, c) = t(1, b∗, c), which shows that also x = 1 is the solution of the equation (*). Hence we have a contradiction 1=0.

So, the equation of AC is y = t(x, b, c).

Now we denote with A′ the point with coordinate (0, t(1, 0, c)) and B′ the point of the line l with coordinate (a, ac).

We can see that the point O, A, B, C, A′, B′, C′ fulfilled the condition of D2, so we have AC ‖ A′C′, so A′C′ has the

same skew b with the line AC, so the equation of A′C′ is y = t(x, b, ac). Thus, since C′(a, at(1, b, c)) ∈ A′C′ we have

t(a, b, ac) = at(1, b, c).

Figure 10.

Theorem 4.11. In a linear ternary ring (S, t) of an affine plane A = (P, L, I), where hold Proposition 4.9, multiplication

is left distributive by addition.

Proof. Since planar ternary ring (S, t) is linear, from (16) we have t(1, b, c) = 1 · b+ c and t(a, b, ac) = ab+ ac. Since

also hold D2, from (18) we have t(a, b, ac) = at(1, b, c). This imply a(b+ c) = ab+ ac, because from (12′′), 1 · b = b.

From Theorem 4.5 and Theorem 4.7 results that multiplication is distributive in linear ternary ring of an affine plane, where

both Desargues axioms hold.

Theorem 4.12. In a planar ternary ring (S, t) of an affine plane A = (P, L, I), where hold Proposition D2, multiplication

is associative.

By Theorem 4.4, which shows that (S, +) is abelian group, Theorem 4.12, which shows that multiplication is associative in

S, Theorems 4.8 and 4.11 which shows that multiplication is distributive by addition in S, hence we obtain this:

Theorem 4.13. Planar ternary ring (S, t) of ancoordinatized affine plane,where hold Proposition D1 and Proposition D2,

is an usual ring in relation with addition + and multiplication · determined in S like its coordinate set.
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