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1. Introduction

Let © = (x,,) be any real or complex sequence. Write A%z, = 2, Axy = Tp — Tnt1, A™x, = A(6™ ' 2,,), where m is a

positive integer. It may be easily verified that A™z,, is represented by the sum

A sequence (z,) is said to be the convex order m if A™x,, = 0 and quasi-convex of order m, if

> k4+m—1 m
Z [A™ | < oo.
k=1 k

Let « denote a non-integral real number. Then A%z, is defined by the infinite series
oo
Ay =D A

n+«
provided by the series on the right converges, where the Binomial coefficients Aj;, = are defined by the power

[e%

series

oo
DoAY vl <L

n=0

_
(1-y*
Let a > 0, we note that AZ™" are all positive. A sequence (x,) is said to be convex of order «, if A%z, = 0 and it is said

to be quasi-convex of order a, if
oo

-1
E AT A%z < oo
k=1
In this chapter we investigate some new matrix transformations on quasi-convex sequence spaces for non-integral positive

values of a. Throughout the chapter we use K or K; as absolute constants, not necessarily same at each occurrence.
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2. Some Notations

As in for any real a and 8, (a > 0) we write

Q* = {xéw : ZAz_l |[A%zy| < oo},

k=1

oo
QP = {m Ew: ZA2+B71 |[A%zy| < oo},

k=1

b =l NQ™?,
¢’ =cnQ™’,

¢ =cnQ™”.

Note that

Qa,() _ Q&7 QO,l — l17 Qa,O — qoz7 ba,O —_ ba

Das and Rao [2] observed that following inclusion relation hold.

Q™ cQ*(B<0, a<0),
L™ (B<1),

QP cl(B>1).

The sequence space X (A) where X = co, ¢ or I is defined as follows :
X(A)={zcw: (Azx) € X}.

It is known that X (A) is a Banach space normed by ||z||, = |z1| + ||Az]||,, where ||Az|| = sup, |[rx — 2x41| . Before we
start characterizing the matrix A in the class (loo (A), bo"ﬁ“s)7 we make the following preparations with a view to introduce
new sequence spaces. We give a generalisation of binomial coefficient (Af) in terms of the coefficient {Aﬁ"s}. Let the

coefficient {Aﬁ"s} be defined by the following power series

s
ZA%’%:” =1—z) " (logﬁ) ,a>2

Note that the following relations hold :

—1,8 8 -1
nAs;, =aAl’ + sAN°

n—1

§ -1,6
A% :E:Ag ,

v=0

The following estimates are known :

A% (an-i- 0 (logn)é, a# -1, =2,....

3% ~ B (o] = Din® (logn)* ™, = —1, 2.
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We now obtain the following new sequence spaces as generalisation of above quasi-convex sequence spaces :

QD"‘S = {x Cw: ZA?AJ ’Aa’(;xk’ < oo}
QP = {x Ew: ZA?J“B*L‘S ’Aa"sxk‘ < oo}
baﬁﬁ =N Qa,ﬁ,é

qaﬂ,& —cn Qa,ﬂ,é

qa,é —cn Qa,§

Note that

420 = A7
a,0 el
Q™ =@
Qa»ﬁyo — Q%B

3. Topological and Other Properties

Before we study the sequence space Q9 it is necessary to develop some techniques to deal with new situations. It is easily

verified that if m is a positive integer, then

s m
ATz, = (=1)" Tnto (1)
v=0 v
But if « is non-integral then A%z, is defined by the infinite series
A%z, = Z A;ailmv (2)

provided the series on the right converges. Note that when « is a positive integer, then the series (2) reduces to (1). We

first tabulate the known results that concern the fractional difference A“x,.
(i) Let o > 0 and let the series for A™“x,, converges; then z, = A% (A™%x,,).
(ii) Let « >0, B> —1. Let 4+ 3 > 0 and x € loo. Then APz, = A% (A%z,).
(iii) Let « >0, 8> —1, a4+ >0 and z € co, then A*T Pz, = AP (A%z,)
In particular, if z, = 0(1), then for 0 < a <1, z, = AT (A%zy,).
3.1. A Generalisation of the Difference of Fractional Order

It may be noted that the fractional A“x,, has been defined by means of the binomial coefficients { A5 }. We now generalise

the fractional difference by means of the generalised binomial coefficients { Ay }. We now write

Ay = Z A;f;l’_émv (3)
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Whenever the series (3) converges. Note that A*%x,,= A%zx,,. We may remark that when « is an integer and & # 0, then
the series (3) still continuous to be an infinite series. Therefore it will be interesting to study these new spaces. It follows

the properties of A2*® that

n
a,d o8 jatal 5+
E AP LAY 0 = Ay

k=0

Aa+1,[3 _ AOH—},B _ Aaﬂ
n n— n
It is familiar that if the series (2) exists for one n, then it exists for any other value of n. This naturally lead one to conjecture
that a similar result holds for A%%z,. In fact we prove
Theorem 3.1. If A%z, exists for one n, it exists for any other value of n.

Proof. It is enough to prove that the series defining A%z converges if and only if A®°z; converges. Now

oo

Aa’él’o _ Z A;a—l,—éxv (4)
v=n

Ay =3 A e, ()
v=1

Thus converges of (4) imply the convergence of (5) If we prove that

—a—1,—46
Av—l

A—a—l,—S
Is of bounded variation. Similarly the converse implication apply if we prove that

A;afl,fﬁ
—a—1,—6 (7)
A'Ufl ’

is of bounded variation. Since (6) converges to 1 as n — oo it is enough to prove that (6) is of bounded variation. It may

be noted that in the case 6 = 0, there is a simple explicit expression for (6), since

—a—1
Anfl _ n

Ay n—a—1

But when ¢ # 0, there is so much simple expression for (6). Now

—a—1,—46
A An—l _ Xn
—a—1,—6 - —a—1,6 j—a—1,—6
An A’ﬂ An+1

Where

2
Xn _ A;f;l,*éA;ifl,fé o (A;a71,76)
_ (A;a_lv_éfA;&_Z_é) (A;a—l,—é +AT—L-¢~J_¢1—2,—6) o (A;Q_L_,;)Q
_A—a—Q,—éA—a—2,6+A—a—1,6 (A—a—Q,—é _A—a—2,5)

n—+1 n+1

_ —a—2,—6 j—a—2,0 —a—1,—-8 4—a—3,—9
_An An+1 _An An+1

A;f;1776 1
) (Anal"‘ -’ (ﬁ)

Hence the result. O

Now it follows that

126



Ajaya Kumar Singh

Now we prove

Theorem 3.2. Let a be non-negative integer, 8 # 0 and either s > «, any § or s = o, § > 3. Then the existence of APz,

implies that of A0z,

Proof. Because of Theorem 3.1, it is enough to consider the case n = 0. Thus we are given that
oo
Aa’ﬁl‘o _ ZA;a_l’ﬁﬂCu
v=0

Converges and we have to show that
oo
Z A5 b=,
v=0

AL

s—1,-6
Converges. This will follow if we prove thatm is of bounded variation. Now

—a
v

A (A;sfl,fé) _ Y'u
A;a—l,—ﬂ A;a—l,—ﬁA;fl—l,—ﬁ
when

_ A—s—1,—6 4—a—1,8 —s—1,—-8 ,—a—1,8
Y, = A, AL - A A,

—s—1,—-¢ —a-—1, —a—2, —a—1,— —s5—1,—-¢ —5—2,—6
— At (Av 16+AU+125)—AU 1 B(Av 1 +Av+12 )

_ A—s—1,—-06 4—6—-2,8 —0—1,—8 y—s—2,—06
- A’U Av+1 - A’U A'u+1

It now follows that

A (A;sfl,fa) Y (v7‘571+a(l0g7))67§)

A;afl,ﬁ

This gives the conclusion when s > a. We now need the case when s = a. In that case
Y, = A;afl’*‘SA;ffZ’*B _ A;"‘*l**BA;ff&%
So that
(DY, = AT (=l DA™ = AT = A (o ) AT - 84T - gAY

Hence in this case

S (450) o)
as the result follows. O
Theorem 3.3. Let a > —1. Let he series A*Pz, converge. Then A" (As";xn) = A"tsetd  Provided that

j E AjTobTe E A,;_S;I‘faxk — 0 as m — oo, for all n.

v=n k=m+1
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Proof. Let the series APy, converge. Now

Ar,a (As,éxn) _ ZA;j;L_a (As’é.TU)

v=n

ZA 170‘214 s— 175
i, ZA T (Z+ > )A

k=v k=m-+1

=l S e AT A ZA"‘ VY A
k=v v=n = k=m+1
oo m
< ATt SO S At
k=n v=n k=m+1
= AT im I,
m—r0o0
_ A'r+s,a+6$ )
This completes the proof. O
3.2. Topological Properties
Define
: Q™ SR as h(x Z’Aa”HA‘” (

assumed finite. Then it is easily verified that
a,s a,d
T, yeq >z4+yeQ
For

B+ py) < N[4S A | 4 1 Y AT A,

S [ATh(z) + [plh(y)
Thus Q% is a linear space. Since
a,d —a,—0 a,d
hz)=0=A"2, =0=2,=A (A mn):o

It follows that h is a norm. Before we consider the space Q*?%, we need to note the following result:

Lemma 3.4. Letx € loo. Let >0, § real or a =0, § > 0. Then A® %z, ezists.

Proof.
Aa,émn — Z A;f‘;l’iéxv
— o)) Yo, (a=n+1)"(log (v —n+1))7" a0, 1,2
o, (a—n+1)" Wﬁl)(log(v—71—{—2))7671 a=0,1,2 ...
0(1) if >0, any ¢
0(1) if a=0, 60>0
This completes the proof. O
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Lemma 3.5. Let x, = o(1). Then
(i) Tn = AT (AY0g,)
(i) T = A (AT 00,

Provided that 0 < a < 1, § real or « =0, § > 0.

Proof. Now
N ¢S}
AP (A*“’*%n) = lim ZA ohTe (Z + > )AS,}%T
N=oo r=v r=N+1
—mn—i—hm ZAalf ZAO‘ 1,30,
r=N+1
Now since

Z ACT =o(1)

r=N-+41
as N — oo, it follows that
N
ZA —1,-6 Z A% 1 5, o(1) Z ‘A;g;Lfs‘
r=N+1 v=n

o(1) fj (w—n+1)""VY(og(v—n+2)"°, a>0, B real

o(1) io: (vfnJrl)_l(log (vfn+2))_5_1, a=0,8>0

This completes the proof of the first part. The proof of the next part is similar.
We now prove
Theorem 3.6. Q%° N ¢y is Banach space for a >0, § real or o =0, 6 > 0 normed by h defined above.

Proof. It is enough to show that it is complete. Let ° be a Cauchy sequences in Q®° N ¢o. Then

oo
_ a,d
h (z* fx E ‘A% LOAY (szfx;) =0 as s,t— 00

Now

i — b = ATGTI AN (fo — xfl)

_ZAQ léAats 7581;)
Hence

xfl—xfl‘< ’Aa SOAS (5 — b))

v=n

zh(acs—xt)—>0 as s, — 00
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Hence (z7,), is a Cauchy sequence in c. Therefore there exists & € ¢ such that

s

(z3) = (xn) =2 (say) as s — oo.

Now

tlirgo A0 (372 _ x;) - tILHOlO A;:l;l,é (xi B xtv)
v=n
oo
=3 lim A7 (o) — o))
v=n
oo
=D A () —w)
v=n

It follows from this that given e > 0, there exists so such that h (z° —z) <€, s > so. This proves that (z° —2) € Q.

This implies that = & — 2° + 2° € Q®?. This proves the complete of Q*° N co. (I

4. Matrix Transformation

The following lemma is key to the development of this section.

Lemma 4.1. Letzecand0<a <1, § real ora =0, § > 0. Then

oo

(@) = Y = (time ) D o+ 30 A (@) 30 AT s
k=0 s =

k=0

In the sense that if the sum of two series exist then the sum of third will also exist and the equality holds.

Proof. Suppose that z,, — s. Then we can write x,, = s + €5, when €, — 0. If A,, (x) exists for each n > 0, we can write

A, (z)=s Z Qnk + Z Ank€Ek
k=0 k=0

Now using the result :

oo
= ATTAM ()
v=k
‘We obtain
oo oo v
Z Onk€r = Z A (&) Z A?j”sank
k=0 v=0 k=0
But
A% () = Y AT ()
oo oo
—a—1,—-6 —a—1,—
S A S AR,
n=v n=v
— Aaﬁeu
This proves the result. O

Note: Since this equality is applicable in what follows, it is therefore always assumed that 0 < o < 1, d real or « =0, § > 0.
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Lemma 4.2. Y kax is convergent if and only if > Ry is convergent with nR, — 0, where R, = Y, ax.
k=1 k=1 k=n+1

Theorem 4.3. Let a« >0, 3>0. Then A € (loo (A), ba’ﬂ";) if and only if A satisfies the following conditions:

(i) sup, Limank\] <o

Aoth-18 Z Z 0% ani| < 0o, where ASCany, = Z Ao

k=1 j=k+1

(i) Z

Proof.  Suppose condition (i) and (ii) hold. Let = € lo (A) with 21 = 0, then there exists one and only one y = (yi) € loo,

such that
k
- Z Yo-1, Yo =0
v=1
Let n € N be fixed and let m € N. Then by using condition (i) and Lemma 3.4 we may write

m—1

m
Sawre=- 30 [ 3 aw|ut 3 anaZyk
k=1 k=1 j=k+1 j=n-+1
Further the second term in the right hand side of the above equation tends to zero as m tends to infinity and the first term
m oo oo
converges. Therefore Y anrzi converges and has the same sum as that of — > > anj | Azy and therefore we have
k=1 k=1 \ j=k+1

oo oo

oo
E AnkTlr = — E E Qnj Al‘k
k=1

k=1 \j=k+1

This gives

i ’A%+,8—1,6Ag,514n (33)’ i Aa+5 1 5Aa S Zankmk

n=1 n=1 k=1
S DLl 5 31 (B pir) Pes
n=1 k=1 \j=k+1
Z ASTPLIA 62 Z anj || < oo, where K = sup |Axy]
n=1 k=1 \j=k+1 k
Conversely, since A € (I (A), ba”e";) (i) follows by the fact that sup,, | Y ankzr| < oo for each z € I (A). In particular,
k=1

by putting (zx) = (k) we get condition (i). Also by condition (i) and Lemma 3.4, we have

oo

i)Ai*ﬁ’l“sAﬁ"sAn(x)‘:i PRl i ane | Az,

n=1 n=1 k=1 \j=k+1

Converges whenever z € I (A). Now putting = (zx) = (k) on the right hand side of the above equation we get

oo oo
E AO‘+B 1,8 E E Aﬁ"sanj < 00.
n=1 k=1 \j=k+1

O

Theorem 4.4. Let 0 < a <1, § >0 and B =0 and p € loo. Then A € (I (A), bo"ﬁ"s) If and only if A satisfies the

following conditions:
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e} Pn
(i) > ank converges for each n and sup,, < 00

k=1

() sup,, ,, (ASJrﬁ_l"s) E

oo
Z Ank
k=1

Pn
)6

CQ
a-H

< 00.

Proof. Let z € ¢*?° with lim, z, = s , we have to show that 3. anxxx converges for all n and
k=1

sup < 00

o
g UnkTk
k=1

Since p € lo, it is sufficient to prove the theorem for p, <1 for all n. Let n € N, using Lemma 4.1,

A, (z) = (hmx)Zank—FZAa 5vaAa R

Since condition (i) holds, A, (z) converges if and only if Z A%Og, Z AD” k’ ank converges. Now
v=1 k=1

1
Angﬁ*lﬁ

v
a—1,8
§ Av k Onk

k=0

> 1
azS a+pB-1
<Z’A A > (‘i“f’ Ao+B—13

o0 v
a,d a—1,0
E A :rvg As T Ak

v=0 k=0

o0
< 3 [am o, fagets
v=0

v

Z Av ka"k

k=0

)

8

Kz ’Aa’éxv‘AT%*ﬁ < o0.

v=0

oo
Therefore the series converges absolutely and hence converges. This gives Y anirzr convergent for each n € N. Now we
k=1

have

Pn

(hmm ) Zank—i—ZAa 69&,214& 5 %
Pn
ZA“ *x, ZA: w7 ank

o Pn
S Z‘Aa76$U’A3+B716sup (Aa-l»ﬁ s ZAU k |ank) +K
v=1

sup [An (z)["" = sup
n

< Is||ank|"* + sup

Since z € ¢***% and condition (ii) holds,

sup |An (z)["" < oo
n

For necessity we are given that sup,, | A, (z)|"" < oo whenever z € ¢*#°. Since x = e € (qa’B’é) condition (i) follows. Using

Lemma 4.1
oo v Pn
sup |4, (2)|P" < 0o = sup Z Aa,axvz A" Pan| < oo

n "o je=1 k=1

Or we can write
Pn
K ) K
sup ZAa JASHA—1 WZA? “olank| < oo (8)
n v=1

put y, = ASTALIA®IL and

v
1 a—1,6
) WE:IAU g Onk, VST
nv — =

05 v>n

Since by hypothesis Y |y,| < oo it follows from Maddox [4-6] that

sup |bno|"" < K

n,v

This completes the proof.
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Corollary 4.5. Let0<a <1, f>0andd >0. Then A € (qo"B"s, loo (p)) if and only if

ZA € (qa’ﬂ’é, loo (p)) or ZA

satisfies (i) and (ii) of Theorem 4.4.

Theorem 4.6. Let 0 < a <1 and d real. Then A € (qo"B"S, ll) if and only if A satisfies the following conditions :

oo
(i) > |35, ank| is convergent,
k=1

() io: sup

n=1 v

— -1 —1
(AgFh=1e) ankAS_y | < 00
k=1

Theorem 4.7. Let0 < a <1, 8>0 andd real. Then A € (qo"ﬁ"s, qo"ﬁ";) if and only if A satisfies the following conditions:

(i) lim ank exists, for each fized k,
n—oo

(i) lim (E ank) exists,
n— oo

k=1

(i) (£ )i e ("),

k=1

18 convergent.

j=1

1,6 o [ <= s
ARHPTLO ST S AN an;
k=1

) 5
Proof. Let A€ (1]""5‘57 q""’g"s). Conditions (i) and (ii) follow from the fact that z = e € (qa’B"s) and z=¢c € (qa’ﬁ";) for

each k. Now since

oo
Z ’A2+B71’5A5’5An(:c)‘ < oo, whenever x € (qo"ﬁ’a) ,
n=1

Taking x = e € (qa’B";), in the above inequality we get condition (ii). Further, summing by parts, we have for n € N

oo n—1 k k
Zankazk = Z <Z anj>Amk + (Z anj> Tn.
k=1 j=1

k=1 \j=1

Now, if z € (q"“ﬁ“s)7 then x € ¢, let lim z, = s. Then taking n — oo in the above equation we get
n

—> 00

oo =) k
§ AnkTk = g Anj
k=1 k j=1

=1

Therefore, using (iii) there exists K1 > 0 such that

NgE

A%+E—175A2¢ Z

k=1

an]-) Azp + s < anjA§’5>
i—1

[e) oo k
Z AQTATLOAY Zank-’rk = Zl
i=
k
Zanj) Azp| — SZAT'B_I"S
i—1
]k
>

n=1 k=1

3
Il
-
<.
1

NgE
8
N

8

A%+’B—1’§Az Z

(o)
j=1

AV
NgE
8
N

n=1 k=1 n=1
[eS) =]
—1,6
> |ATTRAR S ( an]-) Azy| — K.
n=1 k=1 \j=1

This gives

i ‘Aﬁ*ﬁ’l’éAi"sAn(ax)’ + Ki > i
n=1 n=1

oo k
Aerﬁfl,é Z (Z A,D{“Sam) Azp
k=1 \j=1
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Since the left hand side of (77?) is bounded, so is the right hand side. Write

k
A3+l371,5 27 kE<n
Dy = J=1

0, k>n

Since Az, € (qa’B"s) , Dni € (q“’ﬁ’é, l1) in view of (??). Now condition (iv) follows from Theorem 4.6. On the other hand,
let the condition (i)-(iv) hold. Then, it is easy to see that (A, (z)) € ¢ whenever z € (¢*”°) and lim A, (z) = Y ax.s
n—oo k7

where ar = hm ank, and s = lim . Summing by parts and using (1), we have
n—r n— oo

[e @) o0
a+pB—-1,6 a,d
E Ay s AnkTy E AL ankTr

n=1 k=1

<>l

g )

Then by using conditions (iii) and (iv), it follows that A € (qQ’B"S, q“’B";). This completes the proof. O

Theorem 4.8. Let0 < a <1, >0andd >0 andpels. Then A € (qa’3’6, co (p)) if and only if A satisfies the following

conditions :

(i) lim |ank|’™ =0 for all k,
n—oo

Pn

() > ank converges for each n and lim =0,

k=1 N0 | p=1

Pn
(i) hm sup W Z AYT 16 =0.

nk

Proof.  Let conditions (i)-(iii) hold. Let x € (qo"ﬁ"s) and s = lilgn Zk. since sup Py < oo it is sufficient to prove that result
k

for p, < 1. For any n, m € N we have

m m m v
a,d a—1,6

E AnkTk = Tm g ank + E Az, E Av L Onk-

k=1 k=1 v=1 k=1

Pn
, in view of (4it), k < co. For each fixed n € N

v
Let k =supsup = |—g5—15 > AS~ ééa
n v Ay k=1

nk

oo v oo v
a, 5 a—1,6 a,d a+pB-1,9 a—1,6

S |ave, 3 AT E‘A Ty A ‘EAMC@

v=1 k=1 nk v=1 k=1 nk
oo v
E ’Aa‘; Afﬁﬁ*l‘&’supi E AST ,15a

Aa+ﬁ 1,8 v

v=1 k=1 nk

IN

oo
4 —
k) Pr, E ’Aa’éxv‘ ‘ASJFB 1’5’ < 0.
v=1

Since = € (qo"’B"S), we have

a,d
<Z A J:UZ AT )
nk

k=1

converges absolutely and hence converges. This gives

o
g UnkTk
k=1
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converges for each n. Again from conditions (i)- (iii), Lemma 4.1 and the observations that p, < 1 for each n we have

a,s P
. 1,6
lim |A, (z)|"" = lim |s E ank + E A xvg A2 %
n—oo n—r 00
k=1 nk
o Pn Pn
< lim |s E Ank + lim E A LUuE Ao‘ 16
n— oo n—r 00
k=1 nk

oo
. a,d a+B-1,6 1 a—1,8
= JL”;OZ ‘A “’”’Av ( AotB1b ZAvfk
k=1 v k=1

S s
v=1

v

Pn
ank)

Pn
ank> =0.

Hence lim |A, (x)[P* = 0. Conversely, since A € (q""B"s7 co(p)) and z = e € (qa’ﬁ"s), we have condition (ii). Again
n— o0

v
1 z :Aafl,é
Aa+ﬁ—1,6 v—k
v k=1

r=eé€ (qa’B’é) for each k gives condition (i). Now to prove condition (iii), we have
00 oS} v Pn
n : 6 —1,6
1A ()P = (h}rcna:k) S an+ > A2, S A2
k=1 v=1 k=1 nk
oo o v Pn
= |s Z ank + Z A Z Ag:,i’éa
k=1 v=1 k=1 nk
%) v DPn oo Pn
> ZAD“SJL’UZA?; “%a - Szank
v=1 k=1 nk k=1
e v Pn Pn
= DAY, > AT < |An ()P + sZank
v=1 k=1 nk
So
Pn
a,d a+pB—1,8 a—1, 6 _
i ZA Tu Ay Aa+ﬁ 152’4 =0
nk

Let

1 v a—1,0
ST k1 Av ank, <
bry = Av

0, v>n

and y, = ASTAIOAYIL Then

Pn

=0.

oo

> by,

v=1

lim
n—oo

since there is a one-to-one correspondence between I; and ¢ N Q*?°, we have B = (bny) € (I1,co(p)). Therefore, condition

(iii) holds. O
Corollary 4.9. Let0<a <1, 8>0andd >0. Then A € (qo"ﬁ"s, 7') if and only if A satisfies the following conditions:
(i) lim ane|® =0, (k=1, 2, ...)
n—oo

1
o] n

(i) Z ank converges for each n and lim

=0,

-
3=

Aa+5 5 Z k ank =0.

n—00

(i) S’VLu’lIJ) W gl ankAf)‘:,i < oo and lim sgp
Corollary 4.10. Let 0 < a <1, <0andd>0. Then A € (qa’ﬁ"s, A ) if and only if A satisfies the following conditions:

(i) sup |ank| < o0, (k=1, 2, ...),
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() sup < 00,

3=

< 0.

v
(iii) sup W kZl ank A%}
n,v =

Proof. 1t can be worked out on the lines of Theorem 4.4. O

Theorem 4.11. Let 0 < a <1, 8> 0 and 6 > 0. Then A € (qo"B"s, co(A)) if and only if A satisfies the following

conditions:
(i) Ay = ayy, belongs to the B-dual of ¢®®?,

(i) > ank converges for all n, or equivalently
k=1

(#i) (a) > a1k converges and (b) > Aank converges for all n,
k=1 k=1

() nan;o dank = 0 for every k and nler;o (Zk:l Aank) =0,

(v) sup Tﬁl Z Aank| < 0o, where Aank = (Ank — an+1, k)
n,v =1

Proof.  Suppose conditions (i)-(iv) hold and let = € ¢®#°. We first prove that B = (Aanx) € (¢*°, o). Since A; belongs
to the A-dual of ¢®#%. We can say that A € (qo"ﬁ’é, co (A)) Now using Lemma 3.4 and condition (iii) it is sufficient to

prove that for each n

oo v o0 v
s 1,5 . 5 1,8
E Az, E A27 % Aank, converges and  lim E A, E A2 Aank| = 0.
n— oo
v—1 k=1 v=1 k=1

Since condition (iv) holds therefore there exist a constant K such that

oo v
5 —1,
E A%z, g AD" 0 Aan

v=1 k=1 v=1 k=1

> 1

_ a,d a+B—-1,6 a—1,6

=> ‘A r . ’A” ‘ qotB—18 DA Aan
v=1 v =1
oo

G Aa+ﬁ 1‘5‘su Aa MAa

;‘ Up‘AaJrﬂ 15’ Z n

OO v
. . —1,6 . sy
This gives > A%z, S A57,° Aany converges absolutely an d hence converges for each n. Now using condition(iii) we
v=1 k=1

have

=0.

lim
n—r oo

ZAa 1, (;Aank

Conversely, let A € (qo"ﬁ‘é, CO(A)). Since £ = e € (qa’ﬁ";). We have <Z ank> € co(A). So for all n, > Aank
k=1 k=1

n—oo

ltm Aanr = 0 which are conditions (ii) and (iii). Condition (i) also holds. Now it is left to prove condition (iv). Using
n—oo

Lemma 4.1 and condition (iii) we get

lim (A, (2) ~ Ans1 (2)) = lim (Z A5, S AT Aa )
nk

OO
converges and lim (Z Aank) = 0. Again since for each k, z = ¢j, € (qo"’@"s) y (@nk)pe, € co(A) for each k. This gives
k=1

n— oo n— oo

v=1 k=1
) 1 v
_ a,d a+pB—-1,6 Z a—1,0
= lim (> A @A s 2 Ak
v=1 k=1 nk
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Let

1 v a—1,6
a5 2okhe1 Ay Cank, VSN
bnv = Av

0, v > n.

and y, = Aﬁﬂg*l"sAa"smv. Then

nh—{r(:)lo Z:l by = nh_}n;o (An (z) — Apt1 (z)) =0 whenever Z:l | y,| < o0.

Since there is a one-to-one matrix correspondence between 1 and ¢*?°, we have B = (bn,) € (I1,c0(A)). Therefore

condition (iv) also holds. O
Theorem 4.12. Let >0, >0 and § > 0. Then A € (q“’ﬁ"s, c) if and only if A satisfies the following conditions:
(i) sup 3> 2, lank| < oo,
(i) lim ang exists,
n—oo

e}
(i) Um Y ank exists,
n—o0 g1

o0 v
(iv) 3 |ASHA=LISY A%, k| is convergent.
k=1 k=1

Proof. The conditions (i)-(iii) are necessary since A € (¢, c¢). It remains to show that (iv) is also necessary. Note that

v
~1,6 6
AP E AN ank| < 0o,

k=1

>

k=1

whenever z € c. Therefore, by taking z = e € ¢, we get (iv). On the other hand, let the conditions (i)-(iv) hold. Note that
by conditions (i)-(iii) we have A, (x) € ¢ whenever x € ¢. Further, since z = e € ¢ there exists k1 > 0 such that in view of

condition (iv), we have

oo oo o0 o0

Z1,6 A a,8 “1,6 )8
E A§+B A E ank| = k1 E A%JFB AN E AnkTr| < 00
n=1 k=1 n—=1 k=1

O

Theorem 4.13. Leta >0, >0 and 6 > 0. Then A € (qo“ﬁ"s, co) if and only if A satisfies conditions (i), (ii) and (iv)

of Theorem 4.12.
Proof. 1t is similar to that of Theorem 4.12. O

Theorem 4.14. Let a >0, >0 and d > 0. Then A € (q""B"s, 7) if and only if A satisfies the condition () of Theorem

4.12 together with the following conditions:
(i) |ank|% < for every n, k,
(i) Um ank = ax for every n, k.
n— oo

Proof.  Conditions (i) and (ii) are true since A € (7,¢). Using the arguments of Theorem 4.12, we have condition (iv) of

Theorem 4.12. Similarly we have the converse implication. O
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